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Abstract

We evaluate the ability of large language models (LLMs) to
infer causal relations from natural language. Compared to tra-
ditional natural language processing and deep learning tech-
niques, LLMs show competitive performance in a benchmark
of pairwise relations without needing (explicit) training sam-
ples. This motivates us to extend our approach to extrapolat-
ing causal graphs through iterated pairwise queries. We per-
form a preliminary analysis on a benchmark of biomedical
abstracts with ground-truth causal graphs validated by ex-
perts. The results are promising and support the adoption of
LLMs for such a crucial step in causal inference, especially
in medical domains, where the amount of scientific text to
analyse might be huge, and the causal statements are often
implicit.

Introduction
In recent years, machine learning algorithms based on deep
neural architectures have achieved astonishing results in
many applied domains (see, e.g., Shen, Wu, and Suk 2017
for an application in medical image analysis). These results
are obtained by processing vast amounts of training data,
allowing us to learn correlations and accurately solve pre-
dictive tasks. On the other side, scientific investigations need
more than accurate predictions based on correlations, the fo-
cus being identifying causal relations between the entities
in the system under consideration. This requires dedicated
formalisms and tools that cannot be provided by pure data-
driven approaches, such as those considered by deep learn-
ing techniques (Bareinboim et al. 2022).

Following the Pearlian approach to causality (Pearl 2009),
the first tool to go beyond a pure correlational analysis is
to pair the observational data with a causal graph (CG)
modelling cause-effect relations as directed arcs connect-
ing nodes associated with a system’s entities. For example,
Figure 1 depicts a CG for a medical domain. The classical
do calculus (Pearl 2009) allows to compute (some) inter-
ventional queries from the CG and a set of observations. If
knowledge about the structural models underlying the CG
is also available, even the more challenging counterfactual
queries can be addressed (e.g., Zaffalon et al. 2023).
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Figure 1: A (acyclic) CG modelling the causal relations in-
cluded in the medical abstract in Figure 2.

Randomised experiments are the traditional way to dis-
cover causal relations, hence CGs. Yet, such studies might be
too expensive, time-consuming, or even impossible in many
cases. This motivates causal discovery intended as revealing
causal information from purely observational data. Popular
approaches are the Fast Causal Inference by Spirtes, Gly-
mour, and Scheines (2000) based on a constraint-based pro-
cedure checking independence and the score-based Greedy
Equivalence Search by Chickering (2002). Yet, the output
of these algorithms is generally a class of CGs, equivalent
under the Markov condition, thus only partially solving the
task. To consistently obtain a single CG, the only alternative
not involving dedicated randomised experiments is to elicit
the direction of the causal relations from a domain expert.

Especially for scientific and medical domains, the inter-
action with experts might also be indirect and consist of
analysing the scientific literature on the topic and trying to
grasp the causal relations stated in the text. Consider, for
instance, the medical abstract in Figure 2. The text contains
several causal statements summarised by the CG in Figure 1.
This paper focuses on automating such a natural language
understanding (NLU) task.

Even if no specific studies for the causal case are avail-
able (see the next section about the related work), classical
and deep learning techniques for NLU have already been
proven to classify relations among entities accurately (Li
et al. 2022). Those are typically supervised approaches re-
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Fulminant type 1 diabetes (FT1D) is a novel type of type 1 diabetes that
is caused by extremely rapid destruction of the pancreatic β cells. Early
diagnosis or prediction of FT1D is critical for the prevention or timely
treatment of diabetes ketoacidosis, which can be life-threatening. Un-
derstanding its triggers or promoting factors plays an important role
in the prevention and treatment of FT1D. In this review, we sum-
marised the various triggering factors of FT1D, including susceptibility
genes, immunological factors (cellular and humoural immunity), im-
mune checkpoint inhibitor therapies, drug reactions with eosinophilia
and systemic symptoms or drug-induced hypersensitivity syndrome,
pregnancy, viral infections, and vaccine inoculation. This review pro-
vides the basis for future research into the pathogenetic mechanisms
that regulate FT1D development and progression to further improve the
prognosis and clinical management of patients with FT1D.

Figure 2: The medical abstract of Luo et al. (2020). Some
cause-effect relations are highlighted (cause in blue, effect
in orange).

quiring annotated data for the learning phase. This point
might be critical because of the potential costs of the anno-
tation process and the possible lack of diversity in the data.

Such a difficulty can be partially solved by using large
language models (LLMs), trained in an unsupervised man-
ner from vast volumes of textual data. Here we consider the
Generative Pre-trained Transformer (GPT) language mod-
els designed to understand and generate human-like text
based on the prompts. As the focus is on scientific domains,
particularly medicine, we are not interested in the back-
ground, “commonsense”, knowledge embedded in the LLM.
By standard prompting techniques, we force the answer to
the query to be only based on the source document. We do
not expect to discover new knowledge this way but rather
combine and standardise already existing information.

The paper is organised as follows. First we discuss the
related work and notice how the direction we are consid-
ering, i.e., the unsupervised, zero-shot, extrapolation CGs
from natural text through LLMs is relatively unexplored.
Thus, to advocate our point, after a discussion on the nec-
essary prompting techniques, we first consider a benchmark
of pairwise relations and we test the accuracy of GPT in
the causal recognition task against the existing results in the
literature. The good performances we observe motivate us
to extend the same technique to GCs. Finally we discuss
the necessary future work required by this preliminary-but-
promising analysis.

Related Work
The problem we consider can be intended as a (causal) spe-
cialisation of learning a knowledge graph from natural lan-
guage in a purely unsupervised manner. The literature for
such a general task is vast (see Ji et al. 2021 for a recent sur-
vey) and also includes recent attempts based on LLMs (Pan
et al. 2023). Yet, the particular case of CGs received rela-
tively little attention and, to the best of our knowledge, the
only work in the same direction we consider is by Arsenyan
and Shahnazaryan (2023). This is an interesting prelimi-
nary study adopting the BERT-based models. Yet, it misses
ground-truth data, thus not offering any quantitative baseline

for our study.
From a more general perspective, the empirical analysis

of the potential of LLMs in causal inference is attracting
growing interest in the recent literature. Causal inference
datasets in NLP primarily rely on discovering causality from
empirical knowledge (e.g. commonsense knowledge), while
we are interested in specific, scientific, knowledge from se-
lected sources. Moreover, the work by Jin et al. (2023) out-
lines a key shortcoming of LLMs in terms of their causal
inference skills, and show that these models achieve almost
close to random performance on the task. Following Zhang
et al. (2023) LLMs are not yet able to provide satisfactory
answers for discovering new causal knowledge or for high-
stakes decision-making tasks with high precision.

Prompt Engineering
LLMs are known to often achieve satisfactory results in
question answering (see, e.g., Singhal et al. 2023). However,
some expedients have been shown to increase the accuracy
of queries. These techniques, known as prompt engineering
(Reynolds and McDonell 2021), can be regarded as rules
and instructions to enhance the LLM capabilities on vari-
ous tasks. Prompt engineering involves crafting systems and
user messages that guide the LLM responses and shape its
output to meet specific requirements.

Among the many prompt engineering techniques, improv-
ing the clarity and precision of the prompt text by providing
precise and specific instructions represents the most obvious
strategy. Delimiters like brackets, tags or quotes can separate
sections within the prompt, aiding in a more organised inter-
pretation of the input. Furthermore, prompting for structured
output by specifying the desired response format guides the
model in generating well-organised results. Checking task
conditions also ensures that the necessary assumptions are
met. For instance, the prompt can verify whether essential
information is available to complete the task and provide al-
ternative instructions if this information is missing.

The technique called few-shot prompting instead involves
showing successful task examples to the model before re-
questing similar ones. This helps the model understand the
context better, preparing it to deliver pertinent and accurate
responses. Another principle of prompt engineering is giv-
ing the model enough time to “think”. This involves request-
ing the model to answer with a step-by-step explanation of
its thought process before providing the final answer. Do-
ing so allows the model to work out its solution rather than
rushing to conclusions. This principle applies, for example,
when the model needs to verify the accuracy of a given so-
lution. In this case, it is prompted to formulate its solution
and then compare it to the one provided.

In the experiments discussed in the next two sections, we
used GPT-4 Turbo as the LLM of choice for our study. The
interaction with the LLM was achieved through a Python
API1 in a AMD EPYC 7742 server (2.25-3.4GHz, 128GB).
Our code is freely available in a repository, where all the de-
tails about our prompt engineering choices can be retrieved.2

1https://platform.openai.com/docs/api-reference/chat.
2https://github.com/IDSIA-papers/causal-llms.



You will be provided with a text delimited by the <Text></Text>
xml tags, and a pair of entities delimited by the <Entity></Entity>
xml tags representing entities extracted from the given text.

Text:
<Text>Cobalt metal fume and dust cause upper respiratory
tract irritation, chronic interstitial pneumonitis,
and skin sensitization.</Text>

Entities:
<Entity>fume</Entity>
<Entity>sensitization</Entity>

Read the provided text carefully to comprehend the context
and content. Examine the roles, interactions, and details
surrounding the entities within the text.

Based only on the information in the text, determine the
most likely cause-and-effect relationship between the entities
from the following listed options (A, B, C):

Options:
A: "fume" causes "sensitization";
B: "sensitization" causes "fume";
C: "fume" and "sensitization" are not directly causally related;

Your response should analyze the situation in a step-by-step manner,
ensuring the correctness of the ultimate conclusion,
which should accurately reflect the likely causal connection
between the two entities, based on the information
presented in the text. If no clear causal relationship is apparent,
select the appropriate option accordingly.

Then provide your final answer within the tags
<Answer>[answer]</Answer>, (e.g. <Answer>C</Answer>).

Figure 3: GPT prompt for causal relation discovery.

Some of our design strategies can be seen in Figure 3, where
we show the prompt used to query the LLM for discovering
the causal relationship between a pair of entities extracted
from a natural language text. Additional prompts used in our
experiments are available in the repository mentioned above.
These include prompts designed to explain the reasons be-
hind the model’s chosen answers or correct contradictions
the LLM made with its answers.

Learning Pairwise Relations
We first test the ability of GPT to recognise the right “ori-
entation” in a causal relation. In practice, given a sentence
where the two relevant entities are identified, assuming we
know that a direct cause-effect relation links these, we want
to decide whether the first entity causes the second or vice
versa.

For an empirical evaluation, we consider the dataset from
Hendrickx et al. (2019) used for a competition of the pop-
ular SemEval workshops.3 The dataset includes 10 217 sen-
tences. Each sentence has tags to identify two relevant enti-
ties and an annotation about the kind of relation and its ori-
entation. The sentences with cause-effect relations are 1003,
while the others refer to other categories (e.g., member-
collection, product-producer or content-container). Table 1
reports a few examples of causal sentences with entity tags
and orientation.

We ask GPT to detect the right orientation among the
two entities by a prompt analogous to that in Figure 3. Our
prompt needs an average time of 11.5 ± 3.8s to obtain an
anwser about the orientation. The LLM might also deny
the presence of a causal relation. Yet, this is the case only

3https://semeval.github.io.

Sentence Orientation
Zinc is essential for growth and cell division. A→ B
The infection came from a wound. A← B
As we saw earlier, helicobacter is responsible
for causing stomach ulcer.

A→ B

The pseudolesion was caused by drainage of the
paraumbilical vein.

A← B

Table 1: Four examples of relations in the benchmark
dataset. The cause-effect orientation between the first (blue)
and the second (orange) entity is also reported.

for five sentences (≃ 0.4% of the cases). Table 2 depicts
the confusion matrix for the orientation predictions in the
remaining 998 cases. The very accurate performance (F1-
score ≃ 99%) advocates the ability of GPT in properly
recognising the right orientation in a causal sentence.

Ground Truth
A→ B A← B

GPT A→ B 335 7
A← B 6 650

Table 2: Confusion matrix for cause-effect orientation.

Notably, a direct inspection of the thirteen misoriented
sentences highlights possible errors in the annotation of the
SemEval data set. Some examples are reported in Table 3.

Sentence (Mis)Orientation
Alternators generate electricity by the

same principle as DC generators.
A← B

The movement developed from the re-
discovery by European scholars of
many Greek and Roman texts.

A→ B

The cow makes a sound called lowing,
also known as mooing.

A← B

Defra identified the different noises
made by dogs and the meanings behind
them.

A→ B

The relative calm produced by the Shia
ceasefire has coincided with what the
CIA is now calling the ”near strategic
defeat” of al-Qaeda in Iraq.

A→ B

The backup vocals are from a rather tal-
ented female, Stephanie Eitel.

A→ B

Table 3: Wrong orientations detected by GPT.

The sentences in the dataset are already split in training
and test set. For a comparison with other baselines, we con-
sider the 2717 test sentences and extract the 325 causal re-
lations. On those sentences only, our F1-score ≃ 99% is
higher than the value obtained by the winner of the competi-
tion on the causal category (F1-score≃ 90%, as reported by
Hendrickx et al. (2019)). Notably such a good performance
has been achieved without the 8000 training samples used
for the training by the other method. Similar considerations



can be done for a comparison against the deep learning ap-
proaches considered by Yin et al. (2017).

The good performance achieved in the orientation task
even suggest using LLMs as a post-processing for the out-
put of the sets of Markov equivalent CGs returned by causal
learning algorithms when both data and texts are available.

Causal Graph Extrapolation
The pairwise procedure discussed in the previous section can
be naturally extended to CG extrapolation by iterated ap-
plications on all the possible pairs of entities. We consider
a benchmark of 20 medical papers to be processed by the
repeated pairwise procedure for preliminary validation. We
restrict our attention to the abstracts, regarded here as a reli-
able summary of the causal relations discussed in the paper.

The LLM is also used for entity recognition. For this task,
the medical text is complemented with additional informa-
tion about the types of entities to be extracted. Since we fo-
cus on medical literature, the model was explicitly instructed
to identify entities with a particular emphasis on diseases,
medications, treatments, and symptoms. Additional opera-
tions are performed to recognise synonyms, redundant enti-
ties, or entities and names that can be used interchangeably.
In the generated output, entities with synonymous or similar
meanings are matched. The relatively small number of enti-
ties (≤20) extracted from each abstract makes it possible to
execute the, quadratic-time, iterated pairwise approach in a
limited amount of time (≤30 minutes per abstract).

We denote the resulting CG as LLM-CG. CG∗ is instead
the ground-truth CG obtained by asking domain experts to
highlight the causal relations in the abstract. Note that the
entities the experts consider during their annotation are those
returned by the LLM. In this setup, a false positive is an arc
present in LLM-CG but not in CG∗, while a false negative is
an arc missing in LLM-CG but not in CG∗.

Figure 4: A multiply connected pattern in a CG.

In the experiment we observe relatively few false nega-
tives and hence a high recall ≃ 97%, but, due to higher
number of false positives a much lower precision ≃ 74%.
The result denote a good ability of LLMs in properly grasp-
ing the actual causal relations in the text. We conjecture that
the high number of false positives might reflect the inability
of the model LLM in distinguishing between direct cause-
effect relations and indirect ones. Consider for instance the
slice of CG in Figure 4. Such a multiply connected topology

might require an additional prompt engineering effort in or-
der to decide whether the LLM properly grasps the direct
influence of A toward C or should be instead regarded as a
LLM reasoning based on the transitive property (A affect B
and B affects C).

[. . .] Another patient had a significantly increased heart rate variabil-
ity index without obvious changes in heart rate after the intervention.
By reestablishing the balance in autonomic nervous system regulation
and enhancing peripheral microcirculation, lifetide biofeedback inter-
vention helps to maintain stable blood glucose levels, achieve disease
remission [. . .]

Figure 5: An extract from the medical abstract inducing the
multiply connected pattern in Figure 4.

In some cases, we also observed directed cycles in the
resulting CG (Figure 6). Those cycles always have length
bigger than two, i.e., we never observe two entities con-
nected by arcs of opposite orientations. This was also the
case for the pairwise experiments discussed in the previous
section. Nevertheless, directed cycles might arise in causal-
ity to model special situations such as the presence of feed-
back loops (Rehder 2017). This is not the case of the medical
domains under consideration for our benchmark texts, and
the in fact the ground-truth CGs are all acyclic. If a cyclic
CG arises in a domain that seems to contradict such a possi-
bility, we might again design dedicated prompt engineering
approaches to for the model acyclicity.

Figure 6: Two directed cycles in a CG.

Conclusions and Future Work
We presented the results of some preliminary experiments
performed with GPT for CG extrapolation from text. A num-
ber of specific prompt engineering strategies are also dis-
cussed. The results are promising, especially concerning the
orientation of pairwise relations already classified as cause-
effect. We consequently regard our approach as a natural
post-processing tool to be used to refine the output of stan-
dard algorithms for causal discovery when training data are
available together with text. If only text is available, the
LLM might add to the CG arcs that are not reflecting a direct
cause-effect relation.

As a future work we should intend to significantly expand
the benchmark of ground-truth CGs for a deeper validation
and extend the analysis to hybrid approaches mixing LLMs
processing data and causal discovery algorithms processing
data. opportunities.
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