
4th International Symposium on Imprecise Probabilities and Their Applications, Pittsburgh, Pennsylvania, 2005

Fast Algorithms for Robust Classification with Bayesian Nets

Alessandro Antonucci
IDSIA

Galleria 2
CH-6928 Manno (Lugano)

Switzerland
alessandro@idsia.ch

Marco Zaffalon
IDSIA

Galleria 2
CH-6928 Manno (Lugano)

Switzerland
zaffalon@idsia.ch

Abstract
We focus on a well-known classification task with expert
systems based on Bayesian networks: predicting the state
of a target variable given an incomplete observation of the
other variables in the network, i.e., an observation of a
subset of all the possible variables. To provide conclu-
sions robust to near-ignorance about the process that pre-
vents some of the variables from being observed, it has
recently been derived a new rule, called conservative up-
dating. With this paper we address the problem to effi-
ciently compute the conservative updating rule for robust
classification with Bayesian networks. We show first that
the general problem is NP-hard, thus establishing a fun-
damental limit to the possibility to do robust classification
efficiently. Then we define a wide subclass of Bayesian
networks that does admit efficient computation. We show
this by developing a new classification algorithm for such
a class, which extends substantially the limits of efficient
computation with respect to the previously existing algo-
rithm.

Keywords. Bayesian networks, missing data, conserva-
tive updating rule, credal classification.

1 Introduction

Probabilistic expert systems yield conclusions on the basis
of evidence about a domain. For example, systems based
on Bayesian networks [11] (see Section 2.1) are queried
for updating the confidence on a target variable given an
evidence, i.e., after observing the value of other variables
in the network model. Very often, at the time of a query,
only a subset of all the variables is in a known state, as
there is a so-called missingness process that prevents some
variables from being observed. This is a crucial point.
The traditional way to update beliefs in probabilistic ex-
pert systems relies on Kolmogorov’s conditioning rule. In
order to yield correct conclusions, such a rule needs that
the missingness process is explicitly modelled, or at least
that it does not act in a selective way (i.e., that it is not ma-
licious in producing the missingness). Unfortunately, the

missingness process may be difficult to model, and assum-
ing that it is unselective is equivalent to assuming the well-
known missing at random (MAR) condition [8], which is
often unrealistic [7].

To address such a fundamental issue, de Cooman and Zaf-
falon [4] have recently derived a new rule to update prob-
abilities with expert systems in the case of near-ignorance
about the missingness process. The new, so-called, con-
servative updating rule (or CUR), yields lower and upper
probabilities in general, as well as partially determined de-
cisions. With classification problems, for instance, where
the goal is to predict the state of the target variable (also
called class variable) given an evidence, CUR leads to set-
based classifications, or, in other words, to credal classi-
fiers [13] (see Section 2.2). De Cooman and Zaffalon have
indeed specialized CUR to solve classification problems
with Bayesian networks. Yet, their algorithm is efficient
only on a relatively limited class of Bayesian networks:
those in which the Markov blanket1 of the class variable
together with the variable itself is a polytree (also called
a singly connected graph), that is, a graph that becomes a
tree after dropping the orientation of the arcs. Two natural
questions arise in relationship with the above algorithm: is
it possible to provide an algorithm for CUR-based classi-
fication that is similarly efficient on more general network
structures? And, at a more fundamental level, what are the
limits of efficient computation imposed by the nature of
the problem?

With this paper we address both questions. Initially, we
prove the hardness of the problem, thus solving the second
question: doing classification with CUR on Bayesian nets
is shown to be NP-hard in Section 3. This parallels analo-
gous results obtained for Bayesian nets that implement the
traditional updating [1]; in those cases, the algorithms are
efficient when the entire graph is a polytree, and are ex-
ponential with more general, so called, multiply connected
graphs.

1The set of nodes made by its parents, its children, and the parents of
the children.

Then we address the first question by developing a new
algorithm that substantially extends the limits of efficient
computation with respect to de Cooman and Zaffalon’s
original algorithm. Our algorithm has indeed quadratic
time complexity also in many cases when the class vari-
able with its Markov blanket form a multiply connected
graph. This, together with the fact that the complexity of
CUR-based classification depends on the structure of the
Markov blanket rather than that of the entire net, makes the
new algorithm efficient on a truly large subset of Bayesian
networks. We achieve this goal, which is relatively in-
volved from the technical point of view, in two steps. We
firstly introduce a new kind of network model, called s-
network, and show in Section 4 how to make efficient com-
putations on s-networks whose graph is made by a set of
polytrees (or polyforest). Secondly, we show in Section 5
that a problem of classification with CUR on Bayesian net-
works can be transformed into an equivalent problem on
s-networks, so that if the latter is a polyforest, the original
problem is solved efficiently.

Overall, we develop a computational basis to do classi-
fication in expert systems when there is little knowledge
about the process producing the missingness. This en-
ables efficient computation to take place on a large sub-
set of Bayesian networks, which is of course important for
applications. Comments on the results are reported in the
Conclusions (Section 6). A numerical example is reported
in Appendix A.

2 Setup

2.1 Bayesian Networks

Consider the random variables A0, . . . , An. The variable
Ak (k = 0, . . . , n) takes generic value ak from the finite
set Ak. The available information about the relationship
between the random variables is specified by a (prior) mass
function p(A0, . . . , An), which we assume to be positive
in the following.

The mass function p(A0, . . . , An) can be conveniently
provided by a domain expert using a Bayesian network.
A Bayesian network is a pair composed of a directed
acyclic graph and a collection of conditional mass func-
tions. There is one-to-one correspondence between the
nodes of the graph and the random variables A0, . . . , An.
Accordingly, the same symbol is used to denote Ak and
the related node; and ‘node’ and ‘variable’ are used in-
terchangeably. Each node Ak holds a conditional mass
function p(Ak|πAk

) for each joint state πAk
of its direct

predecessor nodes (or parents) ΠAk
.

Bayesian nets satisfy the Markov condition: every vari-
able is independent of its nondescendant non-parents
given its parents. From the Markov condition, it follows
[11] that the joint probability p(a0, . . . , an) is given by

p(a0, . . . , an) =
∏n

k=0 p(ak|πAk
) for all the (n + 1)-

tuples (a0, . . . , an) ∈×
n

k=0Ak, where πAk
is the assign-

ment to the parents of Ak consistent with (a0, . . . , an).

For the purposes of the paper, we arbitrary choose A0 as
target node, aiming at predicting its state given values of
some other nodes. In the following A0 will be called class
variable and will also be denoted by C, with generic value
c from the set of classes C := A0. The remaining vari-
ables will be called attribute variables, and their values
attributes. We refer to this predictive problem as classifi-
cation.

2.2 Robust Classification

In classification problems, we typically observe (or mea-
sure) only a subset of the attribute variables at the time of a
query. In order to update probabilities about the class vari-
able given the observations, there is a frequent habit to ne-
glect the missing attribute variables after the conditioning
bar. However, this method is justified only when the pro-
cess responsible for the missingness is unselective, that is,
when it creates the missingness without any specific pur-
pose. More technically, this happens when the probability
that a measurement is missing is the same irrespectively
of the specific measurement. In this case we say that the
process is MAR [8]. Unfortunately, MAR is quite a strong
assumption [7] and for this reason MAR-based approaches
are somewhat criticized (see also [9]).

Following a deliberately conservative approach,
de Cooman and Zaffalon [4] have instead used co-
herent lower previsions [12] to model the case of
near-ignorance about the missingness process. This has
led to a new rule to update beliefs in expert systems that
is called conservative updating rule. In order to denote
incomplete observations of the attribute variables (the
class variable is clearly unobserved, as it is the variable
to predict), let us use E for the subset of the attribute
variables that are observed and e for their joint value. Let
us denote by R the remaining attribute variables, whose
values are missing. We also denote the set of their possible
joint values by R, and a generic element of that set by r.
Observe that for every r ∈ R, the attributes vector (e, r)
is a possible completion of the incomplete observation
(E,R) = (e, ∗), where the symbol ∗ denotes missing
values. The updated probability of the class variable
given (e, ∗) is an interval, according to the conservative
updating rule, whose extremes are the following:

p(c|e, ∗) := min
r∈R

p(c|e, r) (1)

p(c|e, ∗) := max
r∈R

p(c|e, r). (2)

In this paper we are concerned with predicting the value
of the class variable given (e, ∗). This is equivalent
to producing the set of the undominated classes accord-

ing to the conservative updating rule. Say that class c′

credal-dominates, or simply dominates, class c′′, and write
c′>c′′, if p(c′|e, r) > p(c′′|e, r) for all r ∈ R. A class is
said to be undominated if there is no class that dominates
it. This dominance criterion is a special case of strict pref-
erence2 proposed by Walley [12, Section 3.7.7]. In other
words, the conservative updating rule generally produces
set-based classifications, where each class in the output set
should be regarded as a candidate optimal class. Classi-
fiers that produce set-based classifications are also called
credal classifiers by Zaffalon [13].

It is easy to show that testing whether c′>c′′ can be carried
out in the following equivalent way:

min
r∈R

p(c′, e, r)

p(c′′, e, r)
> 1. (3)

Let us use π′ and π′′ to denote values of parent variables
consistent with the completions (c′, e, r) and (c′′, e, r), re-
spectively. Regarding C, let π denote the value of its par-
ents consistent with (e, r). Furthermore, without loss of
generality, let A1, . . ., Am, m ≤ n, be the children (i.e.,
the direct successor nodes) of C. Denote by B+ the union
of C with its Markov blanket. De Cooman and Zaffalon
[4] show that the minimum in (3) can be computed by re-
stricting the attention to B+, in the following way:

min
aj∈Aj ,

Aj∈B
+∩R

[

p(c′|πC)

p(c′′|πC)

m
∏

i=1

p(ai|π
′
Ai
)

p(ai|π′′Ai
)

]

. (4)

Note that Expression (4) does not change by removing the
arcs such that their second endpoint3 is neither C nor one
of its children. In the following, we will refer to B+ just
as the subgraph deprived of those negligible arcs.

3 Hardness of CUR-based Classification

Call CCUR the problem to compute the undominated
classes in a CUR-based classification problem with
Bayesian nets. Let us initially focus on the binary ver-
sion of the CCUR problem, that is, on a classification
problem with only two classes, say c′ and c′′. We denote
by CCURD the corresponding decision problem that in-
volves deciding whether or not c′ dominates c′′. CCURD
is clearly equivalent to (3), being ‘true’ (T) if (4) is greater
than one and ‘false’ (F) otherwise. As a preliminary re-
sult, we will prove that CCURD is coNP-complete, i.e.,
the complement of an NP-complete problem [10]. In

2Strict preference can be applied also when the space of options is
randomized. We do not investigate such a case here because we ideally
work in a classification setup, where randomization is not used very fre-
quently. This nevertheless, it could be worth considering the extension to
the mentioned case for other kinds of applications.

3Two nodes connected by an arc are said to be its endpoints. The first
endpoint is the node from which the arc departs, while the second is the
remaining node.

our proof, we take inspiration from the well-known re-
sult of Cooper [1], concerning probabilistic inference with
Bayesian nets.

Recall that a decision problem Q is NP-complete if Q lies
in the class NP and some known NP-complete problem Q′

polynomially transforms to Q [6, p. 38]. In our case, we
will transform a well known NP-complete problem, called
3-satisfiability (3SAT) [6], to the complement of CCURD.
Let us recall the definition of 3SAT.

Let U be a collection of n Boolean variables. If U is a
variable in U then u and ¬u are said to be literals over
U . The literal u is true if and only if the variable U is
true, while ¬u is true if and only if the variable U is false.
Let K = {K1, . . . ,Km} be a non-empty collection of
clauses, which are disjunctions of triples of literals, corre-
sponding to different4 variables of U . The collection of
clauses K over U is said to be satisfiable if and only if
there exists a truth assignment for U , that is, an assign-
ment of Boolean values to the variables in U , such that all
the clauses in K are simultaneously true. The 3SAT deci-
sion problem involves determining whether or not there is
a truth assignment for U such that K is satisfiable.

The NP-completeness of 3SAT can be used to prove the
following:

Theorem 1. CCURD is coNP-complete.

Proof. Given a generic 3SAT instance, say U =
{U1, . . . , Un} and K = {K1, . . . ,Km}, we construct a
Bayesian network such that c′ > c′′ if and only if K

is not satisfiable. The nodes of the network correspond
to the variables in U , the clauses in K and the class C.
The nodes corresponding to the clauses have four incom-
ing arcs, three from the variables associated to the liter-
als present in the definition of the clause and the fourth
from the class node. The directed acyclic graph under-
lying the Bayesian network is therefore G (V ,E), with
V = {C,U1, . . . , Un,K1, . . . ,Km} and

E ={(Uαij
,Kj) |

i = 1, 2, 3,
j = 1, . . . ,m

}∪{(C,Kj) | j=1, . . . ,m},

(5)
where αij indexes the element of U corresponding to the
i-th literal of the clause Kj . As an example, Figure 1
reports the graph corresponding to a 3SAT instance with
three clauses and four variables in U .

Each node of G is assumed to represent a Boolean vari-
able. The unconditional mass functions for the root nodes
(i.e., the nodes without incoming arcs) are assumed to be
uniform. Regarding the conditional mass functions we de-

4This assumption is not included in the original transformation of the
prototypical NP-complete problem SAT to 3SAT. Nevertheless, the trans-
formation (see for example [6, p. 48]) does not require any clause to in-
clude literals corresponding to the same variable. Thus, also this version
of 3SAT is NP-complete.

U1 U2 U3 U4

K1 K2 K3

C

Figure 1: A Bayesian net corresponding to a 3SAT in-
stance with U = {U1, U2, U3, U4} and K = {(u1 ∨u2 ∨
u3), (¬u1 ∨ ¬u2 ∨ u3), (u2 ∨ ¬u3 ∨ u4)}.

fine them as in Table 1. Those values define a unique pos-
itive mass function for each clause and for every possible
value of the parents of the clause.

c uα1j
∨ uα2j

∨ uα3j
p(Kj = T|c, uα1j

, uα2j
, uα3j

)

c′ T 2−2

c′′ T 2−1

c′ F 2−1

c′′ F 2−(m+1)

Table 1: Implicit definition of the conditional mass func-
tions for the clause Kj , for each j = 0, . . . ,m. With an
abuse of notation, uαij

denotes the i-th literal of the Kj .

The directed acyclic graph G , together with the specified
mass functions, define a Bayesian network. This is equiva-
lent to a joint mass function, which assigns positive proba-
bility to every event. With respect to the evidence E=e in
the network, we suppose all the clauses in K are instanti-
ated to the state ‘true’. The remaining attribute variables,
which are the variables in U , are assumed to be missing.
Expression (4) becomes:

min
uj∈{F,T},
Uj∈U

m
∏

i=1

fi(uα1i
, uα2i

, uα3i
), (6)

where, for each i = 1, . . . ,m,

fi(uα1i
, uα2i

, uα3i
) :=

p(Ki = T|c
′, uα1i

, uα2i
, uα3i

)

p(Ki = T|c′′, uα1i
, uα2i

, uα3i
)
.

(7)
Using the values of Table 1, the functions in (7) take the
form:

fi(uα1i
, uα2i

, uα3i
) =

{

2−1 if uα1i
∨ uα2i

∨ uα3i
= T

2m otherwise.
(8)

According to (8), if a clause is satisfied, the correspond-
ing function attains its minimum value. Thus, if 3SAT is

true, there exists a truth assignment over U satisfying all
the clauses in K , and all the functions (7) in (6) are si-
multaneously minimized. The minimum (6) is therefore
2−m and the corresponding CCURD instance is false. If
3SAT is false, for all truth assignments at least one clause
is violated and the corresponding function takes the value
2m. That makes (6) always greater than one, because all
the remaining m − 1 functions cannot be less than 2−1.
Thus, CCURD is true.

This shows that each 3SAT instance is equivalent to an
instance of the complement of CCURD; and we have
achieved this by a transformation that is polynomial in the
size of the 3SAT instance. Note, in addition, that the com-
plement of CCURD is also in the class NP. A nondetermin-
istic algorithm to solve the complement of CCURD has
only to return a truth assignment for U , provided that the
corresponding value of the functions in (8) can be evalu-
ated efficiently. It follows that the complement of CCURD
is NP-complete and hence the thesis.

As a direct consequence of Theorem 1, we can prove the
following:

Corollary 2. CCUR is NP-hard.

Proof. Let CCURD’ be the complement of CCURD.
In order to prove the hardness of CCUR we consider
a polynomial-time Turing reduction [6, p. 111] from
CCURD’ to the binary version of CCUR. Suppose a hy-
pothetical algorithm that solves instances of the binary
CCUR problem is available. Let I be a CCURD’ instance
that is true if c′ does not dominate c′′ and false otherwise.
In order to solve such an instance we use the above algo-
rithm for CCUR problems in the following way. If the al-
gorithm yields c′, then necessarily c′>c′′, and I is false. If
it yields both c′ and c′′, c′ cannot dominate c′′ and I is true.
Analogously, if the algorithm yields only c′′, I is still true.
In any case, it turns out that a single call of the algorithm
makes it possible to solve the CCURD’ instance I . There-
fore CCURD’, which is NP-complete because of Theo-
rem 1, is Turing reducible to the binary version of CCUR.
This means that the binary version of CCUR is NP-hard,
and, as a consequence, so is the general version.

4 S-networks Theory

The hardness result of the previous section establishes
a limit to the possibility to compute classifications effi-
ciently with CUR on Bayesian nets. Yet, efficient compu-
tation is possible on special classes of Bayesian networks:
in fact, de Cooman and Zaffalon [4] provide a linear time
algorithm to solve CCUR problems when the subgraph
B+, defined at the end of Section 2.2, is singly connected.
In this paper we substantially extend such a result by pro-
viding a quadratic time algorithm that works in many cases

also when B+ is multiply connected.

The development of the new algorithm passes through
the definition of a new kind of graphical model, called
s-network, which allows us to abstract the main compo-
nents of a CCUR problem. This is done in Section 4.1,
which also defines the minimum value of an s-network.
Section 4.2 develops an algorithm to compute such a min-
imum when the graph associated with the s-network is a
polyforest. Finally, we show in Section 5 how to transform
a CCUR problem to the problem of computing the mini-
mum of an s-network. In this way we expand the class
of efficiently solvable CCUR problems to those in which
B+, after the transformation, becomes a polyforest.

4.1 Basic Definitions

Let us first introduce the following:
Definition 3. Let G be a directed acyclic graph in which
some nodes, say A0, . . . , Am (m ≥ 0), are marked as spe-
cial nodes (or s-nodes) such that every arc of G has a spe-
cial node as second endpoint. Each node of G is identified
with a variable that takes finitely many values. Every spe-
cial node Ai in G (i = 0, . . . ,m) is associated with a
function fAi

(A+
i), defined for all the values of its argu-

ment. A+
i is the vector variable (Ai,ΠAi

), with generic
value a+

i , where ΠAi
are the parents of Ai. The graph

G , together with the collection of functions fAi
is called

s-network.

Given an s-network G , its minimum is defined by

min
a
+

j
∈A

+

j
,

j∈{0,...,m}

m
∏

i=0

fAi
(a+
i). (9)

Note that Definition 3 does not exclude the case of dis-
connected s-networks. If a connected component Gi of a
(disconnected) s-network G includes at least one s-node,
we can regard Gi, together with the functions of G corre-
sponding to the s-nodes of Gi, as an s-(sub)network. The
following result holds:
Theorem 4. Let G be a disconnected s-network. The min-
imum of G factorizes in the product of the minima of the
s-networks corresponding to the connected components of
G with at least one s-node.

In the next section, we focus on the task of computing min-
ima of s-networks. According to Theorem 4, we can con-
sider only the case of a connected s-network with at least
one s-node.

4.2 Fast Computation of Minima of S-networks

We call s-polytree an s-network G such that the underly-
ing graph is a polytree. The set V of the nodes of an s-
polytree G has a natural structure of metric space. Given

two nodes U and V , there is a single undirected path con-
necting them. Let d(U, V) be the number of edges making
up this path. The map d is clearly a metric over V and
d(U, V) is said to be the distance between U and V . Let
us call neighbors of U the nodes of V at distance one from
U .

Given an s-polytree G , an s-node Ak of G is said to be
lonely if there is a node U of G such that Ak is the s-node
at maximum distance from U (or one of them, if there are
many). The lonely nodes of an s-polytree can be charac-
terized by the following:

Theorem 5. Let G be an s-polytree and Ak a lonely node
of G . The variables in A+

k , with the possible exception of
a variable called S, appear only in the argument of fAk

.

Given the lonely node Ak, let us denote by Ã+
k the vec-

tor variable that includes all the variables in A+
k except S.

Theorem 5 states that the variables in Ã+
k appear only in

the argument of fAk
, while no definite information is given

about S. A further characterization of Ã+
k comes from the

following:

Theorem 6. Ak is the only special node that can appear
in Ã+

k .

An s-node Al is said to be a conjugate node of a lonely
node Ak, if the variable S ∈ A+

k , which is not included in
Ã+
k , appears also in A+

l . Furthermore, we call siblings two
distinct children of the same parent. The conjugate nodes
of a lonely node are characterized by the following:

Theorem 7. Let Ak be a lonely node of an s-polytree G

with at least two s-nodes. The conjugate nodes of Ak are
the special neighbors and the special siblings of Ak. Fur-
thermore, Ak has at most a special neighbor; and if no s-
nodes lie in the neighborhood of Ak, then Ak has at least
one special sibling.

According to Theorem 7, for each lonely node Ak of an
s-polytree with at least two s-nodes, there is at least a con-
jugate Al and the variable S ∈ A+

k , which does not appear
in Ã+

k , is in the argument of fAl
.

Once we have detected a lonely node and a corresponding
conjugate, it is possible to construct a second s-polytree,
with an s-node less, and the same minimum. The proce-
dure is reported in the following:

Theorem 8. Let G be an s-polytree with at least two spe-
cial nodes. Let Ak be a lonely node of G and Al a con-
jugate of Ak. The minimum of G coincides with that of a
second s-polytree G ′, obtained marking Ak as not special,
re-defining fAl

(a+
l) for all a+

l as

fAl
(a+
l) ·min

ã
+

k

fAk
(a+
k), (10)

and removing all the nodes in Ã+
k from G .

Algorithm 1 represents an obvious implementation of the
reduction from G to G ′ given by Theorem 8.

1. mark Ak as not special;

2. FOREACH V ∈ A+

k
{

3. IF V ¢∈ A+

l
{

4. put V in Ã+

k
; }}

5. FOREACH a+

l
∈ A

+

l
{

6. fAl
(a+

l
) = fAl

(a+

l
) · min

ã
+

k

fAk
(a+

k
); }

7. FOREACH V ∈ Ã+

k
{

8. remove V from G; }

9. RETURN G;

Algorithm 1: The reduce function. The inputs are
an s-polytree G and the s-nodes Ak and Al. The out-
put reduce(G ,Ak,Al) is the s-polytree G ′ with a special
node less as in Theorem 8.

To actually apply this reduction, a procedure to de-
tect lonely nodes and the corresponding conjugates in s-
polytrees is required.

Given an arbitrary node U of an s-polytree G , let us eval-
uate the distances d(U,Aj) (j = 0, . . . ,m). By defini-
tion, the node Ak with k := argmaxj=0,...,m d(U,Aj) is
a lonely node of G .

Let distances(G ,U) be the procedure returning the dis-
tances between U and the s-nodes of G . The well known
depth first search (DFS) algorithm [5] over the undirected
graph obtained forgetting the orientation of the arcs of G

with starting node U can be used to implement the pro-
cedure. The computational complexity of the algorithm is
known to be linear in the number of arcs of G [5].

Regarding the detection of a conjugate node given its
lonely node, Theorem 7 suggests an obvious procedure re-
ported by Algorithm 2.

Given an s-polytree G , we are therefore able to find a
lonely node and a node conjugate of it. Afterwards, we in-
voke Algorithm 1 to produce a second s-polytree G ′ with
an s-node less and the same minimum.

According to Theorem 8, the output of this reduction is
still an s-polytree. It is therefore possible to iterate this
procedure, until an s-polytree with a single s-node is re-
turned.

The following theorem makes it easier the detection of a
lonely node of G ′.

1. FOREACH V ∈ neighbors(Ak) {

2. IF V is special {

3. Al := V ;

4. GO TO 8; }}

5. FOREACH V ∈ siblings(Ak) {

6. IF V is special {

7. Al := V ; }}

8. RETURN Al;

Algorithm 2: The findConjugate function. The in-
puts are the polytree G and a lonely node Ak. The out-
put findConjugate(G ,Ak) is a conjugate of Ak. The
obvious subroutines neighbors and siblings return
respectively the neighbors and the siblings of the node in
their argument.

Theorem 9. Let G be an s-polytree. Given an arbitrary
node of G , say U , let Ak and Ak′ be respectively the first
and the second s-node at maximum distance from U (or
one of them, if there are many). Let Al be a conjugate of
Ak, that is a lonely node of G by definition. Thus, Ak′ is a
lonely node of G ′ = reduce(G , Ak, Al).

Algorithm 3 reports the whole iterative procedure to cal-
culate the minimum of an s-network.

1. U := randomly chosen node of G;

2. (d1, . . . , dm) := distances(G,U);

3. WHILE number of s-nodes in G > 1 {

4. k := arg max dj;

5. Al := findConjugate(Ak,G);

6. G := reduce(G,Ak,Al);

7. remove dk, from (d1, . . . , dm);}

8. RETURN min
a
+

l

fAl
(a+

l
);

Algorithm 3: The pseudo-code of the full minimization
routine. In input we have an s-polytree G . The output is
the minimum of the s-polytree.

Concerning the computational complexity of Algorithm 3,
it is obvious to check that the subroutines reduce and
findConjugate are linear in the number of nodes of
G , while distances was already noted to be linear. The

latter is invoked only once, while the former two are in-
voked as many times as many s-nodes minus one are in
the s-network. The running time of the full algorithm is
therefore at most quadratic in the input size.

Finally, the algorithm works only if the graph underlying
the s-network is a polytree. Thus, if G (V ,E) is this graph,
the condition |V | = |E | + 1 can be used as an obvious
applicability check.

Remember that we are focusing on connected s-networks.
In the general case of a disconnected s-network G , we have
only to to check whether or not the graph is a polyforest.
In the positive case, the algorithm in Table 3 can be used
to calculate the minima of the s-polytrees associated to the
connected component of G with at least one s-node, while
the overall minimum is just the product of these minima
because of Theorem 4.

5 Efficient CUR-based Classification

5.1 Minima of S-networks solve CCURD Problems

Let I be a CCURD instance that involves deciding whether
or not c′ > c′′. We denote by GI the directed graph ob-
tained from B+ marking as special C = A0 together with
its children, removing the arcs that leave C and the ob-
served nodes, and removing the observed nodes that are
not special. The following algorithm is an obvious (linear
time) implementation of this transformation.

1. GI := B+;

2. FOREACH V ∈ V {

3. IF V = C OR C parent of V {

4. mark V as special; }}

5. FOREACH ε ∈ E {

6. IF T(ε) ∈ E OR T (ε) = C {

7. remove ε; }}

8. FOREACH V ∈ E {

9. IF V not special {

10. remove V ; }}

Algorithm 4: An algorithm to build up a graph GI(V ,E)
given a CCURD (or CCUR) instance I . T(ε) represents
the first endpoint of the arc ε, while E is the subset of the
observed attribute variables of I .

Each node of GI is identified with a variable that takes
finitely many values, as follows. The target node A0 and

the nodes of GI corresponding to the observed attribute
variables of I are assumed to be constants, i.e., their pos-
sibility spaces contain a single value, while the remaining
nodes, which are the missing attribute variables in I , are
identified with the same categorical variables of the origi-
nal problem. Finally, we set:

fA0
(a+

0) :=
p(c′|πC)

p(c′′|πC)
(11)

fAi
(a+
i) :=

p(ai|π
′
Ai
)

p(ai|π′′Ai
)

i = 1, . . . ,m. (12)

The graph GI together with the functions in (11) and (12)
can be easily recognized to be an s-network. The compu-
tation of the minimum of this s-network solves the corre-
sponding CCURD instance, according to the following:

Theorem 10. I is true if and only if the minimum of the
s-network GI is greater than one.

Therefore, Algorithm 3 can solve a CCURD instance I ,
such that the corresponding s-network GI is polyforest-
shaped. Finally, it is easy to check that the transformation
from I to the s-network GI is linear in the size of I .

5.2 Solving CCUR Problems

Theorem 10 is the basis to solve efficiently also a class of
CCUR problems. Let us therefore consider a generic clas-
sification problem with missing data, whose set of classes
is C := {c1, . . . , cr}. For each pair of classes, we can
consider the corresponding binary CCUR instance. For
each binary CCUR instance, we consider two CCURD
instances as follows. If the binary CCUR instance re-
quires to compare the classes between ci and cj , the first
CCURD instance checks whether or not ci>cj , while the
second checks if cj>ci. Whenever one of these CCURD
instances is true, the dominated class is rejected. Algo-
rithm 5 reports the full procedure detecting the optimal
classes.

Concerning the computational complexity of Algorithm 5,
the total number of solved CCURD instances is quadratic
in the input size, being exactly r · (r − 1).

Finally, to detect whether or not this approach can be used
to solve a given CCUR instance I , it is sufficient to check
if the graph GI returned by Algorithm 4 is a polyforest.
The algorithm obtains GI removing some nodes and arcs
from B+. Therefore GI can be a polyforest also if the
original Markov blanket is multiply connected (e.g. the
Bayesian network reported in App. A).

In analogy with [4, Section 6], the common technique
called loop cutset conditioning can be used to solve a
CCUR instance I , when GI is not a polyforest. In this
case the computation will take exponential time.

1. Copt := C;

2. FOR i = 1, . . . , r {

3. FOR j = 1, . . . , r {

4. IF i < j {

5. IF ci>cj {

6. remove cj from Copt;}

7. IF cj>ci {

8. remove ci from Copt;}}}}

9. RETURN Copt;

Algorithm 5: The procedure to solve a CCUR instance
with set of classes C := (c1, . . . , cr). The output is the set
of the optimal classes Copt.

6 Conclusions

Probabilistic expert systems suggest actions on the basis
of the available evidence about a domain. Often such an
evidence is only partial in many real applications, due to a
number of reasons such as economic or time constraints.
In order for the suggested actions to be credible, it is
important to properly take into account the process that
makes the evidence partial by hiding the state of some of
the variables used to describe the domain. The recently
derived conservative updating rule achieves this by con-
sidering a state of near-ignorance about the missingness
process, and by updating beliefs accordingly. In order to
make the rule profitably used in practice it is important to
develop efficient algorithms to compute with it.

In this paper we have shown that it is not possible in
general to create efficient algorithms for such a purpose
(unless P=NP): in fact, using the conservative updating
rule to do efficient classification with Bayesian networks
is shown to be NP-hard. This parallels analogous re-
sults with more traditional ways to do classification with
Bayesian nets: in those cases, the computation is efficient
only on polyforest-shaped Bayesian networks. Our sec-
ond contribution shows that something similar happens us-
ing the conservative updating, too. Indeed we provide a
new algorithm for robust classification that is efficient on
polyforest-shaped s-networks. This extends substantially
a previously existing algorithm which, loosely speaking,
is efficient only on disconnected s-networks.

Yet, it is important to stress that the computational differ-
ence between traditional classification with Bayesian nets
and robust classification based on the conservative updat-
ing rule is remarkable: first, the former is based on the en-

tire net, while the latter only on the net made by the class
variable with its Markov blanket; second, while the former
needs that the entire network is a polyforest in order to ob-
tain efficient computation, the latter requires only that the
associated s-network is. This means that the computation
will be efficient also in many cases when the class vari-
able with its Markov blanket form a multiply connected
net. In other words, computing robust classifications with
the conservative updating will be typically much faster
than computing classifications with the traditional updat-
ing rule. Given that the latter classifications are necessar-
ily included in the former, for definition of the conserva-
tive updating rule, it seems to be worth considering ro-
bust classifications not only as a stand-alone task, but also
as a pre-processing step of traditional classification with
Bayesian nets.

With respect to future research, it seems possible to pro-
ceed as in [4, Sect. 7] to employ our algorithm also in the
case of credal networks [3], which are graphical models
extending the formalism of Bayesian networks by allow-
ing sets of mass functions.

Finally, there appear to be strong connections between the
algorithms proposed here and algorithms based on junc-
tions trees, in particular max-marginalization [2]. These
connections could be deepened in future work to repre-
sent the problem in a more standard setup, and perhaps
exploited to achieve a more general or efficient formula-
tion.

Acknowledgements

This research was partially supported by the Swiss NSF
grant 2100-067961.

A A Numerical Example

As a numerical example, let us consider a Bayesian net-
work over the boolean variables (A0, . . . , A6) with the
graphical structure displayed in Figure 2. Let C := A0

be the class variable and c′ and c′′ the possible classes.

A0 A4

A6 A2 A5

A3 A1

Figure 2: A multiply connected Bayesian network.

We assume uniform unconditional mass functions for the

root nodes, while Tables 6, 7, 8 and 9 specify the condi-
tional mass functions for the remaining nodes.

a4 p(C = c′|a4)

T 0.8
F 0.9

Table 6: Conditional mass functions for node C.

c a2 a4 a5 p(A1 = T |c, a2, a4, a5)

c′ T T T 0.4
c′ T T F 0.2
c′ T F T 0.3
c′ T F F 0.1
c′ F T T 0.7
c′ F T F 0.9
c′ F F T 0.8
c′ F F F 0.1
c′′ T T T 0.2
c′′ T T F 0.3
c′′ T F T 0.3
c′′ T F F 0.2
c′′ F T T 0.4
c′′ F T F 0.9
c′′ F F T 0.7
c′′ F F F 0.2

Table 7: Conditional mass functions for node A1.

c p(A2 = T |c)
c′ 0.4
c′ 0.7

Table 8: Conditional mass functions for node A2.

The decision whether c′ > c′′ or not, assuming all the
attribute variables (A1, . . . , A6) to be missing, can be re-
garded as a CCURD instance I .

First, we use Algorithm 4 to construct the graph GI corre-
sponding to the instance I . The result is reported in Fig-
ure 3 and can be easily recognized to be a polytree.

A4 A0

A6 A3 A2 A1

A5

Figure 3: The polytree obtained applying Algorithm 4 to
the Bayesian network in Figure 2. The s-nodes are dis-
played in gray.

c a2 a6 p(A3 = T |c, a2, a6)

c′ T T 0.6
c′ T F 0.7
c′ F T 0.2
c′ F F 0.8
c′′ T T 0.2
c′′ T F 0.9
c′′ F T 0.2
c′′ F F 0.4

Table 9: Conditional mass functions for node A3.

According to the procedure described in Section 5.1, each
node of GI is identified with the same boolean variable of
the original Bayesian network, except A0 that is assumed
to be constant. Furthermore, we can use the probability
specifications in Tables 6–9 to define a function for each
special node of GI as in (11) and (12). GI together with
this set of functions is an s-polytree and Algorithm 3 can
therefore be used to compute its minimum.

Let U := A6 be the randomly chosen node. The distances
between U and the s-nodes of GI are: d0 = 5, d1 = 3,
d2 = 2, d3 = 1. Thus, A0 is a lonely node of GI , while its
only conjugate node is the special sibling A1. Clearly, in
this case, Ã+

0 = A0, which is a constant, and (10) becomes

fA1
(a1, a2, a4, a5) · fA0

(a4). (13)

We finally obtain G ′I , removing A0 from GI . A1 is a lonely
node of G ′I with conjugate A2 and Ã+

1 = (A1, A4, A5).
Thus, (10) takes the form

fA2
(a2) · min

a1,a4,a5

fA1
(a1, a2, a4, a5). (14)

G ′′I is indeed obtained removing A1, A4 and A5. A2 is a
lonely node of this s-polytree with conjugate A3, and Ã+

2

is empty. The re-definition of the function associated to
the conjugate node is therefore simply

fA3
(a3, a2, a6) · fA2

(a2). (15)

The final mark of A2 as non-special node leads to an s-
polytree with a single s-node, whose minimum coincides
with the minimum of GI , being exactly

min
a3,a2,a6

fA3
(a3, a2, a6) = 0.76 (16)

According to Theorem 10, I is therefore false and c′ does
not dominate c′′.

Let I be the CCURD instance involving the decision
whether or not c′′ > c′ with all the attribute variables
missing.

We can proceed in complete analogy with the procedure
used to solve I . The numerical value of the minimum of

GI is 0.02. I is therefore false and we conclude that the
two classes are mutually undominated. Therefore, if all the
attribute variables are missing, we are not able to identify
a single optimal class and both the values c′ and c′′ are
plausible.

In contrast, if we assume that A6 =T and the remaining
attribute variables are missing, we find, with similar cal-
culations, the numerical value 1.19 for the minimum of GI

and 0.02 for GI . In other words, c′ dominates c′′ and is
therefore the only optimal class.

References

[1] G. F. Cooper. The computational complexity of prob-
abilistic inference using Bayesian belief networks.
Artificial Intelligence, 42:393–405, 1990.

[2] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and
D. J. Spiegelhalter. Probabilistic Networks and Ex-
pert Systems. Springer-Verlag, New York, 1999.

[3] F. G. Cozman. Credal networks. Artificial Intelli-
gence, 120:199–233, 2000.

[4] G. de Cooman and M. Zaffalon. Updating beliefs
with incomplete observations. Artificial Intelligence,
159:75–125, 2004.

[5] S. Even. Graph Algorithms. Computer Science
Press, 1979.

[6] M. R. Garey and D. S. Johnson. Computers
and Intractability; a Guide to the Theory of NP-
completeness. Freeman, 1979.

[7] P. Grunwald and J. Halpern. Updating probabilities.
Journal of Artificial Intelligence Research, 19:243–
278, 2003.

[8] R. J. A. Little and D. B. Rubin. Statistical Analysis
with Missing Data. Wiley, New York, 1987.

[9] C. F. Manski. Partial Identification of Probability
Distributions. Springer-Verlag, New York, 2003.

[10] C. Papadimitriou. Computational Complexity.
Addison-Wesley, San Mateo, 1994.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, 1988.

[12] P. Walley. Statistical Reasoning with Imprecise Prob-
abilities. Chapman and Hall, New York, 1991.

[13] M. Zaffalon. The naive credal classifier. Journal
of Statistical Planning and Inference, 105(1):5–21,
2002.

