
Probabilistic Reconciliation of Count Time Series

Abstract

Forecast reconciliation is an important research topic. Yet, there is currently
neither formal framework nor practical method for the probabilistic reconcili-
ation of count time series. In this paper we propose a definition of coherency
and reconciled probabilistic forecast which applies to both real-valued and count
variables and a novel method for probabilistic reconciliation. It is based on a
generalization of Bayes’ rule and it can reconcile both real-value and count vari-
ables. When applied to count variables, it yields a reconciled probability mass
function. Our experiments with the temporal reconciliation of count variables
show a major forecast improvement compared to the probabilistic Gaussian
reconciliation.

1. Introduction

Time series are often organized into a hierarchy. For example, the total sales
of a product in a country can be divided into regions and then into sub-regions.
Forecasts of hierarchical time series should be coherent ; for instance, the sum of
the forecasts of the different regions should be equal to the forecast for the entire
country. Forecasts are incoherent if they do not satisfy such constraints. Recon-
ciliation methods (Hyndman et al., 2011; Wickramasuriya et al., 2019) compute
coherent forecasts by combining the base forecasts generated independently for
each time series, possibly incorporating non-negativity constraints (Wickrama-
suriya et al., 2020). Reconciled forecasts are generally more accurate than the
base forecasts; indeed, forecast reconciliation is related to forecast combination
(Hollyman et al., 2021; Di Fonzo and Girolimetto, 2022).

A special case of reconciliation is constituted by temporal hierarchies (Athana-
sopoulos et al., 2017), which reconcile base forecasts computed for the same
variable at different frequencies (e.g., monthly, quarterly and yearly); they gen-
erally improve the forecasts (Kourentzes and Athanasopoulos, 2021) of smooth
and intermittent time series.

As for probabilistic reconciliation, Panagiotelis et al. (2023) proposed a sem-
inal framework which interprets reconciliation as a projection. Other methods
for probabilistic reconciliation have been proposed (Jeon et al., 2019; Corani
et al., 2020; Taieb et al., 2021; Rangapuram et al., 2021), but none of them
reconciles count variables.

Our first contribution is the definition of coherency and reconciliation for
count variables. Then, we propose a novel approach for probabilistic recon-
ciliation, based on conditioning. As a first step, our method computes a joint
distribution on the entire hierarchy, using as source of information the base fore-
cast of the bottom variables; this is the probabilistic bottom-up reconciliation.
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Then it updates the joint distribution by conditioning on the information con-
tained in the base forecast of the upper variables, using the method of virtual
evidence (Pearl, 1988; Chan and Darwiche, 2005). Our approach can reconcile
both real-value and count variables; in this paper however we focus on count
variables. In this case, we obtain a reconciled probability mass function defined
over counts. We show extensive experiments on the temporal reconciliation of
count time series, reporting major empirical improvements compared to proba-
bilistic reconciliation based on Gaussian assumptions.

The paper is organized as follows: Section 2 reviews temporal hierarchies;
in Section 3 we propose a definition of coherent and reconciled forecasts which
applies to both continuous and real-valued variables. In Section 4 we describe
our reconciliation method and in Section 5 we present the experimental results.

2. Temporal Hierarchies

Temporal hierarchies (Athanasopoulos et al., 2017) enforce coherence be-
tween forecasts generated at different temporal scales. For instance the tempo-
ral hierarchy of Figure 1 is built on top of a quarterly time series observed over
t years, with observations q1, . . . , q4, q5, . . . , q4·t. The bottom level of the hierar-
chy contains quarterly observations grouped in vectorsQj = [qk : k mod 4 = j],
j = 1, . . . , 4; the semi-annual observations are grouped in the vectors Sj = [s` : `
mod 2 = j] where s2i−1 = q4(i−1)+1 + q4(i−1)+2, s2i = q4(i−1)+3 + q4i for
i = 1, . . . , t; finally the annual observations are grouped as Y = [a1, . . . , at],
where ai = s2i−1 + s2i, for i = 1, . . . , t.

Y
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Q1 Q2

rS2r

Q3 Q4

Figure 1: Temporal hierarchy built on top of a quarterly time series.

We denote by b the vector of bottom observations, e.g., b = [QT1 ,QT2 ,QT3 ,QT4 ]T ,
and by u the vector of upper observations, e.g., u = [YT ,ST1 ,ST2 ]T . We denote
by y the vector containing all the observations of the temporal hierarchy, e.g.,
y = [u b] = [YT ,ST1 ,ST2 ,QT1 ,QT2 ,QT3 ,QT4 ]T . We denote by m the number of
bottom observations and by n the total number of observations in the hierarchy.

A hierarchy is characterized by its summing matrix S ∈ Rn×m that defines
the relationship between b and y, i.e.

y = Sb.
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The S matrix of hierarchy in Figure 1 is:

S =



1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


=



A

I


,

where A ∈ R(n−m)×m encodes which bottom time series should be summed up
in order to obtain each upper time series.

Reconciling temporal hierarchies. Let us denote by h the forecast horizon, ex-
pressed in years. For instance, h=1 implies four forecasts at the quarterly level,
two forecasts at the bi-annual level and one forecast at the yearly level.

Let us denote by ûh and b̂h the base point forecasts for the upper and
bottom levels of the hierarchy. The vector of the base point forecasts for the

entire hierarchy is ŷh =

[
ûh

b̂h

]
,

The base forecast are incoherent, i.e., ŷh 6= Sb̂h. Optimal reconciliation
methods (Hyndman et al., 2011; Wickramasuriya et al., 2019) adjust the forecast
for the bottom level and sum them up in order to obtain the forecast for the
upper levels. The reconciled forecasts of the bottom time series and the entire
hierarchy are:

b̃h = Gŷh (1)

ỹh = Sb̃h = SGŷh. (2)

The core of the minT algorithm (Wickramasuriya et al., 2019) is the follow-
ing expression for G, which minimizes the mean squared error of the coherent
forecast:

G = (STW−1S)−1STW−1 , (3)

where W is the covariance matrix of the errors of the base forecast. The covari-
ance of the reconciled forecasts is (Wickramasuriya et al., 2019)

Var(ỹ) = SGWGTST = S(STW−1S)−1ST . (4)

In temporal hierarchies, W is generally assumed to be diagonal, but it can
be defined in different ways. For instance, hierarchy variance (Athanasopoulos
et al., 2017) adopts the same variances of the base forecasts, allowing hetero-
geneity within each level of the hierarchy. For the hierarchy of Fig.1 it yields:

W = diag(σ̂2
Y , σ̂

2
S1
, σ̂2
S2
, σ̂2
Q1
, . . . , σ̂2

Q4
) .
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Instead, structural scaling (Athanasopoulos et al., 2017) defines W by assuming:
i) the forecasts of the same level to have the same variance; ii) the variance at
each level to be proportional to the number of bottom time series that are
summed up in that level. For the hierarchy of Fig.1, it yields:

W = diag(4, 2, 1, 1, 1, 1) .

3. Probabilistic Reconciliation

The methods discussed so far reconcile the point forecasts. In the following
we review the most important methods for probabilistic reconciliation.

Jeon et al. (2019) propose different heuristics (based on minT) for proba-
bilistic reconciliation, one of which is equivalent to reconciling a large number
of forecast quantiles. The algorithm by Taieb et al. (2021) yields coherent
probabilistic forecasts whose expected value match the mean of MinT; yet this
method does not consider the variance of the base forecast of the upper vari-
ables. Rangapuram et al. (2021) propose a deep neural network model which
produces coherent probabilistic forecasts without any post-processing step, by
incorporating reconciliation within a single trainable model.

Corani et al. (2020) shows that probabilistic reconciliation can be accom-
plished via Bayes’ rule. First they create a joint predictive distribution for the
entire hierarchy, based on the probabilistic base forecast of the bottom time se-
ries. The distribution is then updated in order to accommodate the information
contained in the base forecast of the upper time series. Under the Gaussian
assumption they obtain the reconciled Gaussian distribution in closed form.
The reconciled mean and variance are equivalent to those of minT, despite the
different derivation strategy. Also (Hollyman et al., 2022) propose a Bayesian
viewpoint of the reconciliation process.

Panagiotelis et al. (2023) proposes a definition of probabilistic reconciliation
based on projection and an algorithm which obtains the reconciled distribution
by minimizing a scoring rule. However this requires optimizing via stochastic
gradient descent them×n elements of G, which structurally limits its scalability.

There is currently no method for the reconciliation of count variables. To
address this problem, we first extend to count variables the key definitions
of Panagiotelis et al. (2023).

3.1. Coherence and reconciliation according to Panagiotelis et al. (2023)

Recalling that m and n denote the number of bottom and total time series,
matrix S can be seen as a function s : Rm → Rn which associates to a bottom
vector b ∈ Rm the coherent vector s(b) = Sb ∈ Rn. The n-dimensional coherent
vectors lie in the vector subspace s (spanned by the columns of S), which is well-
defined in Rn. The base forecasts of the bottom time series can be represented by
a probability triple (Rm,FRm , ν), where FRm is the (Borel) σ-algebra associated
with Rm.
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Definition 1. (Panagiotelis et al., 2023) A probability triple (s,Fs, ν̌s) is co-
herent with the bottom probability triple (Rm,FRm , ν) if:

ν̌s(s(B)) = ν(B), ∀B ∈ FRm , (5)

Definition 1 implies that incoherent vectors have zero probability under the
probability measure ν̌s.

3.2. Extension to count variables

Figure 2: B1 and B2 are two count variables, with U = B1 +B2. The black points constitute
the set of coherent vectors.

A count variable takes non-negative integer values N = {0, 1, 2, 3, ...}. We
denote by a ∈ Nk an array of k non-negative integers which we call vectors, with
a slight abuse of notation. We have vectors y ∈ Nn, b ∈ Nm and u ∈ Nn−m.
The set of coherent vectors in Nn is:

s(Nm) = {y ∈ Nn : ∃b ∈ Nm such that y = s(b)}. (6)

Eq. (6) defines the subset of coherent vectors, see Fig.2 for a graphical
representation. Indeed, no vector subspace can be defined with count variables.
We can now extend to counts the definition of coherence:

Definition 2. A probability triple (s(Xm),Fs(Xm), ν̌) is coherent with the bot-
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tom probability triple (Xm,FXm , ν) if:

ν̌(s(B)) = ν(B), ∀B ∈ FXm , (7)

where Xm = Rm in the continuous case and Xm = Nm in the discrete case.

Definitions 1 and 2 are equivalent in the continuous case, as we prove in Ap-
pendix B. However, definition 2 applies also to count variables, in which case
ν̌ and ν are discrete probability distributions. Denoting by p̌ and p their prob-
ability mass functions, we can write Eq. (7) as:

p̌(b1, . . . , bm,u = Ab) = p(b1, . . . , bm), for all b1, . . . , bm ∈ N (8)

Equation (8) assigns zero probability to vectors of counts which are incoherent.

Definition 3. Consider a probabilistic base forecast for y, constituted by the
probability triple (Xn,FXn , ν̂). A reconciled probability distribution ν̃ is a trans-
formation of the forecast probability measure ν̂ which is coherent and defined on
Fs(Xm).

Our definition of reconciled probability triple is more general than that of
Panagiotelis et al. (2023), which requires a reconciliation function, defined in
their algorithm as an affine map. This can lead to negatively reconciled forecasts,
which is not admissible with count variables.

4. Reconciliation based on virtual evidence

We assume the forecasts over counts to be constituted by probability mass
functions (pmfs). We denote by p̂ and pBU the pmf of the base forecasts and
the probabilistic bottom-up respectively. The reconciled pmf is denoted by p̃.

The first step of our algorithm is to create a joint pmf for the entire hierarchy
using p̂(b) as the only source of information; this is the probabilistic bottom-up.
In order to formalize it, we need an indicator function which selects the suitable
vectors u:

1Ab(u) =

{
1 if u = Ab

0 otherwise
.

The pmf pBU (y) is:

pBU (y) = pBU (u,b) = 1Ab(u)p̂(b).

The pmf pBU (y) assigns positive probability only to vectors y ∈ s(Xm) because
of the indicator 1Ab(u); it is thus coherent.

4.1. Conditioning on uncertain evidence

Virtual evidence (Pearl, 1988) is a method for conditioning a joint distri-
bution on an uncertain evidence, obtained for instance from a noisy source of
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information. It is also referred to as soft evidence “nothing else considered” by
(Darwiche, 2009, 3.9) and (Chan and Darwiche, 2005).

Consider two discrete variables X and Z and their joint prior pmf p(x, z) =
p(x)p(z|x), where the values of {z ∈ zk}Kk=1 are mutually exclusive. Virtual
evidence assumes that ζ, i.e. the uncertain observation of Z, can be expressed
by the likelihood ratios: λ1 : ... : λK = L(Z = z1) : ... : L(Z = zK). Assuming
ζ to be independent from the prior, the update rule (see Chan and Darwiche
(2005, Theorem 2) and Munk et al. (2022)) is:

p(x|ζ) =

∑K
k=1 p(x, zk)λk∑K
j=1z p(zj)λj

. (9)

We can make a few observation about the update of Eq.(9). First, p(x)
and p(x|ζ) have the same zero probabilities. Indeed, virtual evidence is based
on conditioning, which does not modify the zero probabilities (Darwiche, 2009,
Chapter 3.3).

If there is a unique λj>0 and the remaining λi (i 6= j) are zero, we have
a certain observation (Z = zj). In this case, the conditioning of Eq.(9) is
equivalent to Bayes’ rule.

The evidence ζ does not need to be normalized, as what matters are the
likelihood ratios. However in our application ζ is constituted by the base forecast
of the upper variables and thus it is normalized.

4.2. Reconciliation by conditioning on the base forecast of the upper time series

We now show how to use virtual evidence in order to condition pBU (u,b) on
the base forecasts p̂(u1) of the first upper time series u1. Let us denote by A[1,]

the first row of A, such that u1 = A[1,]b. According to Eq.(9), the reconciled
pmf of the bottom time series is:

p̃1(b) =

∑
u∗1
pBU (u∗1,b)p̂(u∗1)∑

u∗1

∑
b∗ pBU (u∗1,b

∗)p̂(u∗1)
, (10)

where pBU (u∗1,b) denotes the marginal of pBU where all other upper time series
forecasts are marginalized. The sums in eq. (10) are over all possible values u∗1
and b∗ in the domain of the pmfs p̂(u1) and pBU (u1,b).

The summation
∑
u∗1
pBU (u∗1,b) is sparse, since pBU (u∗1,b) is non-zero only

if A[1,]b = u∗1. The subscript in p̃1(b) shows that only the base forecast regard-
ing u1 has been considered.

Further insights about the update with virtual evidence can be obtained by
analyzing the relative probability of two bottom vectors b∗ and b∗∗, such that
A[1,]b

∗ = u∗1 and A[1,]b
∗∗ = u∗∗1 . From Eq.(9) we obtain:

p̃1(b∗∗)

p̃1(b∗)
=
pBU (u∗∗1 ,b)

pBU (u∗1,b)
· p̂(u

∗∗
1 )

p̂(u∗1)
, (11)
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which shows how virtual evidence updates the relative probability of b∗ and
b∗∗, merging information from pBU (y) and p̂(u1).

The reconciled joint pmf is eventually:

p̃1(y) = p̃1(u,b) = 1Ab(u)p̃1(b)

= 1Ab(u)

∑
u∗1
pBU (u∗1,b)p̂(u∗1)∑

u∗1

∑
b∗ pBU (u∗1,b

∗)p̂(u∗1)
.

Since p̃1(y) has been obtained by applying virtual evidence on pBU (y), it has
the same support of pBU (y), i.e. s(Nm). Thus, p̃1(y) is coherent.

Sequential updates. The reconciled pmf p̃1(y) can be further updated with new
uncertain evidence and the updates performed via virtual evidence are com-
mutative (Chan and Darwiche, 2005; Munk et al., 2022). Indeed, the method
assumes the conditional independence between the uncertain observations (the
base forecast of the different upper variables in our application); this is a com-
mon assumption when merging probabilistic information acquired from different
noisy sensors (Durrant-Whyte and Henderson, 2016, Sec. 2).

We thus adopt a sequential approach, performing an update of type eq. (10)
for the base forecasts of each upper time series. The first iteration updates
pBU (y) with the virtual evidence p̂(u1) to obtain p̃1(b); the second iteration
updates p̃1(y) with the virtual evidence p̂(u2) to obtain p̃2(y), and so on. As-
suming all base forecasts to be available, the final reconciled distribution is
p̃(y) := p̃n−m(y). If the base forecast of a certain upper variable is missing, the
corresponding update is skipped.

Proposition 1. If the upper time series forecasts are conditionally independent,
the sequential updates procedure is equivalent to a full update procedure with

p̃(y) = p̃(u,b) = 1Ab(u)p̃1(b)

= 1Ab(u)

∑
u∗ pBU (u∗,b)p̂(u∗)∑

u∗
∑

b∗ pBU (u∗,b)p̂(u∗)
.

4.3. Reconciling a Minimal Hierarchy

Y

S1 S2

Figure 3: The minimal hierarchy.

Figure 3 represents a minimal temporal hierarchy, whose bottom variables
are the two semesters and whose upper variable is the year. We assume S1 and
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S1 = 0, S2 = 0 S1 = 0, S2 = 1 S1 = 1, S2 = 0 S1 = 1, S2 = 1

.25 .25 .25 .25

(a) p̂(s1, s2).

S1 = 0, S2 = 0 S1 = 0, S2 = 1 S1 = 1, S2 = 0 S1 = 1, S2 = 1

Y = 0 1 0 0 0

Y = 1 0 1 1 0

Y = 2 0 0 0 1

(b) 1s1+s2 (y).

S1 = 0, S2 = 0 S1 = 0, S2 = 1 S1 = 1, S2 = 0 S1 = 1, S2 = 1

Y = 0 .25 0 0 0

Y = 1 0 .25 .25 0

Y = 2 0 0 0 .25

(c) pBU (y, s1, s2) = 1s1+s2
(y) · p̂(s1, s2).

Table 1: Probabilistic bottom-up reconciliation.

S2 to take values in {0, 1}, Y to take values in {0, 1, 2}, the data to arrive up
to year t and the base forecast to refer to year t + 1. We denote by S(t,i) the
random variable corresponding to the value of the i-th semester of year t and by
s(k,i) the observation referring to the i-th semester of year k (k <t). Moreover,
Yt+1 denotes the random variable corresponding to year t+ 1, while yk denotes
the observation of year k. The probability mass functions of the base forecasts
are thus:

p̂(s1) := p̂(st+1,1) = p(st+1,1 | s(1,1), .., s(t,2)),
p̂(s2) := p̂(st+1,2) = p(st+1,2 | s(1,1), .., s(t,2)),
p̂(y) := p̂(yt+1) = p(yt+1 | y1, .., yt),

where we introduce a simplified notation which drops the time from the sub-
script.

We obtain the joint distribution of the bottom variables assuming p̂(s1, s2) =
p̂(s1)p̂(s2). In this paper, we always use this independence assumption to cre-
ate the joint mass function of the bottom variables. However, this is not a
requirement of our method, which could also reconcile a predictive multivariate
distribution. We leave this as a future research work, acknowledging that mod-
elling correlations in temporal hierarchies (Nystrup et al., 2020) is an important
problem.
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Eventually, the pmf of probabilistic bottom-up reconciliation is:

pBU (y, s1, s2) = 1s1+s2(y)p̂(s1, s2) ,

We provide a numerical example in Table 1c, assuming p̂(s1, s2) to be uniform.

Conditioning on p̂(y)

Y p̂(y)

0 .5

1 .2

2 .3

(a) p̂(y).

S1 = 0, S2 = 0 S1 = 0, S2 = 1 S1 = 1, S2 = 0 S1 = 1, S2 = 1

.25·.5
c = .416 .25·.2

c = .167 .25·.2
c = .167 .25·.3

c = .25

(b) p̃(s1, s2). The normalizing constant is c = .25 · .5 + 25 · .2 + .25 · .2 + .25 · .3.

p̃(y, s1, s2) S1 = 0, S2 = 0 S1 = 0, S2 = 1 S1 = 1, S2 = 0 S1 = 1, S2 = 1

Y = 0 .416 0 0 0

Y = 1 0 .167 .167 0

Y = 2 0 0 0 .25

(c) p̃(y, s1, s2) = 1s1+s2
(y)p̃(s1, s2)

Table 2: Reconciliation of the minimal hierarchy using virtual evidence.

We now update pBU (y, s1, s2) by conditioning on p̂(y). By applying the
updating of Eq.(10), we have:

p̃(s1, s2) =

∑
y∈{0,1,2} p̂(y) · pBU (y, s1, s2)∑

y′∈{0,1,2}
∑
s′1,s

′
2∈{0,1}

p̂(y′) · pBU (y′, s′1, s
′
2)

and hence:

p̃(s1, s2, y) = 1s1+s2(y) · p̃(s1, s2).

In Table 2 we show a numerical example.
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4.4. Reconciling Poisson base forecast

We now consider an example with Poisson base forecast. We denote by
Poi(x|λX) the Poisson pmf with parameter λX , and we assume the base forecasts
to be:

p̂(s1) = Poi(s1|λ1) ,

p̂(s2) = Poi(s2|λ2) ,

p̂(y) = Poi(sy|λY ) ,

The bottom-up pmf is:

pBU (s1, s2, y) = Poi(s1|λ1)Poi(s2|λ2)1s1+s2(y).

while the reconciled pmf of the bottom variables is:

p̃(s1, s2) =

∑+∞
y=0

pBU (y,s1,s2)︷ ︸︸ ︷
Poi(s1|λ1)Poi(s2|λ2)1s1+s2(y)

p̂(y)︷ ︸︸ ︷
Poi(y|λY )∑+∞

y=0

∑
s1

∑
s2

Poi(s1|λ1)Poi(s2|λ2)1s1+s2(y)Poi(y|λY )
, (12)

which is analytically intractable.

4.5. Sampling the reconciled distribution

The reconciled pmf of Eq. (12) can be computed via sampling using the
Metropolis-Hasting algorithm; this is for instance done in the bayesRecon pack-
age (Azzimonti et al., 2023) for R. In the following we show that it can be easily
implemented also in PyMC (Salvatier et al., 2016; Martin, 2018), a package for
automatic Bayesian inference. The code below reconciles the minimal hierarchy
of Fig. 3 and returns samples from p̃(s1, s2). Appendix A provides the code
for reconciling a 4-2-1 hierarchy. In general, the probabilistic program con-
tains m base forecasts and (n−m) virtual evidences (indicated by the keyword
“observed”), one for each upper variable of the hierarchy.

1 def reconcile (lambda1 , lambda2 , lambdaY):

2 import pymc3 as pm

3 basic_model = pm.Model ()

4 with basic_model:

5 #base forecast of S1 and S2

6 S1 = pm.Poisson (’S1’, mu = lambda1)

7 S2 = pm.Poisson (’S2’, mu = lambda2)

8

9 #virtual evidence

10 Y = pm.Poisson (’Y’, mu = lambdaY , observed = S1 + S2)

11 #implies updating p(s1,s2) with p(s1,s2) * p(Y = s1+s2)

12

13 #sampling the reconciled pmf

14 trace = pm.sample ()

15 return trace
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The probabilistic program returns samples from p̃(s1, s2), using the Metropolis-
Hasting algorithm. In general the probabilistic program contains m base fore-
casts and (n−m) virtual evidences (indicated by the keyword ”observed”), one
for each upper variable of the hierarchy. As an example, we provide in Ap-
pendix A the code which reconciles a 4-2-1 hierarchy. Alternative packages for
probabilistic programming such as Stan (Carpenter et al., 2017) could be used
in a similar way.

4.6. A numerical example

We now report the results assuming λ1 = 2, λ2 = 4, λY = 9. Given the
positive incoherence (λY > λ1 +λ2), reconciliation increases the expected value
of both S1 and S2: see Table 3. and the left plot of Fig. 4. A larger increase is
applied to the variable whose base forecast has larger variance, i.e., S2 (Table 3).
Moreover, the variances of S1, S2 and Y decrease after reconciliation, since
novel information has been acquired through conditioning. These are the same
patterns already reported for the probabilistic Gaussian reconciliation (Corani
et al., 2020).

mean var

pBU p̃ ∆ pBU p̃ ∆

S1 2.0 2.4 +0.4 2.0 1.9 -0.1

S2 4.0 4.8 +0.8 4.0 3.0 -1.0

Y 9.0 7.2 -1.8 6.0 3.6 -2.4

Table 3: Reconciliation results for the example λ1=2, λ2=4, λY =9.

Figure 4: Left : The mean of S1 increase after reconciliation. Right : S1 and S2 are negatively
correlated after reconciliation.

The right plot of Figure 4 shows that S1 and S2 become negatively correlated
after reconciliation. Indeed, S1 and S2 become dependent once Y is observed,
because S1 + S2 = Y . If for instance we observe Y=1, the only joint states
compatible with the evidence are (S1 = 0, S2 = 1) and (S1 = 1, S2 = 0), whence
the negative correlation. For the same reason, also virtual evidence induces
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negative correlation. Fig. 5 shows that the reconciled pmf of Y is a compro-
mise between its bottom-up pmf and its base forecast: this is an analogy with
Bayesian inference, where the posterior distribution is a compromise between
the prior and the likelihood of the observation.

Figure 5: Bottom-up, base forecast and reconciled pmf of Y .

5. Experiments

We select time series with maximum value <30 and with average inter-
demand interval (ADI) <2, which can be appropriately modelled by autoregres-
sive models for counts. Following this criterion we select:

• 219 time series from carparts, available from the R package expsmooth
(Hyndman, 2015) and regarding monthly sales of car parts;

• 53 time series from syph, available from the R package ZIM (Yang et al.,
2018) and regarding the weekly number of syphilis cases in the United
States, which we aggregate to the monthly scale (this step involve some
approximation);

• 135 time series from hospital, available from the R package expsmooth
(Hyndman, 2015) and regarding the monthly counts of patients.

In Table 4 we report the percentage of intermittent time series in each data set.

selected % intermittent mean length

(years)

carparts 219 94% 4

syph 53 47% 4

hospital 135 0% 7

Table 4: Main characteristics of the selected time series. We consider a time series as inter-
mittent if its average inter-demand interval (ADI) is >1.32 (Syntetos and Boylan, 2005).
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Temporal hierarchy and base forecasts. In every experiment the bottom fore-
casts are at the monthly scale. As in Athanasopoulos et al. (2017), we compute
the following temporal aggregates: 2-months, 3-months, 4-months, 6-months, 1
year.

At each level of the hierarchy we fit a GLM autoregressive model with neg-
ative binomial predictive distribution. We use the tscount package (Liboschik
et al., 2017) and we select via BIC the order of the autoregression.

At every level of the hierarchy, the test set has length of one year. We
thus compute forecasts up to h=12 steps ahead at the monthly level, up to h=6
steps ahead at the bi-monthly level, etc. The forecast of count time series models
have closed form only one step ahead; after that, the predictive distribution is
constituted by samples (Liboschik et al., 2017). Depending on the reconciliation
method being adopted, we fit a Gaussian or a negative binomial distribution on
the samples.

Reconciliation. In the Gaussian case (Corani et al., 2020), the reconciled predic-
tive distribution has the same mean and variance of minT (formulas (2) and (4)
respectively) For Gaussian reconciliation, we fit a Gaussian distribution on the
samples of the base forecast, for each level and for each forecasting horizon (e.g.,
we fit 12 different distributions at the monthly level). We then perform recon-
ciliation using the covariance matrix of hierarchy variance and the structural
scaling, discussed in Sec 2. These methods are referred to in the following as
normal and structural scaling.

We moreover implemented a truncated approach. To this end we perform
the normal reconciliation, truncating the distribution of the reconciled bottom
forecast. We then sum them up via sampling in order to obtain the distribution
of the upper variables. This a simple way to obtain positive reconciled forecasts.

We implement our approach by fitting a negative binomial distribution on
the base forecasts on the samples of each level and each forecasting horizon
and performing reconciliation via probabilistic programming. The probabilistic
program contains 12 variables (the bottom variables) and 16 soft evidences,
corresponding to the upper variables of the hierarchy. We refer to this methods
as probCount. The reconciliation takes about 2-3 minutes on a standard laptop.
This approach is therefore currently not suitable to hierarchies containing large
number of variables. Alternative approaches based on importance sampling
constitute a promising direction for efficient probabilistic reconciliation (Zambon
et al., 2022).

Indicators. We assess the methods according to their point forecasts, predictive
distributions and prediction intervals. Let us denote by yt+h the actual value of
the time series at time t+ h and by ŷt+h|t the point forecast computed at time

t for time t + h. We further denote the predictive distribution by f̂t+h|t. Note

that f̂t+h|t(i) is a discrete probability mass for i = 1, . . . ,∞.
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The mean scaled absolute error (MASE) (Hyndman, 2006) is defined as:

MAE =
1

h

h∑
j=1

|yt+j − ŷt+j|t| ,

Q =
1

T − 1

T∑
t=2

|yt − yt−1| ,

MASE =
MAE

Q
.

We use the median of the reconciled distribution as point forecast, since it is
the optimal point forecasts for MAE and MASE (Kolassa, 2016). However, the
median point forecast is generally not coherent, even if the joint distribution is
coherent (Kolassa, 2022).

Different scores for discrete predictive distributions are discussed in (Ko-
lassa, 2016). Here we use the ranked probability score (RPS). Given the pre-

dictive probability mass f̂t+h|t(i), the cumulative predictive probability mass is

F̂t+h|t(k) =
∑k
i=0 f̂t+h|t(i). For a realization yt+h, then we have:

RPS(f̂t+h|t, yt+h) =

∞∑
k=0

(F̂t+h|t(k)− 1yt+h≤k)2, (13)

where 1y≤k is the indicator function for y ≤ k.
We compute the RPS of continuous distributions by applying the continuity

correction, i.e. computing p(X = x) as
∫ x+0.5

x−0.5 g(t)dt, where g(t) denotes the
continuous density.

We score the prediction intervals via the mean interval score (MIS) (Gneit-
ing, 2011). Let us denote by (1-α) the desired coverage of the interval, by l and
u the lower and upper bounds of the interval. We have:

MIS(l, u, y) = (u− l) +
2

α
(l − y)1(y < l) +

2

α
(y − u)1(y > u) .

We adopt a 90% coverage level (α=0.1). The MIS rewards narrow prediction
intervals; however, it also penalizes intervals which do not contain the actual
value; the penalty depends on α. In the definition of RPS and MIS, it is un-
derstood that yt+j , f̂t+h|t(i), F̂t+h|t(k), l and u are specific for a certain level of
the hierarchy and for a certain forecasting horizon j, 1 ≤ j ≤ h.

We also report the Energy score (ES), which is a proper scoring rule for
distributions defined on the entire hierarchy (Panagiotelis et al., 2023). Given
a realization y and a joint probability P on the entire hierarchy, the ES is:

ES(P,y) = EP ||y − s||α − 1

2
EP ||s− s∗||α , (14)
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where s and s∗ are independent samples drawn from P . We compute the energy
score using the scoringRules package1 (Jordan et al., 2019) with α=2.

Skill score. We compute the skill score on a certain indicator as the percentage
improvement with respect to the normal method, taken as a baseline. Skill
scores are scale-independent and can be thus averaged across multiple time
series. For instance the skill score of probCount on MASE is:

Skill (MASE, probCount) =
MASE(normal) - MASE(probCount)

(MASE(normal) + MASE(probCount))/2
.

Thus a positive skill score implies an improvement compared to normal. The
denominator makes the skill score symmetric and bounded between −2 and 2,
allowing a fair comparison between the competitors and the baseline.

For each level of the hierarchy, we compute the skill score for each forecasting
horizon j (1 ≤ j ≤ h); then we average over the different j. Only for the
probCount we compute also the skill score with respect to the base forecast,
constituted by a negative binomial distribution fitted on the samples returned
by the GLM models.

5.1. Experiments on carparts and syph

The carparts data set has a high percentage of intermittent time series (94%)
and the base forecasts are generally asymmetric. In these conditions probCount
yields a large improvement over normal on every score (Table 5a). Averaging
over the entire hierarchy, the improvement of probCount over normal ranges
between 22% and 51% depending on the indicator; the energy score improves
by about 27% The structural scaling and the truncated method perform worse
than the normal method. Hence, the truncated method does not represent a
satisfactory solution for modelling distributions over counts, even if it yields
positive forecasts.

The forecast reconciled by probCount yield a large improvement also com-
pared to the base forecast (last column of Table 5a). The largest improvements
with respect to the base forecasts are in the highest level of the hierarchy, as
already observed for temporal hierarchies (Athanasopoulos et al., 2017).

Also in the syph data set, probCount largely outperforms normal on every
indicator (Table 5b); the improvement varies between 27% and 42%. Large im-
provements are found also with respect to the base forecasts. The performance
of both truncated and structural scaling is slightly worse than normal also in
this case. The result for syph, detailed for each level of the hierarchy, are given
in the appendix.

In Figure 6 we provide two examples of reconciliation, taken from carparts
and syph respectively. In both examples, the distribution of the base forecasts
is asymmetric at every level (Figures 6a, 6b), with the median much lower than

1We use R packages in Python via the rpy2 utility, https://rpy2.github.io.
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Skill score on carparts vs normal vs base

struc scal truncated probCount probCount

ENERGY SCORE -0.06 -0.19 0.27 0.34

MASE Monthly -0.01 -0.02 0.18 0.00

2-Monthly -0.02 -0.08 0.21 0.00

Quarterly -0.03 -0.11 0.21 0.00

4-Monthly -0.03 -0.14 0.30 0.18

Biannual -0.04 -0.20 0.30 0.09

Annual -0.09 -0.30 0.89 0.80

average -0.04 -0.14 0.35 0.18

MIS Monthly 0.00 0.27 0.36 0.38

2-Monthly 0.00 -0.07 0.15 0.53

Quarterly -0.01 -0.21 0.15 0.58

4-Monthly -0.10 -0.29 0.17 0.67

Biannual -0.11 -0.27 0.20 0.85

Annual -0.24 -0.56 0.25 1.22

average -0.08 -0.19 0.22 0.71

RPS Monthly -0.02 -0.06 0.43 0.20

2-Monthly -0.03 -0.12 0.37 0.29

Quarterly -0.04 -0.15 0.40 0.25

4-Monthly -0.05 -0.20 0.42 0.33

Biannual -0.08 -0.27 0.32 0.43

Annual -0.12 -0.36 1.14 0.96

average -0.06 -0.19 0.51 0.41

(a) Results on time series extracted from carparts, detailed by each level of the hierarchy.

Skill score on syph vs normal vs base

struc scal truncated probCount probCount

ENERGY SCORE -0.07 -0.21 0.27 0.28

MASE -0.06 -0.17 0.35 0.06

MIS -0.13 -0.16 0.20 0.23

RPS -0.06 -0.18 0.42 0.41

(b) Results on time series extracted from syph, averaged over the entire hierarchy.

Table 5: Skill score on carparts and syph. The first columns report skill score with respect
to normal. The last column reports the skill score of probCount with respect to the base
forecasts.
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(a) Comparison of forecasts (base vs prob-
Count) on a time series extracted from
carparts.

(b) Comparison of forecasts (normal vs prob-
Count) on a time series extracted from
carparts.

(c) Comparison of forecasts (base vs prob-
Count) on a time series extracted from syph.

(d) Comparison of forecasts (normal vs prob-
Count) on a time series extracted from syph.

Figure 6: Reconciliation of two time series from the carparts and the syph data set. For
simplicity we only show three levels of the hierarchy. The black line shows the actual values.
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the mid-point of the prediction interval. Based on this information, probCount
revises downwards the point forecasts compare to the base forecasts. At the
monthly level its point forecasts (i.e., the medians) are 0. This is both the lower
bound of the prediction interval and the median: the reconciled distribution is
strongly asymmetric as it can happen when the counts are low. The adjustment
applied by probCount is effective, and its point forecasts are more accurate than
the base forecasts at every level of the hierarchy.

The normal method does not capture the asymmetry of the base forecasts.
Its reconciled point forecasts are less accurate than those of probCount, and its
prediction intervals often include negative values (Figures 6b, 6d).

Both probCount and normal have shorter prediction intervals compared to
the base forecast. This makes the predictive distribution and the prediction
interval more informative, increasing the MIS and the RPS score. Yet, the
prediction intervals of both probCount and normal are sometimes too short.
In future, this could be addressed by modelling the correlation between the
base forecasts using more sophisticated multivariate distributions over counts
(Panagiotelis et al., 2012; Inouye et al., 2017).

5.2. Experiments on hospital

Skill score on hospital Skill score vs normal vs base

struc scal truncated probCount probCount

ENERGY SCORE -0.02 0.00 0.00 0.03

MASE 0.00 0.00 -0.02 0.01

MIS -0.02 0.00 0.00 0.03

RPS -0.01 0.00 0.00 0.04

Table 6: Skill score on time series from hospital, averaged over the entire hierarchy.

All the time series extracted from the hospital data set are smooth; the
values are high enough to yield symmetric prediction intervals. The samples of
the base forecast are well fit both by the negative binomial and by the Gaussian
distribution, among which there are little differences. Thus the reconciliation
methods become practically equivalent (Figure 7b), yielding an almost identical
performance (Table 6). The utility of temporal reconciliation is confirmed by
the positive skill scores compared to the base forecasts.

6. Conclusions

We have shown that virtual evidence, a method originally developed for
conditioning probabilistic graphical models on uncertain evidence, can be used
to perform probabilistic reconciliation in a principled fashion. Our method can
reconcile real-valued and count time series; we focus however on the latter case,
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(a) Comparison of forecasts (base vs prob-
Count) on a time series from hospital.

(b) Comparison of forecasts (normal vs prob-
Count) on a time series from hospital.

Figure 7: Examples of reconciliation on a time series from the hospital data set.

which is especially important since there are currently no methods for reconciling
count time series.

The most important result of this paper is that our approach consistently
provides a major improvement, compared to Gaussian probabilistic reconcili-
ation, in the reconciliation of intermittent time series, which are notoriously
hard to forecast. Future research directions include modelling the correlation
between the base forecasts and developing a faster sampling approach in order
to reconcile large hierarchies.
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Jordan, A., Krüger, F., Lerch, S.. Evaluating probabilistic forecasts with
scoringRules. Journal of Statistical Software 2019;90(12):1–37.

Kolassa, S.. Evaluating predictive count data distributions in retail sales fore-
casting. International Journal of Forecasting 2016;32(3):788–803.

Kolassa, S.. Do we want coherent hierarchical forecasts, or minimal
mapes or maes?(we won’t get both!). International Journal of Forecasting
2022;doi:https://doi.org/10.1016/j.ijforecast.2022.11.006.

Kourentzes, N., Athanasopoulos, G.. Elucidate structure in intermittent de-
mand series. European Journal of Operational Research 2021;288(1):141–152.

Liboschik, T., Fokianos, K., Fried, R.. tscount: An R package for analysis of
count time series following generalized linear models. Journal of Statistical
Software 2017;82(5):1–51.

Martin, O.. Bayesian analysis with Python: introduction to statistical modeling
and probabilistic programming using PyMC3 and ArviZ. Packt Publishing
Ltd, 2018.

Munk, A., Mead, A., Wood, F.. Uncertain evidence in probabilistic models
and stochastic simulators. arXiv preprint arXiv:221012236 2022;.

Nystrup, P., Lindström, E., Pinson, P., Madsen, H.. Temporal hierarchies
with autocorrelation for load forecasting. European Journal of Operational
Research 2020;280(3):876–888.

Panagiotelis, A., Czado, C., Joe, H.. Pair copula constructions for mul-
tivariate Discrete Data. Journal of the American Statistical Association
2012;107(499):1063–1072.

Panagiotelis, A., Gamakumara, P., Athanasopoulos, G., Hyndman, R.J..
Probabilistic forecast reconciliation: Properties, evaluation and score optimi-
sation. European Journal of Operational Research 2023;306(2):693–706.

Pearl, J.. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan kaufmann, 1988.

Rangapuram, S.S., Werner, L.D., Benidis, K., Mercado, P., Gasthaus, J.,
Januschowski, T.. End-to-end learning of coherent probabilistic forecasts for
hierarchical time series. In: Proc. 38th Int. Conference on Machine Learning
(ICML). 2021. p. 8832–8843.

22



Salvatier, J., Wiecki, T.V., Fonnesbeck, C.. Probabilistic programming in
Python using PyMC3. PeerJ Computer Science 2016;2:e55.

Syntetos, A.A., Boylan, J.E.. The accuracy of intermittent demand estimates.
International Journal of Forecasting 2005;21(2):303–314.

Taieb, S.B., Taylor, J.W., Hyndman, R.J.. Hierarchical probabilistic forecast-
ing of electricity demand with smart meter data. Journal of the American
Statistical Association 2021;116(533):27–43.

Wickramasuriya, S.L., Athanasopoulos, G., Hyndman, R.J.. Optimal forecast
reconciliation for hierarchical and grouped time series through trace minimiza-
tion. Journal of the American Statistical Association 2019;114(526):804–819.

Wickramasuriya, S.L., Turlach, B.A., Hyndman, R.J.. Optimal non-negative
forecast reconciliation. Statistics and Computing 2020;30(5):1167–1182.

Yang, M., Zamba, G., Cavanaugh, J.. ZIM: Zero-Inflated Models (ZIM)
for Count Time Series with Excess Zeros, 2018. URL: https://CRAN.

R-project.org/package=ZIM; r package version 1.1.0.

Zambon, L., Azzimonti, D., Corani, G.. Efficient probabilistic reconciliation
of forecasts for real-valued and count time series. arXiv preprint 221002286
2022;.

23



Appendix A. Reconciliation of a 4-2-1 hierarchy

The code below reconciles a 4-2-1 hierarchy.

1 def reconcile (lambda1 , lambda2 , lambdaY):

2 import pymc3 as pm

3 basic_model = pm.Model ()

4 with basic_model:

5 #base forecast of the bottom variables

6 Q1 = pm.Poisson (’Q1’, mu = lambda1)

7 Q2 = pm.Poisson (’Q2’, mu = lambda2)

8 Q3 = pm.Poisson (’Q3’, mu = lambda3)

9 Q4 = pm.Poisson (’Q4’, mu = lambda4)

10

11 #Virtual evidence of the upper variables

12 S1 = pm.Poisson (’S1’, mu = lambda_S1 , observed = S1 + S2)

13 S2 = pm.Poisson (’S2’, mu = lambda_S2 , observed = S3 + S4)

14 Y = pm.Poisson (’Y’, mu = lambda_Y , observed = S1+S2+S3+

S4)

15

16 #sampling the posterior , i.e., the reconciled distribution

17 #for each (s1, s2) computes p(s1) p(s2) p(Y=s1+s2)

18 #and eventually normalizes

19 trace = pm.sample ()

20 return trace
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Appendix B. Equivalence of definitions 1 and 2 in the continuous
case

Proposition 2. Definitions 1 and 2 are equivalent in the continuous case.

Proof. In the continuous case X = R, thus for any B ∈ FXm , s(B) = {s(b) :
b ∈ B}. We have that s(B) ∈ Fs because ∀b ∈ B, s(b) ∈ s, by definition, and
Fs ⊆ Fs(Xm).

On the other hand, given a element A ∈ Fs, we can always find a set
B̃ ∈ FXm such that s(B̃) = A. In fact, for any a ∈ A we can write a = [aupp,abot]

and aupp = Sabot by definition. Thus if we take b̃ = abot we have s(b̃) = a. So
we have that A ∈ Fs(Xm).

Since we have showed that the two σ-algebras Fs and Fs(Xm) are equivalent
and the measures ν̌s and ν̌ take the same values on all sets of FXm we have that
def. 1 and def. 2 are equivalent in the continuous case.
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Appendix C. Additional fine-grained results on syph and hospital

Skill score on syph vs normal vs base

struc scal truncated probCount probCount

MASE Monthly -0.07 -0.13 0.43 0.03

2-Monthly -0.08 -0.16 0.40 0.09

Quarterly -0.08 -0.17 0.37 0.07

4-Monthly -0.07 -0.18 0.35 0.07

Biannual -0.07 -0.17 0.36 0.10

Annual -0.02 -0.19 0.20 0.01

average -0.06 -0.17 0.35 0.06

MIS Monthly -0.07 0.21 0.38 0.41

2-Monthly -0.16 -0.09 0.19 0.33

Quarterly -0.16 -0.18 0.13 0.29

4-Monthly -0.17 -0.27 0.17 0.25

Biannual -0.11 -0.25 0.21 0.14

Annual -0.10 -0.38 0.14 -0.03

average -0.13 -0.16 0.20 0.23

RPS Monthly -0.05 -0.20 0.62 0.55

2-Monthly -0.07 -0.18 0.49 0.49

Quarterly -0.05 -0.15 0.41 0.44

4-Monthly -0.05 -0.16 0.40 0.42

Biannual -0.08 -0.20 0.39 0.37

Annual -0.04 -0.17 0.21 0.22

average -0.06 -0.18 0.42 0.41
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Skill score on hospital normal vs base

struc scal truncated probCount probCount

MASE Monthly 0.00 0.00 0.00 0.00

2-Monthly 0.00 0.00 0.00 0.00

Quarterly 0.00 0.00 -0.02 0.00

4-Monthly 0.00 0.00 -0.01 0.00

Biannual 0.00 0.00 0.00 0.00

Annual 0.00 0.00 -0.07 0.04

average 0.00 0.00 -0.02 0.01

MIS Monthly 0.01 0.00 0.01 0.12

2-Monthly 0.00 0.00 0.00 0.15

Quarterly 0.00 0.00 0.00 0.17

4-Monthly -0.02 0.00 0.01 0.16

Biannual -0.04 0.00 0.00 -0.05

Annual -0.07 0.00 0.00 -0.38

average -0.02 0.00 0.00 0.03

RPS Monthly 0.00 0.00 0.02 0.05

2-Monthly 0.00 0.00 0.00 0.09

Quarterly 0.00 0.00 -0.01 0.09

4-Monthly -0.01 0.00 0.00 0.05

Biannual -0.02 0.00 0.05 0.01

Annual -0.03 0.00 -0.08 -0.08

average -0.01 0.00 0.00 0.04
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Proof of Proposition 1

Proof. We prove this by induction over the number of upper time series n−m.
Note that if we have one upper time series the two procedures are the same.
Assume that the two procedures are the same for n−m−1 upper time series, i.e.
the sequential update after n−m−1 upper time series forecasts reconciliations is

p̃n−m−1(y) = 1Ab(u)

∑
u∗−1

pBU (u∗−1,b)p̂(u∗−1)∑
u∗−1

∑
b∗ pBU (u∗−1,b)p̂(u∗−1)

, where we denote by u∗−1

a generic value for the pmf of the first n−m− 1 upper forecasts.
The next sequential update is

p̃n−m(b) =

∑
u∗n−m

p̃n−m−1(u∗n−m,b)p̂(u∗n−m)∑
u∗n−m

∑
b∗ 1A[n−m,]b(u∗n−m)p̃n−m−1(b)p̂(u∗n−m)

.

We denote the denominator as Zn−m, a normalizing constant, and we study
just the numerator p̃n−m(b)Zn−m.

p̃n−m(b)Zn−m =
∑
u∗n−m

p̃n−m−1(u∗n−m,b)p̂(u∗n−m)

=
∑
u∗n−m

1A[n−m,]b(u∗n−m)p̃n−m−1(b)p̂(u∗n−m)

=
∑
u∗n−m

1A[n−m,]b(u∗n−m)

∑
u∗−1

pBU (u∗−1,b)p̂(u∗−1)

Zn−m−1
p̂(u∗n−m),

(C.1)

where we denote by Zn−m−1 the normalizing constant for the reconciled distri-
bution after n −m − 1 updates. Note that pBU (u∗−1,b) = 1A[−1,]b(u∗−1)p̂(b),
where A[−1, ] indicates all but the last row of the matrix A. Moreover

1A[−1,]b(u∗−1)1A[n−m,]b(u∗n−m) = 1Ab(u∗),

if u∗ = [u∗−1 u
∗
n−m]. Therefore the double sum in equation (C.1) can be simpli-

fied as

p̃n−m(b)Zn−m =

∑
u∗=[u∗−1 u

∗
n−m] 1Ab(u∗)p̂(b)p̂(u∗−1)p̂(u∗n−m)

Zn−m−1

=

∑
u∗=[u∗−1 u

∗
n−m] pBU (u∗,b)p̂(u∗−1)p̂(u∗n−m)

Zn−m−1

Since the upper time series forecast is conditionally independent we have p̂(u∗) =
p̂(u∗−1)p̂(u∗n−m) and thus we obtain the result.
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