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Abstract

A credal classifier for multilabel data is presented. This is obtained as an exten-
sion of Zaffalon’s naive credal classifier to the case of non-exclusive class labels.
The dependence relations among the labels are shaped with a tree topology.
The classifier, based on a polynomial-time algorithm to compute whether or
not a class label is optimal, returns a compact description of the set of optimal
sequences of labels. Extensive experiments on real multilabel data show that
the classifier gives more robust predictions than its Bayesian counterpart. In
practice, when multiple sequences are returned in output, the Bayesian model is
more likely to be inaccurate, while the sequences returned by the credal classifier
are more likely to include the correct one.

Keywords: Credal classification, imprecise Dirichlet model, naive credal
classifier, multilabel classification.

1. Introduction

A classifier represents the relationship between the characteristics of an ob-
ject (features) and its category (class). A traditional classifier predicts the class
variable given the value of the features. Credal classifiers generalise traditional
classifiers, allowing for set-valued predictions, possibly including more than a
single class. A credal classifier drops the non-optimal classes returning the
classes that are potentially optimal given the information available. Depending
on the data, there can be one or multiple optimal classes. Credal classifiers are
thus less informative but more reliable than traditional classifiers [17]. Both
credal and traditional classifiers assume the classes to be mutually exclusive.

Multilabel classification is a modern type of classification, in which an object
is allowed to have multiple relevant classes (or labels). Multilabel classification
naturally appears in many domains. E.g., a news article discussing interna-
tional treaties could be labeled as politics and finance and environment, this
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making its categorization a multilabel task. More generally speaking, lots of
information retrieval tasks such as tagging of photos or videos or texts can be
regarded as multilabel problems. In bioinformatics, the identification of the best
mix of drugs for curing HIV has been addressed as a multilabel problem [32].
Similar considerations have been done, among many other examples, for protein
classification [26].

Binary relevance is the simplest way to approach multilabel classification.
Given q labels, binary relevance learns q independent single-label classifiers.
The main shortcoming of binary relevance is that it ignores the dependencies
among the different classes, which in many cases are important [24]. Different
approaches have been proposed for modelling the dependencies among classes;
see for instance [6, 31, 38].

Probabilistic graphical models allow for a direct modelling of the dependen-
cies between class labels [2, 4, 7, 45]. Each label is represented by a Boolean
variable. The i-th Boolean variable represents whether the i-th label is relevant
or not for the current instance. The inference task is to detect the most probable
joint configuration of the labels. A joint configuration of the labels is a sequence
of zeros and ones. Given q labels, there are 2q possible sequences.

Since the number of possible answers increases exponentially with the num-
ber of labels, some research has been devoted to compute robust multilabel
classifications. In the related field of label ranking [29], some algorithms have
been proposed for estimating robust partial (instead of complete) orders be-
tween labels [11]. A multilabel classifier which computes an interval of grades
for the relevance of each label has been proposed by [35]. In [25] a credal ap-
proach is adopted to compute an outer approximation of the marginal posterior
probability of each label.

We focus on probabilistic graphical models and we study the sensitivity of
the multilabel prediction on parameter perturbations. We propose a graphical
model which generalises the naive Bayes to the multilabel setting. We represent
our uncertainty about the model parameters as a convex set of distributions,
using the imprecise Dirichlet model (IDM) [5, 47]. To take decisions with models
of this kind, we take decisions based on the optimality criterion of maximality
[42]. We propose a polynomial-time algorithm which detects whether there
is an optimal sequence with a class label in a given state. By iterating the
procedure for each class and state we obtain a compact description of (an outer
approximation of) the set of optimal sequences.

The paper is organised as follows. We review some basics about Bayesian
networks and the IDM in Section 2. We indeed show how the IDM applies
to Bayesian networks quantification in Section 3. The (single-label) classical
naive credal classifier is reviewed in Section 4. The new model we present for
multilabel data is described in Section 5. A discussion about how to perform
classification with this model together with the technical theorems behind the
inference algorithms is in Section 6. A demonstrative example is discussed in
Section 7. The results of extensive numerical experiments and the conclusions
are reported in Sections 8 and 9, while the proofs of the theorems are in the
appendix.
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2. Preliminaries

We denote random variables by uppercase letters, generic values by lower-
case letters, and the sets of possible values, always assumed to be finite, by
calligraphic letters. E.g., X is a variable whose generic value is x ∈ X . For a
Boolean variable X, the negation of each x ∈ X := {0, 1} is denoted as ¬x.

We denote by P (X) a probability mass function over X. Given a set of vari-
ables X := (X1, . . . , Xn), arranged into a directed acyclic graph, a Bayesian
network is a set of conditional probability tables {P (Xi|Pa(Xi))}ni=1 where
Pa(Xi) are the parents of Xi, i.e., the immediate predecessors of Xi within
the graph. If the graph depicts conditional independence relations according to
the Markov condition for directed graphs, the joint mass function P (X) fac-
torises as P (x) =

∏n
i=1 P (xi|pa(Xi)), where the values xi and pa(Xi) of Xi and

Pa(Xi) are those consistent with x [34].
A credal set over X is a (convex) set of probability mass functions over X.

Given a credal set, the maximality criterion allows to choose the optimal (i.e.,
most probable) states as follows: x′′ ∈ X is maximal if and only if there is no
x′ ∈ X s.t. P (x′) > P (x′′) for each P (X) in the credal set [46].

The imprecise Dirichlet model (IDM) is a standard approach to learn credal
sets from multinomial data [47]. Given a variable X, a Dirichlet prior distribu-

tion P (θx) ∝ θst(x)−1 induces a probability θx = n(x)+st(x)
N+s for X = x, where

n(x) is the number of observations such that X = x and N the total one.1 The
IDM approach consists in considering all the Dirichlet prior distributions such

that
∑

x∈X t(x) = 1, thus allowing θx to vary between n(x)
N+s and n(x)+s

N+s for each
x ∈ X .

In the next section we determine the form of the IDM constraints in the
multivariate case when the relations among the different variables are described
by a Bayesian network.

3. IDM-based Learning with Independence

In this section we discuss the particular problem of learning a set of multi-
variate distributions through the IDM under specific independence assumptions.
This is done in the case where the independence relations are described within
the framework of Bayesian networks. We extend Zaffalon’s ideas stated in [50]
for the naive Bayes case to general topologies. Let us begin with an example.

X Y Z

Figure 1: A chain topology

1We adopt Walley’s parametrisation of the Dirichlet prior distribution, which highlights
the role of the equivalent sample size s (see Section 3).
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Example 1. Consider a Bayesian network over three Boolean variables X, Y ,
and Z with the topology in Figure 1. According to the Markov condition for
directed graphs [34], this models the conditional independence between X and
Z given Y , corresponding to the following factorization of the joint probability
mass function: P (x, y, z) = P (x) ·P (y|x) ·P (z|y). Accordingly, the likelihood of
a data set D of joint observations for the three variables is:

L(θ) := P (D|θ) =
∏
x

(
θn(x)x

(∏
y

θ
n(x,y)
y|x

(∏
z

θ
n(y,z)
z|y

)))
, (1)

where θx := P (x), θy|x := P (y|x), and θz|y := P (z|y), for each x, y, z, and n(·)
is the counting function. A conjugate prior over the parameters θ is:

P (θ) ∝
∏
x

(
θst(x)−1x

(∏
y

θ
st(x,y)−1
y|x

(∏
z

θ
st(y,z)−1
z|y

)))
, (2)

where s and the t(·) are nonnegative parameters. The first term in Eq. (2) is
proportional to a Dirichlet prior distribution. We set

∑
x t(x) = 1. Considering

the corresponding (structural) constraint for the counts in the likelihood, i.e.,∑
x n(x) = N , we can regard s as the equivalent sample size (ESS) of this prior

distribution.
Let us identify the additional constraints required to regard s as an ESS even

for the whole distribution in Eq. (2). The (again, structural) constraints on the
likelihood

∑
xy n(x, y) =

∑
yz n(y, z) = N correspond to:∑

x,y

t(x, y) =
∑
y,z

t(y, z) = 1 .

The posterior values of the parameters become therefore:

θx =
n(x) + st(x)

N + s
,

θy|x =
n(x, y) + st(x, y)

n(x) + st(x)
,

θz|y =
n(y, z) + st(y, z)

n(y) + st(y)
,

with t(x) =
∑

y t(x, y) and t(y) :=
∑

z t(y, z). An IDM-based model is therefore
obtained by considering all the specifications of the parameters consistent with
the following constraints over t(x), t(x, y), and t(y, z):∑

x

t(x) = 1 ,∑
y

t(x, y) = t(x),∀x ,

∑
z

t(y, z) =
∑
x

t(x, y),∀y .
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Such a model can be regarded as induced by a set of prior distributions made
of Dirichlet components and with ESS s. This is the way we generalise the
IDM to multivariate models with independence. To check that the constraints
are sufficient, consider all the (structural and not all independent) constraints
satisfied by the count function n(·) in Eq. (1), i.e.,

∑
x n(x) =

∑
xy n(x, y) =∑

yz n(y, z) = N ,
∑

y n(x, y) = n(x),
∑

z n(y, z) = n(y),
∑

x n(x, y) = n(y).
It is a trivial exercise to check that the t(·) parameters satisfy the analogous
relations (with one in the place of N).

The above example deals with a node which is a child of a child of another
variable. This pattern does not appear in Zaffalon’s original work for the naive
topology, neither in other papers about more connected topologies [52]. The
procedure for Bayesian networks with generic topologies is just a straightforward
extension of that outlined in the above example. The specifications over X apply
to the root (i.e., parentless) nodes with Y replaced by the whole children set, the
specifications over Z apply to any leaf (i.e., childless) node with Y replaced by
the whole parent set, and those for Y apply to any non-root non-leaf node with
the parents and children playing the role of X and Z. This discussion should
be regarded as a guideline for the learning of the parameters of a Bayesian
networks based on the IDM. The resulting model is a credal network [18], with
the local parameters taking their values from different credal sets, but with the
constraints over the parameters of the prior distribution inducing a non-separate
specification of the local credal sets [3].

In the literature this approach is also known as the global IDM; the credal
sets of the different random variables are linked by structural constraints. A
different approach is constituted by the local IDM, in which an independent
credal set is established for each random variable. The credal sets in this case
are separately specified. See [28] for a detailed discussion of the differences
between extensively and separately specified models. Separately specified credal
sets allow to compute more easily the inferences; yet such inferences might be
unnecessarily imprecise, due to the lack of constraints between the different
variables [16].

4. The Naive Credal Classifier

In this section we briefly review the credal version of the naive Bayes classifier
as proposed by Zaffalon in [50]. We denote the class variable as C and the
feature variables as F := (F1, . . . , Fm). A data set of N complete i.i.d. joint
observations of (C,F ) is available together with a counting function n(·). The
features are assumed to be conditionally independent given the class. This
corresponds to the topology in Figure 2, that induces the factorization P (c,f) =
P (c) ·

∏m
i=1 P (fi|c), for each c ∈ C and f := (f1, . . . , fm) ∈

∏m
i=1 Fi.

Following the same procedure as in Example 1, given a particular specifica-
tion of the prior distribution (i.e., of t(·) and s), the parameters to be quantified
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C

F1 F2 F3 F4

Figure 2: A naive topology

are:

P (c) =
n(c) + st(c)

N + s
,

P (fi|c) =
n(c, fi) + st(c, fi)

n(c) + st(c)
,

for each fi ∈ Fi, c ∈ C, i = 1, . . . ,m. The class labels assigned to an unanno-
tated instance f of the features are those corresponding to arg maxc∈C P (c,f).
The IDM constraints on the above positive2 parameters are:

∑
c t(c) = 1 and∑

fi
t(c, fi) = t(c), for each i = 1, . . . ,m and c ∈ C.3 We denote as t a generic

value for the joint variable of these parameters associated to the prior distribu-
tion, and by T the corresponding feasible region.

The class labels assigned to f by this credal classifier are the undominated
ones according to the maximality criterion (see Section 2). Given c′, c′′ ∈ C,
c′ dominates c′′ if P (c′,f) > P (c′′,f) for any specification consistent with the
IDM constraints. This is equivalent to the following condition:

inf
t∈T

[
n(c′′) + st(c′′)

n(c′) + st(c′)

]m−1 m∏
i=1

n(c′, fi) + st(c′, fi)

n(c′′, fi) + st(c′′, fi)
> 1 , (3)

where the exponent is the result of the simplification between the m contribu-
tions of the features and that of the class. The optimisation of the second term
can be achieved independently by setting t(c′, fi) = 0 and t(c′′, fi) = t(c′′) for
each i = 1, . . . ,m. The objective function rewrites therefore as:[

n(c′′) + st(c′′)

n(c′) + st(c′)

]m−1 m∏
i=1

n(c′, fi)

n(c′′, fi) + st(c′′)
,

with the remaining constraints being only t(c′) + t(c′′) = 1, with t(c′), t(c′′) > 0
(set to zero the other variables). In other words, we can express the objective
function as a function of a single variable. Its logarithmic derivative is a linear
fractional variable, and the second derivative is always positive. Overall, the
minimization can be efficiently achieved by bracketing (see [50]).

2Strict positivity is required, otherwise the corresponding prior would be improper.
3Here and in the following, if there is no risk of ambiguity, the arguments of the sums and

the products are omitted for sake of notation. E.g.,
∑

c is a shortcut for
∑

c∈C .
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The naive credal classifier (NCC) repeats the test of dominance for each pair
of labels. In this way it detects the undominated classes. For a given instance
there can be a single undominated class or a set of undominated classes. When
NCC returns a set of labels it shows an epistemic lack of information which
prevents to identify with certainty the most probable class. The NCC is not
a multilabel classifier: it assumes the class labels to be mutually exclusive. In
this paper we extend the NCC to the multilabel framework by modifying its
topology to capture the dependencies among the different labels.

5. The Multilabel Naive Credal Classifier (MNCC)

In order to extend the credal approach to classification, described in the
previous section, to the multilabel case, let us define some more notations and
introduce a toy example to be used in Section 7 to clarify the procedures we
develop. Let q be the cardinality of the class C. In the multilabel framework,
C is replaced by q (Boolean) class labels C := (C1, . . . , Cq). This is a standard
way to cope with non-exclusivity: if the j-th label in C is relevant then Cj = 1,
otherwise Cj = 0. The example here below has three non-exclusive labels.

Example 2. We want to predict the national languages mastered by a Swiss
citizen. The options are German (C1), French (C2), and Italian (C3), we neglect
Romansh, the fourth Swiss national language spoken by less than 1% of the
population. These are non-exclusive options with eight (or seven) possible joint
states.4 To predict C we collect joint data about this variable and about the
official language in the canton where the citizen and the parents of the citizen
live. These data are reported in Table 1.

The Swiss citizen speaks F1 F2 F3

German French Italian Father Mother Citizen
C1 C2 C3 lives in a canton
√

− − German German Italian

−
√ √

Italian Italian French√
−

√
Italian French German√ √

− German German Italian

−
√

− French Italian French√
−

√
German German Italian

Table 1: Data about the national languages spoken by six Swiss citizens and their relations
with the official languages in the cantons where the parents and the citizen live

Without lack of generality let us call the first label C1 the superclass, and
the other class labels subclasses. We assume the conditional independence of

4As already emphasised in [14], in multilabel tasks, mutual exclusivity is relaxed, but not
exhaustivity. This implies that the joint state with all the Boolean variables in their false
state, which corresponds to the empty set, is usually not regarded as a possible outcome.
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the subclasses given the superclass. Simplistically we set as superclass the class
which is more frequently observed as relevant [14]. E.g., for the data in Table 1,
German is properly indexed as C1 as it is the most observed class label.

A data set of N joint observations of (C,F ) is available together with a
counting function n(·). Each feature is replicated q times. For each k = 1, . . . ,m,
{F j

k}
q
j=1 are replicas of Fk. For each j = 1, . . . , q, the replicated features

{F j
k}mk=1 are assumed to be independent given Cj . This is a simplifying as-

sumption, already formulated in other papers [4].5 Accordingly, the joint mass
function over the class labels and the features factorises as follows:

P (c,f) = P (c1)

[
q∏

i=2

P (ci|c1)

]
q∏

j=1

m∏
k=1

P (f jk |cj) , (4)

where the values of the class labels and of the features are those consistent
with c and f . Parameters in Eq. (4) can be learned from the data through a
procedure similar to that in the previous sections, i.e.,

P (c1) =
n(c1) + st(c1)

N + s
,

P (ci|c1) =
n(c1, ci) + st(c1, ci)

n(c1) + st(c1)
,

P (f jk |cj) =
n(cj , fk) + st(cj , f

j
k)

n(cj) + st(cj)
.

F
(1)
1

F
(1)
2

F
(1)
3

C1

C2 C3

F
(2)
3F

(2)
2F

(2)
1 F

(3)
1 F

(3)
2 F

(3)
3

Figure 3: The multilabel naive topology for the variables in Example 2

The above considered model is a Bayesian network with a singly connected
topology which we call multilabel naive topology (e.g., see Figure 3). A multi-
label classifier based in this model can be implemented by assigning to a test

5Strictly speaking, an additional dummy child modelling the fact that all the replicas
corresponds to the same variable should have been added.
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instance of the features (replicated for each class label), the most probable con-
figuration of the class labels, i.e.,

c∗ := arg max
c∈{0,1}q

P (c,f) . (5)

This is a MAP (maximum a posteriori) inference task on a singly connected
Bayesian network, which can be efficiently solved by standard algorithms.6

Following the guidelines in Section 3, an IDM quantification of the above
model is obtained by considering all the quantifications consistent with the
following constraints:

∑
c1

t(c1) = 1 ,∑
ci

t(c1, ci) = t(c1),∀i∑
fj
k

t(cj , f
j
k) =

∑
c1

t(c1, cj) = t(cj),∀j, cj ,

together with the strict positivity of all the parameters. Even in this case we
denote by t the generic value of the joint variable including all these parameters
and by T the corresponding feasible region. The imprecision in this model
can be regarded as induced by s missing observations, which we are completely
ignorant about.

In the next section we show how the decision task in Eq. (5) can be extend
to the IDM-based quantification considered here by mean of the maximality
criterion defined in Section 2.

6. Inference with the MNCC

6.1. Maximal Sequences and Maximal Labels

Consider a complete observation f of the features and two sequences of
labels c′ and c′′. According to the maximality criterion, the second sequence is
undominated by the first if and only if there is (at least) a prior distribution, and
hence a value of t, consistent with the constraints such that the first sequence
is less (or equally) probable than the second, i.e.,7

inf
t∈T

Pt(c
′,f)

Pt(c′′,f)
≤ 1 . (6)

6Solving a MAP task as in Eq. (5) for this particular topology is trivial. It is sufficient to
compute the most probable configuration of the subclasses if the superclass is relevant and if
it is irrelevant. Then the resulting MAP configuration is the most probable among the two.

7This is an alternative, but equivalent, formulation with respect to that in Eq. (3).
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In Section 6.2 we show how to ascertain the dominance test in Eq. (6) in linear
time with respect to the number of class labels and features. To detect the
optimal sequences, the test should be iterated over all the possible pairs of
distinct sequences. This adds to the complexity a factor quadratic in the number
of possible sequences, which is in turn exponential in the number q of class labels.

An alternative strategy might be to directly ascertain whether sequence c′′

is optimal. This corresponds to evaluate if the condition in Eq. (6) is satisfied
for each possible specification of c′, i.e.,

max
c′

inf
t

Pt(c
′,f)

Pt(c′′,f)
≤ 1 . (7)

Yet, a procedure to detect the maximality of a sequence as in Eq. (7) has to
be iterated for each possible specification of c′′, i.e., 2q times. Accordingly, an
explicit identification of the optimal sequences based on the above procedure is
feasible only if the number of classes is limited, for instance q < 10.

Thus, we devise a different approach to deal with data sets containing many
labels. We analyse, for each label, whether there are maximal sequences in which
the label is relevant and non-relevant. We accomplish this task through the
algorithm shown in the next section. This approach is however less informative
than detecting the maximal sequences. Consider having detected k labels whose
maximal states are both relevant and non-relevant. The 2k sequences obtained
combining their states in all possible ways contain the maximal sequences and,
in general, others non-maximal sequences. To decide which ones of the 2k

sequences are maximal we should apply the test in Eq. (7); yet this is feasible
only if k is limited.

The above idea corresponds to iterate the test in Eq. (7) for all the sequences
with a given label, say l, in a given state c̃l. Thus, if this is the case, we have
the equivalent condition:

min
c′′: c′′l =c̃l

max
c′

inf
t

Pt(c
′,f)

Pt(c′′,f)
≤ 1 , (8)

showing that there is at least an optimal sequence with Cl in the state c̃l. Note
also that, removing the constraint c′′l = c̃l from Eq. (8), we have a test for the
existence of at least a maximal sequence, which is true by definition. Thus, if
the inequality in Eq. (8) is not satisfied for c′′l = 1, then it should be satisfied
for c′′l = 0, and vice versa.

The technical results allowing for an efficient implementation of the opti-
mization tasks in Eq. (6) and Eq. (8) are provided in the next section. We call
this approach, based on the joint model in Eq. (4) and the corresponding IDM
constraints, multilabel naive credal classifier (MNCC). The characterization of
the maximal sequences we consider uses ideas analogous to those proposed by
De Bock and de Cooman for hidden Markov models [20].

6.2. Solving the Optimization

In this section we present the technical results behind our implementation
of the MNCC. Let us start from the maximality-based dominance test among
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two sequences, which can be performed as follows.

Theorem 1. Given two sequences c′ and c′′ and an instance of the features f ,
the decision task in Eq. (6) is equivalent to:

q∏
i=2

δ(c′i,¬c′′i )
n(c′1, c

′
i) · gi(c′i, c′′i ,f)

n(c′′1 , c
′′
i ) + s

≤ 1 , (9)

if c′1 = c′′1 , with δ denoting the Kronecker delta function, and to

inf
0<t1<1

h(c′1, c
′′
1 , t1,f)

q∏
i=2

n(c′1, c
′
i)g̃i(c

′
i, c
′′
i ,f)

n(c′′1 , c
′′
i ) + st1

≤ 1 , (10)

if c′1 = ¬c′′1 , with

gi(c
′
i, c
′′
i ,f) := inf

0<ti<1

m∏
k=1

n(c′i,fk)
n(c′i)+s(1−ti)
n(c′′i ,fk)+sti
n(c′′i )+sti

, (11)

g̃i(c
′
i, c
′′
i ,f) := gi(c

′
i, c
′′
i ,f) if c′i = ¬c′′i and one otherwise, and

h(c′1, c
′′
1 , t1,f) :=

[
n(c′′1) + st1

n(c′1) + s(1− t1)

]q+m−2 m∏
k=1

n(c′1, fk)

n(c′′1 , fk) + st1
.

Moreover, the objective functions in the left-hand side of Eq. (10) and the right-
hand side of Eq. (11) are convex with respect to, respectively, t1 and ti.

The proof of this theorem is in the appendix. Theorem 1 can be used to
decide whether or not c′ undominate c′′. Because of the convexity results (see
the proof), the optima in Eq. (10) and Eq. (11) can be evaluated by bracketing
(e.g., bisection) in a constant number of evaluations of the objective functions
(assuming that we work with finite precision). This, in turn, takes only linear
time in the number of labels and features. Overall, the dominance test only
takes O(qm) time. Moreover, to avoid numerical issues when dealing with many
features and/or labels, the implementation of the test uses the logarithms of the
above functions. The same can be done also for the task considered here below.

The optimization task in Eq. (8) is more involved. Given an observation
of the features, a class label and a state of this label, Algorithm 1 provides a
computation scheme which takesO(qm) time exactly as that in Theorem 1. Note
that the gi functions should be computed as in Theorem 1, and the arg operator
in lines 11 and 21 is intended to return the values of both the optimization
variables. The following result gives a justification for this algorithm by proving
that its output returns an upper bound for the left-hand side of Eq. (8).

Theorem 2. Given an observation of the features f , a label index l and a state
c̃l of Cl, let γl(c̃l,f) be the output of Algorithm 1 with these inputs. Then:

min
c′′:c′′l =c̃l

max
c′

inf
t

Pt(c
′,f)

Pt(c′′,f)
≤ γl(c̃l,f) .
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The proof of the theorem is in the appendix. As a simple corollary of The-
orem 2, γl(c̃l,f) ≤ 1 is a sufficient condition for the inequality in Eq. (8) being
satisfied. Accordingly, we can characterise the optimal sequences by iterating
Algorithm 1 for both the states of each label. If the algorithm returns a number
smaller than, or equal to, one, we conclude that there is at least an optimal
sequence with the label in that state. If this is not the case for both states, it
means that the outer bound in Theorem 2 is too loose and, in our framework, it
is not possible to decide whether or not all the optimal sequences have that label
in the same state. If this is the case, we cautiously assume that both states are
possible. The overall procedure, demonstrated by Algorithm 2, gives therefore
an outer approximation for the set of maximal sequences and its complexity is
affected by an additional factor linear in the number of labels, thus resulting
O(q2m). A binary relevance approach achieved by applying the NCC separately
for each label would take only O(qm). MNCC is therefore q times slower, this
being a potential issue when coping with a huge number of labels.

7. A Demonstrative Example

To illustrate how the MNCC works in practice, let us consider the multilabel
data in Table 1. We use the MNCC to decide whether a person with both
parents living in a German-speaking canton and living in an Italian-speaking
canton speaks German. For sake of brevity, we model this joint observation
of the three features as a state f of a single feature F . The marginal counts
about the citizens speaking German, French and Italian are n(C1 = 1) = 4,
n(C2 = 1) = 3, and n(C3 = 1) = 3, while the joint counts about French
and Italian for the considered state of the feature are n(C2 = 1, f) = 1 and
n(C3 = 1, f) = 1. The counts for the labels being non-relevant are obtained by
complement considering that N = 6 and n(f) = 3.

Let us preliminary compute the functions defined in Eq. (11) with s = 1.
For Italian, i.e., the third label, we have:

g3(0, 1, f) := inf
0<t<1

n(C3=0,f)
n(C3=0)+1−t
n(C3=1,f)+t
n(C3=1)+t

= inf
0<t<1

2
4−t
1+t
3+t

' 1.319 .

We similarly obtain g3(1, 0, f) ' .375 and the same values for g2. To decide
if the citizen speaks German, we consider a task as in Eq. (8), for which the
execution of Algorithm 1 with l = 1 and c̃l = 1 gives an upper bound because of
Theorem 1. As German is the superclass, we consider the pseudocode in lines
19-25. For the term in line 19, we have that Φ(1, 1) (and, because of line 24,
even Φ(0, 0)) is obtained by multiplying:

min

{
max

{
1,
n(C1 =1, C2 =1)g2(1, 0, f)

n(C1 =1, C2 =0) + 1

}
,max

{
n(C1 =1, C2 =0)g2(0, 1, f)

n(C1 =1, C2 =1) + 1
, 1

}}
for the analogous term associated to C3. The counts required to evaluate the
first term are n(C1 = 1, C2 = 1) = 1, n(C1 = 1, C2 = 0) = 3, and the term
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Algorithm 1 MNCC: outer bound computation as in Theorem 2

Input: Observation of the features f , label index l, and state c̃l of Cl

Output: γl(c̃l,f)

1: if l > 1 then
2: for c′1 ← 0, 1 do
3: for c′′1 ← 0, 1 do
4: if c′1 = c′′1 then

5: Φ(c′1, c
′′
1)←

∏
i 6=l min

{
max

{
1,

n(c′1,c
′
i=1)gi(1,0,f)

n(c′1,c
′′
i =0)+s

}
,max

{
n(c′1,c

′
i=0)gi(0,1,f)

n(c′1,c
′′
i =1)+s , 1

}}
6: Φ(c′1, c

′′
1)← Φ(c′1, c

′′
1) ·max

{
1,

n(c′1,¬c̃l)·gl(¬c̃l,c̃l,f)
n(c′1,c̃l)+s

}
7: else
8: (c̃′l, c̃

′′
l )←

(
arg maxc′l

n(c1, c
′
l) · g̃l(c′l, c̃l,f), c̃l

)
9: for i← 2, q do

10: if i 6= l then

11: (c̃′i, c̃
′′
i )← arg minc′′i

maxc′
i
n(c′1,c

′
i)g̃i(c

′′
i ,c
′
i,f)

n(c′′1 ,c
′′
i )

12: end if
13: end for
14: Φ(c′1, c

′′
1 ,f) := inft∈T

Pt(c
′
1,c̃
′
2,...,c̃

′
q,f)

Pt(c′′1 ,c̃
′′
2 ,c̃
′′
q ,f)

. By Theorem 1

15: end if
16: end for
17: end for
18: else
19: Φ(c̃l, c̃l)←

∏
i>1 min

{
max

{
1,

n(c̃l,c
′
i=1)gi(1,0,f)

n(c̃l,c′′i =0)+s

}
,max

{
n(c̃l,c

′
i=0)gi(0,1,f)

n(c̃l,c′′i =1)+s , 1
}}

20: for i← 2, q do

21: (c̃′i, c̃
′′
i )← arg minc′′i

maxc′
i
n(¬c̃l,c′i)g̃i(c

′′
i ,c
′
i,f)

n(c̃l,c′′i )

22: end for
23: Φ(¬c̃l, c̃l,f) := inft∈T

Pt(¬c̃l,c̃′2,...,c̃
′
q,f)

Pt(c̃l,c̃′′2 ,c̃
′′
q ,f)

. By Theorem 1

24: Φ(¬c̃l,¬c̃l)← Φ(c̃l, c̃l) . Replicated value
25: Φ(c̃l,¬c̃l)← Φ(¬c̃l, c̃l) . Replicated value
26: end if
27: γl(c̃l,f)← minc′′1

maxc′1
Φ(c′1, c

′′
1 ,f)

28: return γl(c̃l,f)
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Algorithm 2 MNCC: global procedure

Input: observation of the features f
Output: Boolean function µ(l, c) true iff there is a maximal seq with Cl = c

1: for l← 1, q do
2: for c← 0, 1 do
3: if γl(c,f) ≤ 1 then . By Algorithm 1
4: µ(l, c) = 1
5: else
6: µ(l, c) = 0
7: end if
8: end for
9: if µ(l, 0) = 0 and µ(l, 1) = 0 then

10: µ(l, 0)← 1
11: µ(l, 1)← 1
12: end if
13: end for
14: return µ

give therefore 1 = min{max{1, .3754 },max{ 3·1.3192 , 1}}. For the second term
we similarly obtain a contribution one. Accordingly Φ(1, 1) = Φ(0, 0) = 1.
Afterwards, we discuss the computations in line 21. For i = 2 the objective
function is:

min

{
max{n(C1 = 0, C2 = 0), n(C1 = 0, C2 = 1)g2(1, 0, f)}

n(C1 = 1, C2 = 0)
,

max{n(C1 = 0, C2 = 0)g2(0, 1, f), n(C1 = 0, C2 = 1)}
n(C1 = 1, C2 = 1)

}
As n(C1 = 0, C2 = 0) = 0, n(C1 = 0, C2 = 1) = 2, n(C1 = 1, C2 = 0) = 3,

and n(C1 = 1, C2 = 1) = 1, both maxima are attained on the second term,
while the minimum of the two is the first. Thus c̃′2 = 0 and c̃′′2 = 0. We
similarly identify c̃′3 and c̃′′3 . Then, we solve the dominance test in line 23 with
the procedure described in Theorem 1. The resulting value is smaller than one.
Finally, the evaluation in line 27 gives γ1(1) = 1, which implies that there is at
least a maximal sequence with the citizen speaking German.

By iterating the same calculations for all labels according to the scheme in
Algorithm 2, we obtain that all the maximal sequences have the citizen speaking
German and not speaking French, while a condition of indecision holds about
Italian. In summary, the possible outputs for C consistent with those results
are the sequences {German} and {German, Italian}. The person with both
parents living in a German-speaking canton and living in an Italian-speaking
canton can speak German only or both German and Italian.

1
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8. Experiments

We compare MNCC algorithm against the three competitors (MNBC, NCC,
and NBC) described in the following.

The Competitors. MNBC is the Bayesian counterpart of MNCC; thus it is a
Bayesian network classifier with the same topology of MNCC (Figure 3), quan-
tified using the BDeu prior [34, Chap.17]. We perform inference by solving the
MAP task of Eq. (5).

NCC is binary relevance implemented on the basis of the naive credal clas-
sifier [17]. This means to train a binary NCC for each label and then merging
the outputs of these credal binary classifiers. This yields a compact description
of a set of optimal sequences analogous to that in Algorithm 2.

NBC is instead binary relevance based on the training of a naive Bayes
separately for each label. This is the Bayesian counterpart of NCC.

The sets of optimal sequences detected by MNCC and NCC include those
returned by respectively MNBC and NBC.

The Data Sets. We consider fifteen data sets, mostly related to information
retrieval tasks. This includes sound (music for Emotions and Cal500, animal
calls for Birds), images (Scene, Flags, and Nus-Wide), text (e-mails for
Enron, restaurant reviews for Yelp, radiology reports for Medical, movie
plot summaries for Imdb,8 web posts for Slashdot), and video (Mediamill).
Bioinformatics data related to protein genomics are also considered (Yeast
and Genbase). The E-mobility data set is taken from a mobility study. It
tracks the means of transport (car, train, bus, etc.) used by a person during
a trip on the basis of the length and duration of the trip, hour and day of the
week, reason of the trip, and others. Table 2 reports the main characteristics of
these data sets: the number of labels, the number of features before and after
feature selection (see the paragraph below), the number of instances and the
label density, i.e., the ratio of positive outcomes over the whole set of labels.

Preprocessing. We validate the classifiers by ten-fold cross validation. Before
training, some preprocessing actions are performed. First, we discretise numer-
ical features into four equally sized bins.

Secondly, we perform feature selection as follows. We adopt the correlation-
based feature selection (CFS) [48, Chap. 7.1], often used in traditional classi-
fication. We perform CFS on the replicated features for each different label,
and retain the union of all individually selected features. This is a useful pre-
processing step which reduces the number of features, removing the non-relevant
ones. Feature selection is helpful as our models have no links between features
and would thus compute biased probabilities when dealing with correlated fea-
tures. Feature selection for multilabel classification is however an open problem,
and more sophisticated approaches can be designed.

8Courtesy of IMDb (http://www.imdb.com).
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# Data Set Ref. Classes Density Features Instances

1 Emotions [43] 6 0.311 72/44 593

2 Scene [8] 6 0.179 294/224 2407

3 Flags [30] 7 0.484 19/14 194

4 E-mobility [10] 8 0.121 13/12 3218

5 Yelp [39] 8 0.295 668/203 1951

6 Birds [9] 11 0.116 260/90 435

7 Genbase [26] 13 0.087 1185/68 662

8 Yeast [27] 13 0.325 103/92 2417

9 Medical [36] 14 0.084 1449/292 888

10 Slashdot [38] 14 0.084 1079/462 3663

11 Nus-Wide [12] 16 0.114 498/408 1981

12 Imdb 19 0.097 1001/590 8792

13 Enron [33] 24 0.131 257/214 1696

14 Mediamill [41] 25 0.157 120/91 4857

15 Cal500 [44] 119 0.201 68/67 502

Table 2: Characteristics of the data sets

Splitting multilabel data in folds well-stratified with respect to all the labels
simultaneously is a problematic task for multilabel data [40]. Training sets
with no positive occurrences of a particular label can therefore appear. As
IDM-based credal classifiers become unnecessarily imprecise with zero counts
[15], we eventually discard rare class labels (less than two percent of positive
outcomes) from the benchmark. Instances with no active labels after the removal
of the rare classes are consequently removed (see comment in Footnote 4). A
specific treatment of multilabel data with rare labels in the credal case should
be regarded as a necessary future work.

Indicators for Credal Classification. Various indicators can be considered to
characterise the performance of a credal classifier. A classifier is determinate if
a single output is returned and indeterminate otherwise. The determinacy is
the percentage of instances on which the classifier is determinate. To summarise
the trade-off between informativeness and accuracy, we use the utility measures
proposed by Zaffalon et al. [51]. Such measures yield a unique performance
descriptor to be compared to the accuracy of a traditional classifier. We con-
sider the u65 and the u80 functions, which are quadratic transformations of a
discounted utility paying 1

k if one of the k outputs returned by the credal classi-
fier is correct, and zero otherwise. The transformations are such that, as in the
discounted case, the utility of a wrong classification is zero and that of a correct
and determinate classification is one. If the classifier gives two options, one of
the two being the correct one, the transformations increase the discounted value
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.50 to, respectively, .65 and .80.9

Joint versus Marginal. The accuracy of a multilabel classifier is usually mea-
sured in a joint way, i.e., the classifier is correct if the set of active labels in
output exactly matches the correct one and wrong otherwise. In Table 3 we
report the accuracy and the u80 measures for the traditional and the credal
classifiers, measured in a joint way. We do not report the u65 for the sake of
space. Yet, we do statistically analyse later even the results using u65. Note
that with many class labels, the value of the joint indicator becomes negligible
and thus not meaningful. For this reason the three data sets with more than 20
labels are not reported in this table: each algorithm has accuracy (or u80 utility
in the credal case) which is practically zero.

A different viewpoint can be obtained by looking at the marginal accuracies
computed separately for each label and then averaging them. In Table 4 we
report the marginal accuracy and the marginal u80 for all the data sets. This
corresponds to the classical Hamming loss.

Further indicators. Future studies might inspect also further indicators of per-
formance for multilabel classification. It is well known that each loss function
requires a different inference in order to be optimised [22]. For instance an-
other important indicator is the F-measure. Recently it has been proposed an
inference which optimises the value of the F-measure based on the posterior
probability of the labels being relevant [23]. This is a fairly complex algorithm
and we leave its extension to the imprecise case for future work. Other com-
monly used indicators are the F-micro and F-macro; however there are currently
no inferences able to maximise their values. They are thus out of our scope.

Rejecting Non-Maximal Sequences. The joint performance of the credal clas-
sifiers displayed in Table 3 refers to the output returned by the MNCC as in
Algorithm 2, and similarly for the NCC. Yet, if the number k of labels for which
an indeterminate output is returned is not huge, it is possible to enumerate all
the 2k consistent sequences and check the maximality of each sequence as in
Eq. (7). We perform such a deeper analysis when k ≤ 10. This is observed to
give more informative results in the sense that the procedure reject some consis-
tent sequences and, in our experiments, the actual sequence was never rejected.
Yet, the effect on the u80 (and the same for the u60) accuracy is not significant.

Statistical Analysis. We compare the different algorithm across multiple data
sets using the signed-rank test (α=0.05). As for the joint accuracy, no significant
difference can be detected between algorithms. This might also due to the
reduced sample size, as three data sets are excluded from this analysis.

When we move to the marginal accuracy, we detect the following significant
differences. MNCC is significantly more accurate than NBC, using both u65 and

9This corresponds to u65(x) := x(1.6 − 0.6x) and u80(x) := x(2.2 − 1.2x), where x is the
discounted utility contribution.
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# Data Set

u80 accuracy

MNCC (2.4) NCC (2.7) MNBC (2.1) NBC (2.5)

1 Emotions 26.57 (2) 26.81 (1) 26.10 (3) 25.42 (4)

2 Scene 30.48 (1) 28.32 (3) 29.08 (2) 27.92 (4)

3 Flags 16.31 (1) 16.19 (2) 13.68 (3) 12.63 (4)

4 E-mobility 43.72 (1) 30.11 (3) 43.71 (2) 29.66 (4)

5 Yelp 22.19 (1) 21.94 (2) 20.41 (3) 19.33 (4)

6 Birds 27.37 (3) 27.29 (4) 31.86 (1) 31.16 (2)

7 Genbase 94.64 (4) 94.67 (3) 98.64 (2) 98.65 (1)

8 Yeast 9.60 (4) 9.89 (2) 9.75 (3) 10.00 (1)

9 Medical 36.16 (4) 36.71 (3) 44.77 (2) 48.86 (1)

10 Slashdot 40.27 (4) 40.48 (3) 43.20 (1) 41.64 (2)

11 Nus-Wide 7.13 (3) 6.27 (4) 12.93 (1) 11.46 (2)

12 Imdb 8.93 (1) 7.26 (3) 8.73 (2) 6.76 (4)

Table 3: Joint performance with ranks (in parentheses) of the algorithms

# Data Set

u80 accuracy

MNCC (2) NCC (1.8) MNBC (3.3) NBC (2.8)

1 Emotions 77.82 (2) 78.03 (1) 76.95 (4) 77.09 (3)

2 Scene 83.86 (1) 82.92 (3) 83.35 (2) 82.74 (4)

3 Flags 77.98 (1) 77.32 (2) 74.06 (4) 74.29 (3)

4 E-mobility 87.03 (3) 88.42 (1) 86.82 (4) 88.32 (2)

5 Yelp 82.22 (2) 82.28 (1) 79.57 (4) 80.04 (3)

6 Birds 87.77 (2) 87.91 (1) 84.33 (4) 84.69 (3)

7 Genbase 99.29 (3) 99.28 (4) 99.90 (1) 99.89 (2)

8 Yeast 69.01 (2) 69.87 (1) 67.84 (4) 68.89 (3)

9 Medical 93.54 (3) 93.51 (4) 94.16 (2) 94.62 (1)

10 Slashdot 94.50 (2) 94.64 (1) 93.90 (4) 94.06 (3)

11 Nus-Wide 78.10 (1) 77.79 (2) 77.05 (3) 76.87 (4)

12 Imdb 88.76 (2) 89.18 (1) 87.63 (4) 88.47 (3)

13 Enron 81.06 (2) 81.09 (1) 77.69 (4) 77.84 (3)

14 Mediamill 78.10 (1) 77.79 (2) 77.05 (3) 76.87 (4)

15 Cal500 72.87 (1) 72.25 (2) 70.03 (4) 70.08 (3)

Table 4: Marginal performance with ranks (in the parentheses) of the algorithms
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u80. MNCC is significantly more accurate also than MNBC, but this holds only
when the u80 is considered. Dealing with u65, which values less favorably the
indeterminate classifications, there is no significant difference between MNCC
and MNBC. No significant difference is detected between MNCC and NCC; in
this case they are both assessed using u65 and then they are both assessed using
u80.

Label-wise Analysis. Label-wise results for some data sets are shown in Fig-
ure 4. The histograms show, separately for each label, the MNBC accuracy on
the instances on which the MNCC model is determinate (light bars) and inde-
terminate (dark bars). The black squares denote the determinacy level. One
can notice that the accuracy of MNBC is lower on the instances imprecisely
classified by MNCC. Moreover, the drop is usually stronger when the determi-
nacy is high, i.e. when MNCC is indeterminate only on few difficult instances.
This suggests a possible application of MNCC as a preprocessing tool to detect
for each instance which are the hard-to-classify labels (e.g., to be annotated at
a later time by human experts).
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Figure 4: Label-wise results for five benchmark data sets

Joint Determinacy. The joint determinacy tends to decrease with the number of
labels. See for instance Figure 5 where the results for some benchmark datasets
are reported (numbers above the points are datasets identifier as in Table 2).
This can be explained as follows. The number of possible sequences increases
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Figure 5: MNCC joint determinacy as a function of the number of labels

exponentially with the number of labels. As the number of labels increases it is
thus easier to find at least one maximal sequence in which the label is relevant
and another which in which it is irrelevant. With 10 labels, there are 1024
possible sequences. In 512 the label is relevant; in the other 512 it is irrelevant.
To classify a label as indeterminate it is enough to find a maximal sequence
among the 512 in which the label is relevant and another maximal sequence
among the 512 in which the label is irrelevant.

Software. A Matlab software implementation of the MNCC, together with some
Java preprocessing tools and the data sets used for the experiments, is freely
available at http://ipg.idsia.ch/software.

9. Conclusions

We have generalised the naive credal classifier to cope with multilabel data.
The corresponding polynomial-time algorithm, called MNCC, is able to decide
for each Boolean state of each label, whether or not there is at least an opti-
mal sequence with the label in that particular state. MNCC outperforms its
Bayesian counterpart, thus the robustness we introduce in the prediction does
not compromise the informativeness of the output.

There is still a lot of future work to be done. As we already mentioned,
specific techniques for the treatment of rare class labels and feature selection
should be developed. Apart from that, we believe that the connected topology
we are currently using to describe the class-to-class relations, might penalise the
performance of the classifier when coping with independence relations among
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some of the labels. The recently proposed ETAN model [21], to be extended
to the credal case, could be a better option. Alternatively, different criteria to
identify the superclass as well as ensemble methods could be considered [13].

It might be also interesting to compare the inferences yielded by local and the
global specification of the IDM (e.g., by exploiting some of the results in [19]),
consider optimality criteria others than maximality (e.g., E-admissibility), and
take decision on the basis of marginal (instead of joint) inferences. A comparison
with other methods possibly yielding multiple sequences (e.g., [37, 49]) could be
also considered.
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classifiers. In M. Studený and J. Vomlel, editors, Proceedings of the Third
European Workshop on Probabilistic Graphical Models, pages 107–114. Ac-
tion M, 2006.

[46] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, 1991.

[47] P. Walley. Inferences from multinomial data: learning about a bag of
marbles. Journal of the Royal Statistical Society: Series B, 58:3–34, 1996.

[48] I.H. Witten, E. Frank, and M.A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2011.

25



[49] Z. Younes, F. Abdallah, and T. Denoeux. Fuzzy multi-label learning under
veristic variables. In Proceedings of the IEEE International Conference on
Fuzzy Systems, pages 1696–1703. IEEE, 2010.

[50] M. Zaffalon. Statistical inference of the naive credal classifier. In
G. de Cooman, T.L. Fine, and T. Seidenfeld, editors, Proceedings of the
Second International Symposium on Imprecise Probabilities and Their Ap-
plications, pages 384–393. Shaker, 2001.

[51] M. Zaffalon, G. Corani, and D.D. Mauá. Evaluating credal classifiers by
utility-discounted predictive accuracy. International Journal of Approxi-
mate Reasoning, 53(8):1282–1301, 2012.

[52] M. Zaffalon and E. Fagiuoli. Tree-based credal networks for classification.
Reliable Computing, 9(6):487–509, 2003.

Appendix A. Proofs

Proof of Theorem 1. Let us consider the objective function in Eq. (6) by
distinguishing whether or not the two sequences c′ and c′′ share the same state
for the first label, i.e.,

Pt(c
′,f)

Pt(c′′,f)
=

{
Gt(c

′, c′′,f), if c′1 = c′′1 ,
Ht(c

′, c′′,f), if c′1 = ¬c′′1 .
(A.1)

Following Eq. (4), the first function rewrites as:

Gt(c
′, c′′,f) =

q∏
i=2

δ(c′i,¬c′′i )

 n(c′1, c
′
i) + st(c′1, c

′
i)

n(c′′1 , c
′′
i ) + st(c′′1 , c

′′
i )

m∏
k=1

n(c′i,fk)+st(c′i,fk)
n(c′i)+st(c′i)

n(c′′i ,fk)+st(c′′i ,fk)

n(c′′i )+st(c′′i )

 ,
where the delta function emphasises the fact that the contribution of the terms
with c′i = c′′i is one (remember that c′1 = c′′1). A first optimization with respect
to the constraints can be achieved as in Section 4 by setting t(c′i, fk) → 0 and
t(c′′i , fk)→ t(c′′i ) (remember that c′i = ¬c′′i ). Similarly, we set t(c′1, c

′
i)→ 0 and

t(c′′1 , c
′′
i ) → t(c′′1). After these intermediate optimization, the objective function

rewrites as:

q∏
i=2

δ(c′i,¬c′′i )

 n(c′1, c
′
i)

n(c′′1 , c
′′
i ) + st(c′′1)

m∏
k=1

n(c′i,fk)
n(c′i)+st(c′i)

n(c′′i ,fk)+st(c′′i )

n(c′′i )+st(c′′i )

 ,
The optimization w.r.t. t(c′′1) is achieved in the limit t(c′′1) → 1. Even the
remaining optimization tasks can be achieved one independently of the others.
The result is the left-hand side of Eq. (9), where, to obtain the expression in
Eq. (11), we set ti := t(c′′i ), and hence t(c′i) = 1 − ti (remember that, for these
terms, c′i = ¬c′′i ).
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We similarly proceed for Ht(c
′, c′′,f). Following Eq. (A.1) and Eq. (4), the

function rewrites as:

Ht(c
′, c′′,f) =

[
n(c′′1) + st(c′′1)

n(c′1) + st(c′1)

]q+m−2 m∏
k=1

n(c′1, fk) + st(c′1, fk)

n(c′′1 , fk) + st(c′′1 , fk)
×

×
q∏

i=2

n(c′1, c
′
i) + st(c′1, c

′
i)

n(c′′1 , c
′′
i ) + st(c′′1 , c

′′
i )

 q∏
j=2

δ(c′j ,¬c′′j )

m∏
k=1

n(c′j ,fk)+st(c′j ,fk)

n(c′j)+st(c′j)

n(c′′j ,fk)+st(c′′j ,fk)

n(c′′j )+st(c′′j )

 .
As in the previous case, we perform some optimization, rename the remaining
variables, and independently optimise w.r.t. ti (i > 1). Afterwards, the opti-
mization with respect to t1 gives the expression in the left-hand side of Eq. (10).
Finally, we prove the convexity of the objective functions. The derivative of the
logarithm of the objective function in the right-hand side of Eq. (11) divided by
the positive constant s is equal to:

m

n(c′i) + s(1− ti)
−

m∑
k=1

1

n(c′′i , fk) + sti
+

m

n(c′′i ) + sti
.

The second derivative, again divided by s, is:

m

[n(c′i) + s(1− ti)]2
+

m∑
k=1

1

[n(c′′i , fk) + sti]2
− m

[n(c′′i ) + sti]2
,

and its nonnegativity easily follows from n(c′′i ) ≥ n(c′′i , fk). Similarly, the second
derivative of the logarithm of the objective function in Eq. (10) is:

− q +m− 2

[n(c′′1) + st1]2
+

q +m− 2

[n(c′1) + s(1− t1)]2

+

m∑
k=1

1

[n(c′′1 , fk) + st1]2
+

q∑
i=2

1

[n(c′′1 , c
′′
i ) + st1]2

.

As in the previous case, the nonnegativity follows from n(c′′i ) ≥ n(c′′i , fk).

To prove Theorem 2, two simple preparatory results are needed.

Proposition 1. Given two arrays ~a and ~b with the same length n, the following
inequality holds:

min
i

max{ai, bi} ≥ max{min
i
ai,min

i
bi} ,

where ai and bi are the i-th elements of ~a and ~b, and the minima are intended
w.r.t. i = 1, . . . , n.

Proof. We prove the result by contradiction. Thus, we assume that:

min
i

max{ai, bi} < max{min
i
ai,min

i
bi} . (A.2)

27



Let i∗ denote the arg min of the left-hand side. If, without any lack of generality,
we assume mini ai ≥ mini bi, Eq. (A.2) rewrites as:

max{ai∗ , bi∗} < min
i
ai .

If ai∗ > bi∗ , we obtain the contradiction ai∗ < mini ai. Otherwise, we have:

ai∗ ≤ bi∗ < min
i
ai ,

which is also a contradiction.

Proposition 2. Consider the inequality

a

n+ t
>

b

m+ t
(A.3)

with a, b, n,m > 0 and 0 ≤ t ≤ 1. If the inequality is true for t = 0 and t = 1,
then it is true for each t.

Proof. To prove the result ad absurdum, assume that there is a t∗ such that

a

n+ t
− b

m+ t
=
am+ at− bn− bt

(n+ t)(m+ t)
< 0 .

As the denominator of the second term is always positive, this means that the
numerator should be negative. But if we write the inequality in Eq. (A.3) for
t = 0 and t = 1, i.e.,

am− bn > 0 ,

am− bn+ (a− b) > 0 ,

and we multiply the first inequality by (1 − t), the second by t, and we sum
them, we obtain a contradiction.

Proof of Theorem 2. Let us write the optimum on the left-hand side of Eq. (8)
in a more explicit form:

min
c′′1

min
c′′2 ,...,c

′′
q :c
′′
l =c̃l

max
c′1

max
c′2,...,c

′
q

inf
t

Pt(c
′,f)

Pt(c′′,f)
. (A.6)

We swap the maximization over c′1 with the minimization over c′′2 , . . . , c
′′
q . This

produces a different optimization task, i.e.,

min
c′′1

max
c′1

min
c′′2 ,...,c

′′
q :c
′′
l =c̃l

max
c′2,...,c

′
q

inf
t

Pt(c
′,f)

Pt(c′′,f)
, (A.7)

which, because of Proposition 1, gives an upper bound for Eq. (A.6). We prove
the theorem by showing that Algorithm 1 returns that bound. To do that, let us
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initially assume l > 1. We split the optimisation with respect to c′1 and c′′1 from
the others by setting:

Φ(c′1, c
′′
1 ,f) := min

c′′2 ,...,c
′′
q :c
′′
l =c̃l

max
c′2,...,c

′
q

inf
t

Pt(c
′
1, c
′
2, . . . , c

′
q,f)

Pt(c′′1 , c
′′
2 , . . . , c

′′
q ,f)

, (A.8)

The right-hand side of Eq. (A.7) can be therefore computed by evaluating the four
possible values of Φ(c′1, c

′′
1 ,f). This is the evaluation in line 27 of the algorithm.

First consider the case where the two sequences share the same state for the
first label, i.e., Φ(c′1 = c1, c

′′
1 = c1,f). By exploiting the relation in Eq. (9) of

Theorem 1, we obtain:

min
c′′2 ,...,c

′′
q :c
′′
l =c̃l

max
c′2,...,c

′
q

q∏
i=2

δ(c′i,¬c′′i )
n(c1, c

′
i) · gi(c′i, c′′i ,f)

n(c1, c′′i ) + s
. (A.9)

As the values of the first label in the two sequences are given, the objective func-
tion in Eq. (A.9) factorises over the other labels. Accordingly we can perform
each optimization separately, and rewrite Eq. (A.9) as follows:∏

i=2,...,q
i 6=l

min

{
max

{
1,
n(c1, 1)gi(1, 0,f)

n(c1, 0) + s

}
,max

{
n(c1, 0)gi(0, 1,f)

n(c1, 1) + s
, 1

}}
×

×max

{
1,
n(c1,¬c̃l) · gl(¬c̃l, c̃l,f)

n(c1, c̃l) + s

}
.

This is the expression computed in lines 5 and 6 of Algorithm 1.
If the two sequences have opposite values in the first label, Eq. (A.8) can be

evaluated as in Eq. (10) in Theorem 1. Accordingly, Φ(c′1 = c1, c
′′
1 = ¬c1,f)

becomes:

min
c′′2 ,...,c

′′
q :c
′′
l =c̃l

max
c′2,...,c

′
q

inf
0<t1<1

[
h(c1,¬c1, t1,f)

q∏
i=2

n(c1, c
′
i)g̃i(c

′
i, c
′′
i ,f)

n(¬c1, c′′i ) + st1

]
. (A.10)

If t̃1(c′2, . . . , c
′
q, c
′′
2 , . . . , c

′′
q ) denotes the value of t1 ∈ [0, 1] for which the infimum

in Eq. (A.10) is achieved, with some abuse of notation we can confuse the limits
with the actual values and rewrite Eq. (A.10) as:

min
c′′2 ,...,c

′′
q :c
′′
l =cl

max
c′2,...,c

′
q

h(c1,¬c1, t̃1,f)

q∏
i=2

n(c1, c
′
i)g̃i(c

′
i, c
′′
i ,f)

n(¬c1, c′′i ) + st̃1
.

Unlike Eq. (A.9), the above expression does not factorise with respect to the
different labels. The reason is the fact that the value of t̃1 might depend on the
actual values of the labels. Yet, for each t1 ∈]0, 1[, consider the task:

min
c′′i

max
c′i

n(c1, c
′
i)g̃i(c

′
i, c
′′
i ,f)

n(¬c1, c′′i ) + st1
, (A.11)
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which, for i 6= l, can be made more explicit as follows:

min

{
max{n(c1, 0), n(c1, 1)gi(1, 0,f)}

n(¬c1, 0) + st1
, (A.12)

max{n(c1, 0)gi(0, 1,f), n(c1, 1)}
n(¬c1, 1) + st1

}
.

Once the two maxima in the above expression are identified, whether or not the
minimum is the first or the second term might depend on the particular value of
t1. According to Proposition 2, if the minimum if the same for both t1 = 0 and
t1 = 1, we have that the values of c′i and c′′i leading to the optimum are the same
for each t1. If this is not the case, we can add a further outer approximation
by considering the task for s = 0. The value of c′i and c′′i leading to the above
considered solution of Eq. (A.12) are those returned by line 11 of Algorithm 1.
For i = l the task becomes simpler, as the value of the second label is fixed,
the task is only a maximization among two options, which are independent of
t1. This is what is done in line 8 of Algorithm 1. If the values of c′i and c′′i
leading to the optimum in Eq. (A.11) are the same for each t1, we can safely
put these values into the objective function. The task becomes therefore a simple
dominance test as in Eq. (10). This is what we do in line 14. The case l = 1 is
simpler. We leave to the reader the discussion of this case, which corresponds
to lines 19-25 in the algorithm.

30


