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1 Introduction

In the recent times, the establishment of a restricted dripited flight area around
important potential targets surveyed by the Armed Forcesieaome usual prac-
tice, also in neutral states like Switzerland, becauseeoptitential danger of terror
threats coming from the sky. A prohibited flight area is ars@ace of definite di-

mensions within which the flight of aircrafts is prohibitedlrestricted flight area

is an airspace of definite dimensions within which the fligtdiccrafts is restricted

in accordance with certain specified conditions [17].

Once a restricted flight area is established for the prateatf a single strategic
object, all the aircrafts flying in this region without thegtered permissions are
consideredntruders The restricted flight area can be imagined as divided in two
concentric regions: an external area, devoted to the iitton of the intruder,
where the intruder is observed by many sensors of the cidihaifitary Air Traffic
Control and by the interceptors, and an internal area, wisiehsmall region con-
taining the object to protect and the military units, where i§ eventually released

if the intruder is presumed to have bad aims.

Clearly, not all the intruders have the same intentiongetlaee intruders with bad
aims, calledrenegadesintruders with provocative aims, erroneous intruders, an
even aircrafts that are incurring an emergency situatiorceSonly renegades rep-
resent a danger for the protected object, the recognititimeahtruder’s aim plays a
crucial role in the following decision. This is the identéiton problem we address
in this paper.

The problem is complex for many reasons: (i) the risk evadnatsually relies on
gualitative expert judgements; (ii) it requires the fusidmformation coming from
different sensors, and this information can be incompleteaially contradictory;
(iii) different sensors can have different levels of reiigyy and the reliability of

each sensor can be affected by exogenous factors, as gkiogitagnd meteoro-
logical conditions, and also by the behaviour of the intrudeshort review of the
problem and some details about these difficulties are repamtSect. 2.

In this paper, we proposaedal networkg$7] (Sect. 3) as a mathematical paradigm
for the modeling of military identification problems. Crédeetworks are impre-
cise probabilistic graphical models representing expadwkedge by means of
sets of probability mass functions associated to the noflesdirected acyclic
graph. These models are particularly suited for modelirthdming inference with
gualitative, incomplete, and also conflicting informatiédl these features appear
particularly important for the military problem under cateration.

More specifically, we have developed a credal network thaluewes the level of
risk associated to an intrusion. This is achieved by a nurabsequential steps:
determination of the factors relevant for the risk evalatand identification of



a dependency structure between them (Sect. 4.1); quangficaf this qualita-
tive structure by imprecise probabilistic assessmentst(Sel); determination of
a qualitative model of the observation process associated¢h sensor, together
with the necessarfusion schemef the information collected by the different sen-
sors (Sect. 4.2); quantification of this model by probapihitervals (Sect. 5.2). An
analysis of the main features of our imprecise-probabéfproach to information
fusion is indeed reported in Sect. 6.

The credal network is finally employed to evaluate the leVels, which is simply
the probability of the risk factor conditional on the infaatron collected by the
sensors in the considered scenario. A description of theegiire used to update
the network, together with the results of some simulatieaseported in Sect. 7.

Summarizing, we can regard this model as a practical toalppart military ex-
perts in their decisions for this particular problémBut, at the same time, our
credal network can be regarded as a prototypical modelargdwork for general
identification problems requiring information fusion.

2 Military Aspects

This section focuses on the main military aspects of thetifiestion problem ad-
dressed by this paper. Let us first report the four possilileegeof the Rsk FAC-
TOR? by which we model the possible intentions of the intruder.

() Renegade. The intruder intends to use his aircraft as a weapon to damag
the strategic target defended by the restricted flight area.

(i) Agent provocat eur.The aimisto provoke or demonstrate. The intruder
knows exactly what he is doing and does not want to die, thezefie is
expected to react positively to radio communication at satemoment.

(i) Erroneous. The intruder is entering the restricted flight area becaise
an error in the flight path due to bad preparation of the flightheufficient
training level.

(iv) Damaged. This is an intruder without bad aims that is incurring an eme
gency situation due to a technical problem. The pilot dogsnecessarily

1 The support we provide is represented by the probabilisfarination about the actual
level of risk associated to an intrusion. Decisions abossitbe interventions can be based
on this information, but are still taken by military experdsmodel of such decision process,
to be embedded into the network structure, could be expl@rgd, by considering the ideas
in [1] and their development in [10]), but is beyond the scopthis paper.

2 The following typographical convention is used: the vagalconsidered in our proba-
bilistic model are written in BALL CAPITALS and their possible statestrypewri t er.

3 There are also some subcategories of terrorists (e.g.omaigrayers), which will be
considered only in a future work.



knows what he is doing because of a possible situation otpandamaged
intruder can react negatively to radio communications ha# instruments
could be switched off because of electrical failures. A gradentification of
damaged intruders is very important because they can dg easfused with
renegades.

In order to decide which one among these four categoriecteflbe real aim of
the intruder an appropriate identification architectureutth be set up. Fig. 1 dis-
plays the structure typically employed in Switzerland. Wheaestricted flight area
is set up for the protection of an important object, AneDefence Direction Center
(ADDC) isin charge of the identification of possible intrusleThe ADDC collects
the information provided by three main sources: (i) the eenef the civilAir Traf-
fic Control (ATC), (ii) the sensors of the military ATC, (iii) the intesptors of the
Swiss Air Force devoted to Air Police missions. Once thiglewtial information
has been collected, the ADDC performs the identificatiomefdim of the intruder.

CIVIL ATC

SSRs and radio communications )

\

MILITARYATC |, (™ AppC |

Primary radars

Cooperative
identification

Identification

by technical instruments

identification

Non-cooperative

[ AIR POLICE ]

Interception

Identif. by
intervention

Figure 1. The identification architecture.

The civil ATC sensors are based on a collaborative commtioitdetween the
ATC and the intruder. In fact, the detection of the intrudgitie ATC is possible
only if the intruder is equipped and operates witlr@ansponder Transponders
are electronic devices that, if interrogated by the civilCATadar, emit a signal
enabling a three-dimensional localization. Radars basetis principle are called
Secondary Surveillance RadafSSRs). Transponders emit also an identification
code. We consider the identification col®de 3/A which, in certain cases, does
not allow the exact identification of the intruder to be readl (e.g., all the aircrafts
flying according to the visual flight rules emit the same cotlé) should be also
pointed out that, if the transponder is switched off, theudér remains invisible to
the civil ATC because the SSR is unable to detect it.

4 The most informative identification coddode Sis not considered here, because it has
not yet been implemented extensively in practice.



Overall, we summarize the information relevant for the idfeation gathered by
the civil ATC in terms of two distinct factors: theR_RNSPONDER MODE 3/A,
indicating if and possibly what type of identification codashbeen detected by
the SSR; and the ATC BACTION, describing the response of the intruder to the
instructions that civil ATCs report to aircrafts flying ingliirection of the restricted
area in order to deviate them from their current flight route.

Unlike civil ATC sensors, sensors managed by the militarfCAdnd military Air
Police units are based on a non-collaborative observatfitreantruder. The main
military ATC sensors are radar stations detecting the exheiected by the in-
truder of radio pulses emitted by the radar. These radargidea continuous
three-dimensional localization of the intruder. The othelitary sensors, which
are particularly suited for the identification of intruddhging at relatively low
height, are the pointing devices of anti-air firing units@tdimensional and track-
ing radars, cameras) and tBe@ound Observer CorpeGOCs), which are military
units equipped with optical instruments to observe theiger from the ground.

The information gathered by these sensors which is reldearnhe identification
of the intentions of the intruder can be summarized by theviehg factors: AR-
CRAFT HEIGHT, HEIGHT CHANGES, ABSOLUTE SPEED, FLIGHT PATH, AIR-
CRAFT TYPE, and also RACTION TO ADDC, which is the analogous of RAC-
TION TO ATC, but referred to the case of detection by the military ATC

Finally, regarding the information gathered by the intptoes of the Air Force,
which is reported to the ADDC, the possible identificatiorssnns of the inter-
ceptors are divided into three categories according torttegriational Civil Avia-
tion Organizationsurveillance identificationandintervention In the first type of
mission, the interceptor does not establish a visual contédh the intruder but
observes its behaviour using sensors; the interceptoergfibre considered as a
sensor observing the same factors as the other sensors oivihand military
ATC. In the second and in the third type of missions, the oeptor establishes a
visual contact with the intruder with the intention of obseg it (identification),
or giving it instructions in order to deviate the aircraftrin the current flight route,
or also to land it (intervention). The reaction of the inteudb interception is very
informative about its intentions. We model this reactioritte latter two types of
mission by the factor RACTION TO INTERCEPTION

The intruder is assumed to be observed during a sufficieatlg kime window
called observation period. All the factors we have definedriaer to describe
the behaviour of the intruder during this observation pace discrete variables,
whose (mutually exclusive and exhaustive) possible vauveslefined with respect
to the dynamic component of the identification process, depto eliminate the
dependency of the model on local issues. To explain how tasgects are taken
into account, we detail the definitions of the factorsdHT PATH and HEIGHT
CHANGES. The first factor describes the route followed by the intrutlering the



observation period from an intentional point of view and from a physical or
geographical perspective. Accordingly, their possibleesare defined as follows.

(i) Suspi ci ous rout e. The intruder follows a suspicious flight route in the
direction of the protected objects.
(i) Provocati ve route. The intruder flights in the restricted area without
approaching significantly the protected objects in an agyphr planned way.
(i) Positive reaction route. The intruder corrects its flying route ac-
cording to the instructions of the ATC or of the interceptorspontaneously.
(iv) Chaoti c route. The intruder follows an apparently chaotic flight path.

The definition of these possible states is independent o$pkeific geographical
situation. In practice, we assume that a route observed ematthar or on other
sensors by the ADDC is interpreted from an intentional pdainilarly, the fac-

tor HEIGHT CHANGES describes the behaviour of the intruder with respect to its
height, by the following possible values.

(i) A i nb. The intruder is climbing, i.e., increasing its height.

(i) Descent . The intruder is descending. i.e., decreasing its height.
(i) St ati onary. The intruder maintains roughly the same height.
(iv) Unst abl e. The intruder climbs and descends in an alternate way.

These values reflect an observation of the dynamic behawfdbe intruder during
the observation period.

Another important issue of our model is the distinction kegwthe number of sen-
sors available in the identification architecture and tredueation of their efficiency,
for a characterization of the quality of the observationstd\for instance, that the
quality of the observation of theLFGHT PATH provided by a low number of GOCs
would be scarce, exactly as the observation provided by laignber of GOCs,
working under bad meteorological conditions.

By this example, we intend to point out that a proper desompof the identifica-
tion architecture can be obtained by distinguishing betwbe presence and the
reliability of each sensor. The presence depends on thefispdentification ar-
chitecture, on the technical limits of the sensors, and atsthe behaviour of the
intruder itself, being in particular affected by theRERAFT HEIGHT (e.g., some
sensors can observe the intruder only if it is flying at longhés). The reliability
depends on the meteorological and geographical condjt@mmspecific technical
limits of the sensors (e.g., radars have low quality in trentdication of the AR-
CRAFT TYPE, independently of its presence) and on th@ @RAFT HEIGHT. All
these aspects are implicitly considered during the spatific of the presence and
the reliability of the different sensors. This model of tdentification architecture
is detailed in Sect. 4 and Sect. 5.



3 Mathematical Aspects

In this section, we briefly recall the definitionsaédal setandcredal networl7],
which are the mathematical objects we use to model expemledge and fuse
different kinds of information in a single coherent frameko

3.1 Credal Sets

Given a variableX, we denote by2x the possibility space ok, with = a generic
element of2x. Denote byP(X') a mass function foX and byP(x) the probability
of x.

We denote byK (X) a closed convex set of probability mass functions a¥er
K (X) is said to be &redal setover X. For anyz € Qy, the lower probability for
x according to the credal séf(X) is P(x) = minp x)cx(x) P(x). Similar defini-
tions can be provided for upper probabilities, and more gdlydower and upper
expectations. A set of mass functions, its convex hull, andet ofvertices(i.e.,
extreme points) produce the same lower and upper expatsaind probabilities.
Accordingly, a credal set can be defined by an explicit enairear of its vertices.

A set of probability intervalsoverQy, sayllx = {I, : I, = [l,, u,],0 < I, < u, <
1,z € Qx} induces the specification of a credal $etX) = {P(X) : P(z) €
I,z € Qx,>.ca, P(x) = 1}. Ix is said toavoid sure lossf the corresponding
credal set is not empty, and to achable(or coheren}if u, + > cay prwr lo <

1 <l + Y cay ora Uar TOrallz’” € Qx. Iy isreachable if and only if the intervals
are tight, i.e., for each lower or upper boundiin there is a mass function in the
credal set at which the bound is attained [19]. A non-reaehs#t of probability
intervals avoiding sure loss can be always refined in ordbetmme reachable [5].
The vertices of a credal set defined by a reachable set of pifitpantervals can be
efficiently computed using standamelerse search enumeratieechniques [3,5].

Here, we focus on credal sets defined through reachable lphtpantervals, as

they appear as a very natural way to capture the kind of hux@ertze we want
to reproduce by our model (see Sect. 5). Nevertheless, faparthe case of binary
variables, itis possible to consider credal sets that damobtained by probability
intervals.

Dealing with credal sets instead of single probability masgtions needs also
a more general concept of independence. The most commoaftext concept
is strong independencdwo generic variableX andY are strongly independent
when every vertex of the underlying credal $8tX, Y') satisfies standard stochas-
tic independence o andY. Finally, regarding conditioning with credal sets,
we can compute the posterior credal $&tX|Y = y) as the union, obtained



by element-wise application of Bayes’ rule, of all the pastemass functions
P(X|Y =y) (the lower probability of the conditioning event is assurpedlitive).®

3.2 Credal Networks

Let X be a vector of variables and assume a one-to-one correspantdetween
the elements oX and the nodes of directed acyclic graplg. Accordingly, in
the following we will usenodeandvariable interchangeably. For eack; € X,

II; denotes the set of thgarentsof X, i.e., the variables corresponding to the
immediate predecessors &faccording taj.

The specification of &redal networkover X, given the graply, consists in the
assessment of a conditional credal 5&tX;|;) for each possible value;, € Qp,
of the parents of(;, for each variableX; € X.¢

The graphg is assumed to code strong independencies among the variatXe
by the so-called stronlylarkov condition every variable is strongly independent
of its nondescendant non-parents given its parents. Aol it is therefore pos-
sible to regard a credal network as a specification of a creetak’ (X) over the
joint variable X, with K (X) the convex hull of the set of joint mass functions
P(X) = P(Xy,...,,X,) over then variables of the net, that factorize according
to P(xq,...,x,) = 1, P(x;|m;). Herem; is the assignment to the parents)of
consistent witi(zy, . . ., x,,); and the conditional mass functiof$ X;|r;) are cho-
sen in all the possible ways from the extreme points of thpees/e credal sets.
K (X) is called thestrong extensiof the credal network. Observe that the ver-
tices of K(X) are joint mass function®(X). Each of them can be identified with
aBayesian networkl3], which is a precise probabilistic graphical model. thex
words, a credal network is equivalent to a set of Bayesiawarés.

3.3 Computing with Credal Networks

Credal networks can be naturally regarded as expert sysidmsjuery a credal
network to gather probabilistic information about a valéafjiven evidence about
some other variables. This task is callepdatingand consists in the computa-

5 If only the upper probability is positive, conditioning che still obtained byregular
extension20, App. J]. The stronger condition assumed here is reduisethe inference
algorithms we adopt, and it is always satisfied in our teste &ection 7).

6 This definition assumes the credal sets in the network tedparately specified.e.,
selecting a mass function from a credal set does not infludeggossible choices in others.
Other possible specifications can be considered. We pantethder to [1] for a general
unified graphical language that allows for these specitioati



tion, with respect to the network strong extensio(X), of P(X,|Xg = zg) and
P(X,|Xr = z.), whereXj is the vector of variables of the network in a known
statery (the evidence), and, is the node we query. Credal network updating is an
NP-hard task (also for polytrees) [9], for which a numbenrxda and approximate
algorithms have been proposed (e.g., [8] for an overview).

4 Qualitative Assessment of the Network

We are now in the condition to describe the credal networleldped for our appli-
cation. According to the discussion in the previous sectibis task first requires
the qualitative identification of the conditional depencies between the variables
involved in the model, which can be coded by a correspondireged graph.

As detailed in Sect. 2, the variables we consider in our aggr@re: (i) the K
FACTOR, (ii) the nine variables used to assess the intention of ritreder, (iii)
the variables representing the observations returned dgehsors, and (iv) for
each observation two additional variables representiadewvel of RESENCEand
RELIABILITY of the relative sensor. In the following, we refer to the abtes in
the categories (i) and (ii) asore variables

4.1 Risk Evaluation

Fig. 2 depicts the conditional dependencies between tleeveoiables according to
the military and technical considerations of the Expeithe specification of this
part of the network has required a considerable amount ofamyiland technical
expertise that, due to confidentiality reasons, cannot piamed in more detall
here.

4.2 Observation and Fusion Mechanism

In this paper, we follow the general definitionlatentandmanifest variablegiven

by [18]: alatent variables a variable whose realizations are unobservable (hidden)
while amanifest variablas a variable whose realizations can be directly observed.
According to [4], there may be different interpretationdaient variables. In our
model, we consider a latent variable as an unobservabkblathat exists indepen-
dent of the observation. Tlo®re variablesn Fig. 2 are regarded as latent variables

7 In this paper we briefly calExperta pool of military experts, we have consulted during
the development of the model.



AIRCRAFT TRANSPONDER
TYPE MoDE 3/A

AIRCRAFT Risk REACTION TO
HEIGHT FACTOR ATC
ABSOLUTE REACTION TO
SPEED ADDC

REACTION TO FLIGHT
INTERCEPTION PATH

Figure 2. The core of the network. Dark gray nodes are obddryesingle sensors, while
light gray nodes are observed by sets of sensors for whichfarmiation fusion scheme
(see Sect. 4.2) is required.

that, to be determined, usually require the fusion of infation coming from dif-
ferent sensors, with different levels of reliability. Thieservations of the different
sensors are considered manifest variaBlé¢evertheless, in the case of the identi-
fication code emitted by the intruderk ANSPONDERM ODE 3/A), the REACTION
TO INTERCEPTIONObserved by the pilot, and theeRcTION TO ATC observed by
the controllers through SSR, the observation process isiimie; thus we simply
identify the latent with the corresponding manifest valealClearly, if the RSk
FACTOR was the only latent variable, the network in Fig. 2 would be¢bmplete
network needed to model the risk evaluation. But, becausareveealing with la-
tent variables observed by many sensors, a model of thewatigar process and a
fusion mechanism have to be added to the current structure.

Observation Mechanism We begin by considering observations by single sen-
sors, and then we explain the fusion scheme for several er@@onsider the fol-
lowing example: suppose that an intruder is flying at low he@nd is observed
by ground-based observation units in order to evaluatelitsHr PATH. For this
evaluation, the intruder should be observed by many urfitairlidentification ar-
chitecture is characterized by too a low number of obsesmatnits, it is probable
that the observation would be incomplete or even absehfadih the meteorolog-
ical and geographical conditions are optimal. In this c#ise poor quality of the
observation is due to the scarce presence of the sensoloS&ippw that the archi-
tecture is characterized by a very large number of observainits but the weather
is characterized by a complete cloud cover with low clouldsntthe quality of the
observation is very poor although the presence of unitstisngh. In this case the
poor quality of the observation is due to the scarce religiif the sensor under
this meteorological condition.

8 The manifest variables we consider are therefore refendtet observations of corre-
sponding latent variables. Thus, X is a latent variable, the possibility spaf¥g of the
corresponding manifest variab{e takes values in the sé€tx augmented by the supple-
mentary possible valugi ssi ng (we denote this value by").

10



This example motivates our choice to define two differentdiecin order to model
the quality of an observation by a sensor. Fig. 3 illustraiegeneral, how the
evidence provided by a sensor about a latent variable isssdeThe manifest
variable depends on the relative latent variable, on tResENCE of the sensor
(with possible valuepr esent , parti ally present andabsent), and its
RELIABILITY (with possible valuebi gh, nedi umandscar ce).

According to the military principles outlined in Sect. 2etlfReELIABILITY of a
sensor can be affected by the meteorological and geogedhination and also
by the ARCRAFT HEIGHT, while, regarding the RESENCE only the ARCRAFT
HEIGHT and the identification architecture affect the quality of tibservations.
The influence of the latent variablel RCRAFT HEIGHT is related to the technical
limits of the sensors: there are sensors that are specificeolotv and very low
heights, like tracking radars and cameras; other senskesthle primary surveil-
lance radars, are always present at high and very high Isgight are not always
present at low and very low heights.

Meteorological and geographical conditions do not affeetRRESENCEOf a sen-
sor, but only its RLIABILITY . Itis worthy to point out that these exogenous factors
are always observed and we will not display them explicidynatwork variables,
being considered by the Expert during his quantificatiorhefRELIABILITY . °

AIRCRAFT
HEIGHT

EXOGENOUS
FACTORS

SENSOR
RELIABILITY

SENSOR
PRESENCE

MANIFEST
VARIABLE

LATENT
VARIABLE

Figure 3. Observation by a single sensor. Ttent variableis the variable to be observed
by the sensor, while themanifest variablas the value returned by the sensor itself.

Sensors Fusion At this point we can explain how the information collected by
the different observations of a single latent variablemegd by different sensors
can be fused together. Consider, for example, the detetiminaf the latent vari-
able ARCRAFT TYPE. This variable can be observed by four types of sensors: TV
cameras, IR cameras, ground-based observation units ebdsad interceptors.

9 As noted in Section 5.2, the Expert is not required to quptiése nodes for each pos-
sible configuration of the exogenous factors, but only fertpecific conditions observed
at the moment of the quantification. For this reason, thesterare not included among
the variables of the model.

11



For each sensor, we model the observation using a struckar¢hle network in
Fig. 3: there is a node representing thREBENCE of the sensor and a node rep-
resenting the RLIABILITY , while the variable ARCRAFT HEIGHT influences all
these nodes. Accordingly, for each combination BREBENCEand RELIABILITY ,

a different model of the relation between the manifest aeddtent variable (i.e.,
a model of the sensor performances) should be specifigdverall, we obtain a
structure like in Fig. 4, which permits the fusion of the eande about the latent
variables coming from the different sensors, taking intcoant the reliability of
the different observations and without the need of any estespecification of ex-
plicit fusion procedures. This is obtained by simply assigrihe conditional inde-
pendence among the different sensors given the value ofitia¢ variable. Sect. 6
reports a note on the main features of this approach, whistbkan inspired by
similar techniques adopted for Bayesian networks [11].

AIRCRAFT
HEIGHT
RELIABILITY RELIABILITY RELIABILITY RELIABILITY
SENSOR1 SENSOR2 SENSOR3 SENSOR4

PRESENCE
SENSOR4

PRESENCE
SENSOR3

PRESENCE
SENSOR2

PRESENCE
SENSOR1

/ A

A (

Y 4 A

SENSOR1
(TV)

SENSOR3
(GROUND)

AIRCRAFT
TYPE

Figure 4. The determination of the latent variatylpe of aircraftby four sensors.

Whole Network The procedure considered in the previous paragraph for the
node ARCRAFT TYPE is applied to every latent variable requiring information
fusion from many sensors. This practically means that weaasladbnetwork simi-

lar to the one reported in Fig. 4 to each light gray node of e#tevark core in Fig. 2.
The resulting directed graph, which is still acyclic, is@iman Fig. 5. A more com-
pact specification could be obtained by extending the fasmaebf object-oriented
Bayesian networkf 2] to credal networks. Accordingly, we can regard the labxe
subnetworks in Fig. 5, modeling the observations of thelifezors, as differ-

ent instances of a given class, for which appropriate spatifins of the attributes
(possible values, number of sensors, etc.) have been gahvid

10 Here the RLIABILITY is intended as a global descriptor of the sensor perfornsance
The quality of a particular observation can be clearly dafddy the value of the ideal
variable, but this is modeled in the relation between thenlgand the ideal variable.

12



EACTION TOADDC

FLIGHT PATH

REACTION
ATC
EACTION T
INTERCEPRTION

TRANSPOW
MoODE 3/A

HEIGHT CHANGES

Risk
FACTOR

AIRCRAFT HEIGHT

Figure 5. The complete structure of the network. Black naisote manifest variables
observed by the sensors, latent variables corresponditigeteinobserved ideal factors
are gray, while presences, reliabilities, and the riskdiaatre white. Boxes highlight the
different subnetworks modeling the observation procesthmideal factors.
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5 Quantitative Assessment of the Network

As outlined in Sect. 3, the specification of a credal networ&rdhe variables as-
sociated to the directed acyclic graph in Fig. 5 requiressfiexification of a con-
ditional credal set for each variable and each possible garaiion of its parents.
Specific procedures for the quantification of these credal Isased on Expert’s
qualitative judgements have been developed for the corablas (Sect. 5.1) and
for the nodes modeling the observation process (Sect. 5.2).

5.1 Quantification of the Network Core

Because of the scarcity of historical cases, the quanidicaif the conditional
credal sets for the core variables in Fig. 2 is mainly basexhunpilitary and tech-
nical considerations. The Expert provided a number of tatale judgements like
“erroneous intruders are light aircrafts with good chancahd“erroneous intrud-
ers are business jets with little chancedater translated into the following specifi-
cations for the bounds of the probability intervals:

P(l'ight aircraft|erroneous) > .65,

P(busi ness j et |erroneous) < .20.

This kind of elicitation has been obtained following Walkeguidelines for the
translation of natural language judgements [21, p. 48JafBjethere is a degree of
arbitrariness in choosing single numbers for the boundseoptobability intervals,
but much less than in similar approaches based on precibalpfibies.

In some situations, the Expert was also able to identifydalgconstraint among
the variables. As an example, the fact thalloons cannot maintain high levels of
height” represents a constraint between the possible values oftiabies AR-
CRAFT TYPE and AIRCRAFT HEIGHT, that can be embedded into the structure of
the network by means of the following zero probability assssnt:

P(very highlbal | oon) = 0.

Overall, the conditional credal sets corresponding tateliicprobability intervals
have been computed according to the procedure outlinedan $4 and a well-
defined credal network over the graphical structure in Figag2 been concluded.
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5.2 Observations, Presence and Reliability

To complete the quantification of the credal network ovemthele graphical struc-
ture in Fig. 5, we should discuss, for each sensor, the dieatidn of the variables
modeling the observation process.

We begin by explaining howRESENCEand RELIABILITY are specified. Consider
the network in Fig. 3. The Expert should quantify, for eachts four possible
values of ARCRAFT HEIGHT, two credal sets, one for theRBSENCEand one for
the RELIABILITY . For the first, he takes into consideration only the structiithe
identification architecture; while for the second, alsodhtial meteorological and
geographical situation should be considered.

In principle, this quantification task would require thae tExpert answer ques-
tions like,“what is the probability (interval) that the ground-basebservers have
scarce (or medium, or high) reliability in observing an aaé flying at low height,
if the meteorological condition is characterized by derse tlouds and we are in
the plateau?” Clearly, it can be extremely difficult and time-consuminghswer
dozens of questions of this kind in a coherent and realisti. wor this reason, we
simply ask the Expert to provida#naracteristic level®f PRESENCEand RELIABIL -
ITY. That can be obtained by questions like the followitwghat is the reliability
level that you expect from ground-based observations ofil@naét flying at low
height, if the meteorological condition is characterizgddense low clouds and we
are in the plateau?” The latter question is much simpler, because one is refjuire
to specify something more qualitative than probabilitiesgether with the charac-
teristic levels, the Expert also indicates whether or nashencertain about these
values. Finally, for each combination of expected levels @hative uncertainty, a
fixed credal set is defined together with the Expert. Thattaumtislly simplifies the
quantification task, while maintaining a large flexibility the specification of the
model. As an example, assuming that Expert’s expected tdveliability is high
with no uncertainty, a degenerate (precise) specificati@uopted, i.e.,

P(RELIABILITY = hi gh|AIRCRAFT HEIGHT =1 ow) = 1;

while, in case of uncertainty about such expected levelnterval [.9, 1] is con-
sidered instead, and a corresponding non-zero probafalityhhe medium level of
reliability should be assumed. Analogous procedures haee employed for the
guantification of the RESENCE

Regarding the observations, a conditional credal set fon passible value of the
corresponding latent variable and each possible levelmfiABILITY and RES
ENCE should be assessed.

Let X be a latent variable denoting an ideal factor &dhe manifest variable
corresponding to the observation &f as returned by a given sensor. For each
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possible joint value of RLIABILITY and FRESENCE say(r, p), we should assess
lower and upper bounds f@t(O = o| X = x,r,p), for eachr € Q2x ando € Qp =
Qx U {x}, and then compute the corresponding credal sets.

This quantification step can be simplified by defining a symimeion-transitive
relation ofsimilarity among the elements 6fx. The similarities between the pos-
sible values of a latent variable according to a specificaeren be naturally repre-
sented by an undirected graph as in the example of Fig. 6.rnergk given a latent
variableX, we ask the Expert to determine, for each possible outcomé? x, the
outcomes ofX that are similar ta: and those that are not similar io

j et airliner hel i copt er
i ght .
. lid
aircraft gl aer bal I oon

Figure 6. An undirected graph depicting similarity relasoabout the possible values of
the variable ARCRAFT TYPE according to the observation of a TV camera. Edges connect
similar states. The sensor can mix upiaght ai rcraft withagl i der oraj et but

not with abal | oon or ahel i copt er oranai rli ner.

Having defined, for each latent variable and each correspgisénsor, the similar-
ities between its possible outcomes, we can then dividedbsiple observations in
four categories: (i) observing the actual valueXaf(ii) confounding the real value
of X with a similar one; (iii) confounding the actual value¥fwith a value that is
not similar; (iv) the observation isi ssi ng. The idea is to quantify, instead of a
probability interval forP(O = o| X = x,p,r) for eachz € Qx and each € Qp,
only four probability intervals, corresponding to the faategories of observations
described above. As an example, Tab. 1 reports an intealaégl quantification
of the conditional probability tabl&’(O| X, p, r) for the ideal variable ARCRAFT
TYPE, for a combinatior(p, r) of the values of RESENCEand RELIABILITY that
models a good (although not perfect) observation process.

Let us finally explain how the four probability intervals ageantified in our net-
work for each combination of RLIABILITY and RRESENCEand each sensor. The
probability interval assigned to the case where the observas m ssi ng de-
pends uniquely on theHESENCE In particular, the valu@absent , makes the
probability of having an ssi ng observation equal to one and therefore the prob-
ability assigned to all the other cases are equal to zerolldt¥s that we have only
seven combinations of RIABILITY and FRRESENCEto quantify. To this extent, we
use constraints based on the concephtdrval dominanceo characterize the dif-
ferent combinations! In order of accuracy of the observation, the combinations
are the following:

1 Given a credal sek (X ) over a variableX, and two possible values 2’ € Qy, we say
that thex dominatest’ if P(X = 2/) < P(X = z) for eachP € K(X). It is easy to
show that interval dominance, i.2(X = ') < P(X = =), is a sufficient condition for
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light air. glider jet airliner bal | oon hel i copt er

light aircraft [.600,.700] [.250,.350]  [.125,.175] 0 0 0
gl i der [125,.175]  [.600,.700] 0 0 0 0
jet [.125,.175) 0 [.600,.700]  [.250,.350] 0 0
airliner 0 0 [.125,.175]  [.600,.700] 0 0
bal | oon 0 0 0 0 [.900, .950] 0

hel i copter 0 0 0 0 0 [.900, .950]

ni ssi ng [.050,.100]  [.050,.100] [.050,.100] [.050,.100]  [.050,.100]  [.050,.100]

Table 1

A good quality observation of the IRCRAFT TYPE based on the graph in Fig. 6. A small
probability form ssi ng has been assumed for each value of the ideal variable. This de
termines also the probability of observing the actual \@eidor values that are not similar

to any other state. In the other cases, the right observatsrbeen described by a lower
intervals, while the probabilities of confounding the adtualue with a similar one are
obtained by symmetry and reachability properties.

() Hi gh, present.The correct observation dominates (clearly) the simitar o
servations. The probability for non-similar observatiemgero and is there-
fore dominated by all the other categories.

(i) H gh,partially present.The correctobservation dominates the sim-
ilar observations and dominates (clearly) the non-sinolaservations. The
similar observations dominates the non-similar obsewnati

(i) Medi um pr esent . The correct observation dominates the similar observa-
tions and dominates the non-similar observations. Thelaimnbservations
dominates the non-similar observations.

(iv) Mediumpartially present. The correct observation does not domi-
nate the similar observations but dominates the non-simidaervations.

(v) Low, pr esent . No dominance at all.

(vi) Low, partially present.No dominance at all, but more overlapping
among the intervals than in (v).

(vii) Absent (no matter what the reliability is). The probability ofma ssi ng
observation is equal to one, this value dominates all therothlues.

As an example, note that the intervals specified in Tab. lespond to the first
combination. Specifications of probability intervals fbetother combinations have
been obtained by considerations analogous to the onesluksan the caption of
Tab. 1.

dominance.
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6 Information Fusion by Imprecise Probabilities

The procedure described in Sect. 4.2 and 5.2 in order to nibegebservations
gathered by different sensors can be regarded as a possiedise-probability
approach to the generalformation fusiorproblem. In this section, we take a short
detour from the military aspects to illustrate some keyuezd of such an approach
by simple examples.

Let us first formulate the general problem. Given a latenide X', and the man-
ifest variablesD, ..., O,, corresponding to the observations ¥freturned byn
sensors, we want to update our beliefs ab&uytgiven the values.,...,o, re-
turned by the sensors.

The most common way to solve this problem is to assess a gg)guiobabilistic
model over these variables, from which the conditional plolity mass function
P(X]oy,...,0,) can be computed. That may be suited to model situations -of rel
ative consensusmong the different sensors. The precise models tend tgrassi
higher probabilities to the values of returned by the majority of the sensors,
which may be a satisfactory mathematical description celszenarios.

The problem is more complex in case difagreemenamong the different sen-
sors. In these situations, precise models assign simiktegor probabilities to the
different values ofX. But a uniform posterior probability mass function seems to
model a condition ofndifference(i.e., we trust the different observed values with
the same probability), while sensors disagreement reflastead a condition of
ignorance(i.e., we do not know which is the most likely value among theerved
ones).

Imprecise-probability models are more suited for theseasibns. Posterior igno-
rance aboutX can be represented by the impossibility of a precise spatdit
of the conditional mass functioR(X oy, ..., 0,). The more disagreement we ob-
serve among the sensors, the wider we expect the posteieovais to be, for the
different values ofX .

The case where the bounds of a conditional probabilitytstraontain those of the
corresponding unconditional probability, and that hagpfem all the conditional
events of a partition, is known in literature dsation [16], and is relatively com-
mon with coherent imprecise probabilities.

The following small example, despite its simplicity, is fstiEnt to outline how
these particular features are obtained by our approach.

Example 1Consider a credal network over a latent variabte and two manifest
variables O, and O, denoting the observations of returned by two identical
sensors. Assume to be given the strong independencieslrptiezigraph in Fig. 7.
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Let all the variables be Boolean. AssufieX) uniform and bothP(O; = 1|X =
1)andP(O; = 0| X = 0) to take values in the interv@l —~, 1 —¢|, for each i=1,2,
where the two parametefs< ¢ < v < .5 model a (small) error in the observation
process. Since the network in Fig. 7 can be regarded aaige credal classifier
where the latent variabl& plays the role of the class node and the observations
correspond to the class attributes, we can exploit the athor presented in [22,
Sect. 3.1] to compute the following posterior intervals:

1 1
P(X=1/0,=1,0,=1) ¢ , | ~[.941,.988],
_1+(1—_’7—7)2 1+(1_—5>2
P(X=1/01=1,0,=0) € 1 ! ] 308, .692]
- =L A=g ] ey [ T LIV DU
Ity 150

where the numerical values have been computed fer .1, v = .2. Note that
for these specific values, as well as in the general case,rgterfierval is strictly
greater than.5, a value that represents the middle point of the secondvater
Thus, we can conclude that: (i) consensus between the seimsoeases the pos-
terior probability for X; (ii) disagreement increases our ignorance abodt(the
probability dilates)?

Figure 7. The credal network for Example 1.

These calculi can be easily generalized to the case s#nsors. As an example,
Fig. 8 depicts the posterior intervals for the observaticamBoolean latent variable
by nine identical sensors for different levels of consersmusng them. Note that
our approach based on credal networks reproduces the gabghaviour we want

to model, while a Bayesian network would abruptly changestsmates with the

number of correct observations passing from four to fiveikérthe imprecise case,
precise conditional probabilities might therefore proeluareliable extreme values
in the posterior beliefs because of high sensitivity to $etanges in the error rate.

It should be also pointed out that the only assumption reqguay this approach is
the conditional independence between the manifest vasgbbservations) given

12 The values = 0 has been excluded, as it models a situation where both tsersaran be
perfectly reliable. Clearly, such a scenario is not coniy@tivith a disagreement between
the observations.
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0.5

m

Figure 8. Posterior intervals fa?(X = 1|01 = 1,...,0,, = 1,0,,41 = 0,...09 = 0)

as a function ofr, assuming bott(O; = 1|X = 1) andP(0O; = 0|X = 0) € [.8,.9], for
eachj = 1,...,9, and a uniformP(X). Black dots denote precise posterior probabilities
computed assuming the precise valg&for the conditional probabilities.

the latent variable (actual value of the quantity to be meshuA condition which
seems to be verified in many concrete cases, as for examplefttiae military
problem we address in this paper.

In fact, assuming fixed levels of IRCRAFT HEIGHT, RELIABILITY and RRES
ENCE, Fig. 4 reproduces the same structure of the prototypicaingte in Fig. 7,
with four sensors instead of two. The same holds for any swamrk modeling the
relations between a latent variable and the relative msiniriables.

7 Algorithmic Issues and Simulations

The discussion in Sect. 4 and Sect. 5 led us to the specifiatia credal network,
associated to the graph in Fig. 5, defined over the whole sstrsfidered variables,
i.e., core variables, observations collected by the diffesensors, reliability and
presence levels.

At this point, we can evaluate the risk associated to ansmary by simply updating
the probabilities for the four possible values of the risktda, conditional on the
values of the observations returned by the sensors.
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The size of our credal network prevents an exact computafitre posterior prob-
ability intervals!® Approximate procedures should be therefore employedsanle
we do not want to restrict our analysis to the core of the ngivioy assuming
perfectly reliable observations for all the ideal factors.

The high computational complexity of the updating problemtlte whole network
should be regarded as the mathematical counterpart of firmutlies experienced
by the military experts during the identification of the uder. On the other side,
when all the factors are observed in a perfectly reliable, wee/goal of the intruder
can be easily detected, exactly as the mathematical tagbdaiting the core of the
network is equivalent to computing class probabilities maase credal classifier
a task efficiently solved by the algorithm in [22].

Thus, we have first performed extensive simulations on the@ithe network. Ex-

pert has considered several combinations of values fodta factors and checked
whether or not the set of undominated classes returned byotieeof the network

was including his personal evaluation of the goal of an ohrufor that scenario.

Every time a mismatch between the human and the artificiadréxpas detected,

the quantification of the probability for the network was afstl. Remarkably, at
the end of this validation task, we have obtained a network able to simulate

the Expert’s evaluation in almost every considered scenari

Then, as a test for the whole network, we have considered alat®ad restricted
flight area for the protection of a single object in the SwidggsAsurveyed by an
identification architecture characterized by absence tefeeptors and relatively
good coverage of all the other sensors. We assumed as nletgoab conditions
discontinuous low clouds and daylight. The simulated sgemaproduces a situa-
tion where a provocateur is flying very low with a helicoptadavithout emitting
any identification code. The corresponding evidences a@ted in Tab. 2.

In order to compute the posterior intervals we have consaian approximate al-
gorithm calledyeneralized loopy 2U2], whose performances in terms of accuracy
and scalability seems to be quite good. The posterior iatemvere computed in
few seconds on a 2.8 GHz Pentium 4 machine.

For this simulation we have assumed uniform prior beliefsualthe four classes
of risk. ' Fig. 9.a depicts the posterior probability intervals fdastsimulated sce-
nario. The upper probability for the outcomenegade is zero, and we can there-
fore exclude a terrorist attack. Similarly, the lower prbitity for the outcomes
agent provocat eur anddanaged are strictly greater than the upper proba-

13 The existing algorithms for exact updating of credal neksde.g., [6,15]) are typically
too slow for models with dense topologies and more than 5@sod

14 Any credal set can be used to model decision maker’s prioefsedbout the risk fac-
tor. Nevertheless, as noted in [14]vacuousprior (i.e., a credal set equal to the whole
probability simplex) would make vacuous also the postdrifarences.
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VARIABLE SENSOR1  SENSOR2  SENSOR3 SENSOR4 SENSOR5 SENSOR6

(SSR) (3D) (2D) (TV) (QROUND) (TRACK)
AIRCRAFTHEIGHT very |ow very |ow - - | ow very low / low
TYPE OFAIRCRAFT - - - hel i copt er hel i copt er -
FLIGHT PATH U-pat h U-pat h U-pat h U-pat h m ssing U-pat h
HEIGHT CHANGES descent descent descent - m ssing descent
ABSOLUTESPEED sl ow sl ow sl ow - sl ow sl ow
REACTION TOADDC positive positive positive positive positive positive

Table 2
Sensors observations for the simulations in Fig. 9. ThRGRAFT HEIGHT according to
the tracking radar (&\soRr6) isvery | owin (a) and (b), and owin (c).

bility for the stateer r oneous, and we can reject as less credible also this latter
value because of interval dominance.

The ambiguity betweemagent provocat eur anddanaged is due, in this

case, to the bad observation of theRARAFT HEIGHT. In fact, a damaged heli-
copter is expected to land as soon as possible. While, in thaehad scenario, a
provocateur is not expected to land. With a bad observatidgheoheight, we are
unable to understand if the helicopter has landed or notlasréfore the ambiguity
between the two risk categories is reasonable.

Indecision betweeagent provocat eur anddamaged disappears if we as-
sume higher expected levels 0oERABILITY and RRESENCEfor the sensors de-
voted to the observation of thelRCRAFT HEIGHT. The results in Fig. 9.b state
that the intruder is angent provocat eur, as we have assumed in the design
of this simulation.

In Fig. 9.c we still consider a high quality observation, bubre disagreement
between the sensors (see Tab. 2). This produces, also ina$es indecision be-
tween two classes. Remarkably, as we expect from our modékeahformation
fusion in case of disagreement, the intervals we observa seaeproduce the
union of the intervals computed on the network core assumasgectivelywery

| ow(Fig. 9.d) and ow(Fig. 9.e) ARCRAFT HEIGHT.

Remarkably, these results have been recognized by the ttagpesasonable esti-
mates for the considered scenarios. Yet, an extensiveati@idprocess, consist-
ing in analyses of this kind by different military experts many other scenarios,
should be regarded as a necessary future work.

22



prov. dam prov prov. dam

prov
] dam prov

O

=

dam

err err err

L[ ] LI ml [ “
@ (b) © (@) ©

Figure 9. Posterior probability intervals for the risk factcorresponding to the evidences
reported in Tab. 2. The histogram bounds denote lower andryppbabilities. The quality

of the observation of the RCRAFT HEIGHT is assumed to be higher in (b) than in (a).
The histograms in (c) refers to a situation of increasedgdesment between the sensors
observing the ARCRAFT HEIGHT. Finally, (d) and (e) report respectively the exact poste-
rior intervals in a situation where the observation of thetdes is assumed to be perfectly
reliable and corresponds to the value returned by the niajoirthe sensors.

PN

8 Conclusions and Future Work

A model for determining the risk of intrusion of a civil aigdt into restricted flight
areas has been presented. The model embeds in a single rdomathematical
framework human expertise expressed by imprecise-prhtyassessments, and a
structure reproducing complex observation processes @amdsponding informa-
tion fusion schemes.

The risk evaluation corresponds to the updating of the gmtibas for the risk
factor conditional on the observations of the sensors aacestimated levels of
presence and reliability. Preliminary tests consideredfsimulated scenario are
consistent with the judgements of an expert domain for theessituation.

As future work we intend to test the model for other histdrezses and simulated
scenarios. The approximate updating procedure considtetad present work, as
well as other algorithmic approaches will be considereayder to determine the
most suited for this specific problem.

In any case, it seems already possible to offer a practiggiat to the military
experts in their evaluations. They can use the network tmdehe risk level corre-
sponding to a real scenario, but it is also possible to sitawdduations and verify
the effectiveness of the different sensors in order to aemigoptimal identification
architecture.

23



Finally, we regard our approach to the fusion of the infoioratollected by the
different sensors as a sound and flexible approach to thisd€iproblems, able to
work also in situations of contrasting observations betwbe sensors.
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