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Abstract

This paper deals with the problem of estimating the state of a discrete-time linear stochastic dynamical system on the basis

of data collected from multiple sensors subject to a limitation on the communication rate from the sensors. More specifically,

the attention is devoted to a centralized sensor network consisting of: (1) multiple remote nodes which collect measurements

of the given system, compute state estimates at the full measurement rate and transmit data (either raw measurements or

estimates) at a reduced communication rate; (2) a fusion node that, based on received data, provides an estimate of the

system state at the full rate. Local data-driven transmission strategies are considered and issues related to the stability and

performance of such strategies are investigated. Simulation results confirm the effectiveness of the proposed strategies.
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1 Introduction

The present paper addresses estimation of the state of a discrete-time linear stochastic dynamical system

xk+1 = Axk + wk (1)

★ A preliminary version of this paper has been presented at the 1st IFAC Workshop on Estimation and Control of Networked

Systems.
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given measurements collected from multiple linear sensors

yik = Cixk + vik , i = 1, . . . , s (2)

under a limitation on the communication rate from each remote sensor unit to the state estimation unit. Specifically,

a centralized network will be considered consisting of: s remote sensing nodes 1, . . . , s which collect noisy measure-

ments y1k, . . . , y
s
k of the given system, can process them to find filtered estimates x̂1

k∣k, . . . , x̂
s
k∣k and transmit either

measurements or estimates to the fusion node; a fusion node F which receives data from the s sensors and, based

on such data, should provide, in the best possible way, an estimate x̂k∣k of the system’s state.

In the foregoing, we formalize the concept of communication strategy (CS) with fixed rate �i for sensor i. To this

end, let us introduce for each sensor i binary variables cik such that cik = 1 if sensor i transmits at time k or

cik = 0 otherwise. Then, a decision mechanism with rate �i ∈ (0, 1) can be formally defined as any, deterministic or

stochastic, mechanism of generating cik such that

lim
t→∞

1

t

t
∑

k=1

E
{

cik
}

= �i . (3)

This indicates that, for each sensor, the averaged number of data transmission per time unit is constrained to take

on a value �i. Such a constraint can be used to model all those practical situations in which the sensing units

and the monitoring unit are remotely dislocated with respect to each other and the communication rate between

them is severely limited by energy, band and/or security concerns. This occurs, for instance, in wireless sensor

networks wherein every transmission typically reduces the lifetime of the sensor devices, since wireless communication

represents the major source of energy consumption (Feeney and Nilsson, 2001). Moreover, a reduction in the sensor

data transmission rate can be crucial in networked control systems in order to reduce the network traffic and hopefully

avoid congestion (Yook et al., 2002).

The main assumption 1 underlying definition (3) is that infinite-precision data are transmitted over the communi-

cation channel while the bandwidth limitation is accomplished by imposing a suitable value of the transmission rate

(Yook et al., 2002; Xu and Hespanha, 2005; Hespanha et al., 2007; Gupta et al., 2007). The rationale behind such a

definition is that “in most digital networks, data is transmitted in atomic units called packets and sending a single

bit or several hundred bits consumes the same amount of network resources” (Hespanha et al., 2007). Thus, while

data precision (i.e., quantization) is certainly an important issue (see e.g. Li and Wong, 1996; Wong and Brockett,

1997), in some situations the number of transmitted data appears to be an even more critical issue. In this context,

the focus will be on the choice of a transmission strategy for deciding which data transmit from the remote sensors.

1 This assumption, though incompatible with the finite bandwidth, holds in practice provided that quantization errors are

negligible with respect to measurement errors.
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The idea of controlling data transmission so as to achieve a trade-off between communication costs and estimation

performance, usually referred to as controlled communication (Hespanha et al., 2007), has recently received great

interest in the literature. For example, (Yook et al., 2002) deals with a MIMO networked control system assuming

measurement transmission and broadcast communication among the sensors (this implies that each sensor can

compute locally a fused estimate). Further Suh et al. (2007) proposed a send-on-delta strategy wherein each sensor

transmits its local measurement only if its value changes more than a specified threshold with respect to the last

transmitted one. A similar strategy is proposed and analyzed by Xu and Hespanha (2005); Hespanha et al. (2007)

for estimate transmission in the case of a single remote sensor and assuming unreliable communication (i.e., each

transmitted data can be dropped by the network with a certain probability). It is worth noting that such transmission

strategies are somehow related to the concept of Lebesgue sampling (Åström and Bernhardsson, 2002). Finally,

Battistelli et al. (2008, 2009) considered probabilistic transmission strategies wherein the times between consecutive

transmissions are random variables governed by a finite-state Markov chain. Besides controlled communication,

interesting alternatives for energy-efficient state estimation are sensor scheduling (?) as well as the approach proposed

by ? based on the combined use of power and coding control.

In this work, the attention will be devoted to local data-driven transmission strategies wherein, at time k, each sensor

i decides whether to transmit or not on the basis of the collected measurements and, possibly, of its past transmission

pattern. Issues related to the stability and performance of such strategies are investigated. The main contributions of

this paper concern: i) the development of a unified framework for analyzing the theoretical properties of data-driven

transmission strategies; ii) the derivation of linear fusion rules for combining the information available at the fusion

node; iii) the proposal of novel transmission strategies that are based on the idea of minimizing the volume of the

non-transmission region and ensures mean-square stability of the estimation error at the fusion node.

Notations: ℤ+ is the set of positive integers; given a square matrix M , tr(M) denotes its trace; given a positive

definite matrix M , ℰM
△
= {� : � ′M� ≤ 1} denotes the ellipsoid centered at the origin associated with M ; ∥�∥M

△
=

(� ′M�)
1/2

is the weighted norm of the vector �; E{⋅} and ℙ{⋅} denote the expectation and, respectively, probability

operators; given s square matrices M1, . . . ,Ms, diagi(M
i) denotes the block-diagonal matrix whose diagonal blocks

are the matrices M1, . . . ,Ms; further, given s matrices M1, . . . ,Ms with the same number of columns, coli(M
i)

is the matrix obtained by stacking the matrices M1, . . . ,Ms one on top of the other; given a generic sequence

{�k; k = 0, 1, . . .} and two time instants k1 ≤ k2 , we define �k1:k2

△
= {�k1

, �k1+1, . . . , �k2
} .

2 Data-driven transmission strategies for parameter estimation

For the sake of clarity, throughout this section, lower-case bold-face letters will be used to denote random variables,

whereas non-bold lower-case letters will denote deterministic quantities as well as random variable realizations.
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Before addressing state estimation, it is convenient to preliminarily analyze the properties of data-driven transmission

strategies in the case of constant parameter estimation. To this end, consider a constant parameter � ∈ ℝ
n observed

through a noisy measurement channel

y = ℎ(�) + v (4)

where v ∈ ℝ
m is a measurement noise independent from � with PDF (probability density function) pv(⋅). Further,

let p�(⋅) be a PDF representing the prior information about �.

Let c denote a binary variable taking value 1 if the measurement y is transmitted and 0 otherwise. A data-driven

transmission strategy takes the generic form

c =

⎧







⎨







⎩

0 , if y − ỹ ∈ Y

1 , otherwise

(5)

where ỹ ∈ ℝ
m and Y ⊆ ℝ

m is a measurable set. Without loss of generality, Y is supposed to have its centroid at the

origin, i.e.,
∫

Y
� d� = 0 . Notice that the test (5) actually commands the transmission of observations y that are far

away from a certain value ỹ, in the sense that the difference y − ỹ falls outside the region Y.

It is supposed that the vector ỹ as well as the region Y are chosen so as to ensure a desired transmission rate �, i.e.,

ℙ(c = 0) =

∫

ỹ+Y

py(�) d� = 1− � . (6)

In the Bayesian approach, the solution of the estimation problem is given by the conditional PDF p�∣c(⋅∣⋅). When

a measurement y = y is transmitted, i.e. c = 1, one has p�∣c(#∣1) ∝ pv(y − ℎ(#)) p�(#) . Conversely, when no

measurement is received, i.e. c = 0, the posterior PDF can be obtained as

p�∣c(#∣0) ∝

∫

ỹ+Y

pv(� − ℎ(#)) d� p�(#) . (7)

The following lemma provides an interpretation of the posterior PDF (7) that will be very useful in studying the

properties of the considered transmission strategy.

Lemma 1 Consider the measurement channel (4) and the data-driven transmission strategy (5). Then, regardless of

the choice of ỹ, the posterior PDF of � conditioned to the fact that no data have been received (i.e., c = 0) coincides

with the posterior PDF of � conditioned to the fact that a measurement z = ỹ has been originated from a virtual

measurement channel

z = ℎ(�) + v − u (8)

where u ∈ ℝ
m is a random variable independent from �,v and uniformly distributed in Y.
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Proof: Recalling that the PDF of the sum of two independent random variables is the convolution of the two PDFs,

one can write

pv−u(v) =

∫

ℝm

pu(u) pv(v + u) du ∝

∫

Y

pv(v + u) du .

Then, it is immediate to see that

pz∣�(ỹ∣#) = pv−u(ỹ − ℎ(#)) ∝

∫

Y

pv(ỹ − ℎ(#) + u) du

and consequently

p�∣z(#∣ỹ) ∝

∫

Y

pv(ỹ − ℎ(#) + u) du p�(#) .

By the change of variables � = u+ ỹ, the equivalence p�∣z(#∣ỹ) = p�∣c(#∣0) follows at once. □

It is important to stress that Lemma 1 does not mean that y − ỹ is uniformly distributed. In fact, this cannot be

guaranteed in general 2 . Lemma 1 just points out that, since the two situations give rise to the very same posterior

PDF, the case of no transmission can be treated, at least from a Bayesian filtering perspective, as if a measurement

z = ỹ were received from the virtual measurement channel (8).

2.1 Optimal transmission strategy

It is natural to ask whether there is an optimal choice for the vector ỹ and the region Y that determine the data-

driven transmission strategy (5). With this respect, one can see that a possible optimality criterion amounts to

minimizing the volume of the non-transmission region {ỹ}+Y. Such a choice stems from the observation that, when

no data is received, such a region represents the uncertainty on the unknown measurement y (see also equation (7)).

It is worth noting that such a choice corresponds also to minimizing the entropy of the uniform noise u affecting the

virtual measurement channel (8) which is equal to log ∣Y∣, where ∣Y∣ denotes the volume of Y. This is coherent with

the fact that such an entropy provides a measure of the uncertainty associated to the virtual additive noise that is

introduced in case of no transmission. Then, the following problem can be stated

minimize ∣Y∣ subject to
∫

ỹ+Y
py(�) d� = 1− �. (9)

In general, the solution of problem (9) depends on the form of the PDF py(⋅). In this connection, by imposing

unimodality and radial symmetry of py(⋅), the following result can be readily established.

2 This state of affairs is analogous to what happens in vector quantization. With this respect, if this is of concern, the

distribution of y− ỹ can be modified, in the lines of classical results on dithered vector quantization (Zamir and Feder, 1995),

by means of a random subtractive dither with a suitable distribution.
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Proposition 1 Suppose that the PDF py(⋅) takes the form py(y) = '
(

∥y − ȳ∥2Υ
)

where Υ is a positive definite

matrix and '(⋅) is a monotonically non-increasing function. Then, the optimal solution of problem (9) is given by

ỹ = ȳ, Y = � ℰΥ
△
= {y : y = ��, � ∈ ℰΥ} ,

for some scalar � > 0 depending on the tranmission rate �.

Proof: It can be given by showing that for any pair (ỹ,Y) with ∣Y∣ < �∣ℰΥ∣, the resulting transmission rate 1 −
∫

ỹ+Y
py(�) d� must necessarily exceed the desired rate � so that the constraint in problem (9) is violated.

To see this, consider the three sets ℐ1 = (ỹ + Y) ∩ (ȳ + �∣ℰΥ∣), ℐ2 = (ỹ + Y) ∖ ℐ1, and ℐ3 = (ȳ + �∣ℰΥ∣) ∖ ℐ1. Then it

is possible to write

1−

∫

ỹ+Y

py(�) d� = 1−

∫

ℐ1

py(�) d� −

∫

ℐ2

py(�) d� ≥ 1−

∫

ℐ1

py(�) d� − '(�)∣ℐ2∣ (10)

where the latter inequality follows from the fact that for any � ∈ ℐ2 it must be ∥� − ȳ∥2Υ ≥ � and consequently

py(�) ≤ '(�). Similarly, it can be seen that

1−

∫

ȳ+�ℰΥ

py(�) d� = 1−

∫

ℐ1

py(�) d� −

∫

ℐ3

py(�) d� ≤ 1−

∫

ℐ1

py(�) d� − '(�)∣ℐ3∣ . (11)

Since tha pair (ȳ, �ℰΥ) fulfills the transmission rate constraint, by combining (10) with (11) it turns out that

1 −
∫

ỹ+Y
py(�) d� ≥ � + '(�)(∣ℐ3∣ − ∣ℐ2∣). Thus, the proof can be concluded by noting that ∣Y∣ < �∣ℰΥ∣ implies

∣ℐ2∣ < ∣ℐ3∣ which, in turn, leads to a violation of the transmission rate constraint for the pair (ỹ,Y). □

Notice that, with such an optimal choice, the transmission condition y − ỹ /∈ Y corresponds to ∥y − ȳ∥2Υ ≥ � and

the scalar � plays the role of a transmission threshold.

It is immediate to see that the linear-Gaussian case falls within the framework of Proposition 1. In fact, supposing

that p�(#) = N (#; #̄,Σ) , pv(v) = N (v; 0, R) and that the measurement channel (4) takes the form y = H� + v

one has py(y) = N (y;H#̄, S) where S
△
= R + HΣH ′ and N (⋅;�, P ) denotes the Gaussian PDF with mean � and

covariance P . Then, Proposition 1 yields the optimal transmission test ∥y −H#̄∥2S−1 ≥ � .

Further, in this case, the threshold � can be readily determined for any given desired transmission probability �. In

fact, since y−H#̄ is a zero-mean normal random variable with covariance S, the quadratic form ∥y−H#̄∥2S−1 turns

out to be a �2 random variable with m degrees of freedom. As a consequence,

ℙ(c = 0) = ℙ
{

∥y −H#̄∥2S−1 < �
}

= m(�)

where m(⋅) is the cumulative distribution function (CDF) of a �2 random variable with m degrees of freedom. Then,

the transmission rate constraint is satisfied by imposing � = −1
m (1− �) .
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3 State estimation: the case of measurement transmission

Let us now turn back our attention to the discrete-time linear dynamical system (1)-(2). In the spirit of the results of

Section 2, it is supposed that each sensor i transmits its local measurement yik on the basis of a data-driven strategy

of the type

cik =

⎧







⎨







⎩

0 , if ∥yik − ỹik∥
2
W i

k

≤ �i

1 , otherwise

(12)

where the vectors ỹik, k ∈ ℤ+, the positive definite weight matrices W i
k, k ∈ ℤ+, and the positive reals �i have

to be chosen so as to ensure that the transmission rate constraint (3) is satisfied. Hereafter, at a generic time k,

ni
k ≥ 0 will denote the number of time instants elapsed from the last transmission of sensor i, i.e., ni

k is such that:

ci
k−ni

k

= 1 and cik−1 = ⋅ ⋅ ⋅ = ci
k−ni

k
+1

= 0..

It is worth noting that the model (12) encompasses some data-driven transmission strategies considered in previous

works. For example, the send-on-delta strategy proposed in (Suh et al., 2007) for scalar sensors corresponds to (12)

with ỹik = yi
k−ni

k

and W i
k = 1. The main contribution of this section with respect to available results concern: i)

the development of a unifying framework (see the forthcoming Theorem 1) for analyzing the theoretical properties

of data-driven transmission strategies that can be modelled as in (12); ii) the proposal of an iterative algorithm for

generating the vectors ỹik and the weight matrices W i
k, k ∈ ℤ+, that can significantly improve the performance of

the estimate at the fusion node.

In order to ensure the well-posedness of the state estimation problem, the following assumptions are needed.

A1. The process noise wk and the measurement noises vik, i = 1, . . . , s, are zero-mean stochastic processes with

E{wkw
′
t} = Q�kt, E{v

i
kw

′
t} = 0, and E{vik(v

j
t )

′} = Ri �ij �kt where �ij denotes the Kronecker delta.

A2. Q > 0 , Ri > 0 for i = 1, 2, . . . , s, and (A,C) is detectable where C
△
= coli

(

Ci
)

.

The first problem that needs to be addressed is how the estimate x̂k∣k at the fusion node F is to be computed when

the data-driven transmission strategy (12) is adopted. With this respect, one can exploit once again Lemma 1 and

treat the case of no transmission from sensor i at time k as if a virtual measurement zik = ỹik were generated by the

measurement channel

zik = Cixk + vik − ui
k (13)

where ui
k is uniformly distributed in the ellipsoid �iℰ i

Wk
and uncorrelated with vik. Note that the v

i
k−ui

k has zero-mean

and covariance matrix 3

E{(vik − ui
k)(v

i
k − ui

k)
′} = E{vik(v

i
k)

′}+ E{ui
k(u

i
k)

′} = Ri +
�i

mi + 2
(W i

k)
−1,

3 Recall that a uniform random variable taking value in an ellipsoid ℰM ⊂ ℝ
m has covariance matrix equal to [(m+2)M ]−1.
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where mi
△
= dim(yik). Unfortunately, a closed-form solution for the resulting linear non-Gaussian state estimation

problem cannot be found and a suitable suboptimal filter has to be sought. For example, by defining

zk
△
= coli

(

ciky
i
k + (1− cik)ỹ

i
k

)

, Rk
△
= diagi

(

Ri + (1− cik)
�i

mi + 2
(W i

k)
−1

)

,

the estimate x̂k∣k at the fusion node F can be computed by means of the following standard Kalman filter recursion

⎧



































⎨



































⎩

x̂k∣k−1 = Ax̂k−1∣k−1

Pk∣k−1 = APk−1∣k−1A
′ + Q

Sk = Rk + CPk∣k−1C
′

Kk = Pk∣k−1C
′S−1

k

x̂k∣k = x̂k∣k−1 +Kk(zk − Cx̂k∣k−1)

Pk∣k = Pk∣k−1 − Pk∣k−1C
′S−1

k CPk∣k−1

(14)

which represents the best linear unbiased estimator (BLUE) for the linear non-Gaussian virtual measurement model

(13). As a further motivation for the above choice, the following stability result can now be stated.

Theorem 1 Suppose that Assumptions A1 and A2 hold and that the data-driven transmission strategy (12) is

adopted. If for each i = 1, 2, . . . , s the weight matrices W i
k satisfy the condition

W i
k ≥ �iI (15)

for some �i > 0, then the estimation error xk − x̂k∣k is uniformly bounded in mean square error for any possible

choice of the sequences {ỹik, k ∈ ℤ+}, i.e.,

lim sup
k→∞

E{∥xk − x̂k∣k∥
2} < +∞ .

Proof: Let x̄k∣k be the estimate obtained at time k by replacing z� with z̄�
△
= coli

(

yi�
)

, for any � ≤ k, in the Kalman

filter recursion (14). Then, one can consider the decomposition x̂k∣k = x̄k∣k + �k with

�k =

k
∑

�=1

[

k
∏

ℎ=�+1

(I −KℎC)A

]

K� (z� − z̄� ) (16)

and obtain the upper bound

E{∥xk − x̂k∣k∥
2} ≤ 2E{∥xk − x̄k∣k∥

2}+ 2E{∥�k∥
2} (17)

where the latter inequality follows from the fact that

∥xk − x̄k∣k − �k∥
2 ≤

(

∥xk − x̄k∣k∥+ ∥�k∥
)2

+
(

∥xk − x̄k∣k∥ − ∥�k∥
)2

= 2∥xk − x̄k∣k∥
2 + 2∥�k∥

2 .
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As for the first term in the right-hand side of (17), since x̄k∣k is computed on the basis of the true measurement

vector z̄� , one has E{∥xk − x̄k∣k∥
2} ≤ tr

(

Pk∣k

)

. Moreover, under condition (15), one has that Rk ≤ R̄ with

R̄
△
= diagi

(

Ri +
�i

(mi + 2)�i
I

)

.

Then, it is immediate to see that lim supk→∞ E{∥xk − x̄k∣k∥
2} ≤ lim supk→∞ tr

(

Pk∣k

)

≤ tr
(

P̄
)

, where P̄ is the

unique positive definite solution of the Discrete Algebraic Riccati Equation (DARE)

P̄ = AP̄A′ +Q−AP̄C ′(CP̄C ′ + R̄)−1CP̄A′ .

Consider now the second term in the right-hand side of (17). Taking into account (16), one can write

∥�k∥ ≤
k
∑

�=1

∥

∥

∥

∥

∥

[

k
∏

ℎ=�+1

(I −KℎC)A

]

K�

∥

∥

∥

∥

∥

∥z� − z̄�∥ .

Noting that condition (15) is equivalent to ∥yik − ỹik∥
2
W i

k

≥ �i∥yik − ỹik∥
2, then one can see that cik = 0 implies

∥yik − ỹik∥
2 ≤ �i/�i. As a consequence, it turns out that

∥zk − z̄k∥
2 ≤

s
∑

i=1

�i/�i . (18)

Further, since, for any possible transmission pattern, one has that Rk ≤ R̄, one can invoke Theorem 5.3 in (Anderson

and Moore, 1981) and conclude that the Kalman filter recursion (14) yields an exponentially stable estimation error

transition matrix
∏k

ℎ=�+1(I −KℎC)A. Thus, it follows that there exist a, b, with 0 ≤ a < 1 and b ≥ 0, such that

∥

∥

∥

∥

∥

[

k
∏

ℎ=�+1

(I −KℎC)A

]

K�

∥

∥

∥

∥

∥

≤ b ak−� . (19)

Combining (18) with (19), one has

∥�k∥
2 ≤

(

k
∑

�=0

b ak−�

)2 s
∑

i=1

�i/�i ≤

(

b

1− a

)2 s
∑

i=1

�i/�i

and consequently

E{∥�k∥
2} ≤

(

b

1− a

)2 s
∑

i=1

�i/�i ,

which concludes the proof. □

While Theorem 1 ensures the estimation error at the fusion node to be bounded for any possible choice of the vectors

ỹik and of the weight matrices W i
k provided that condition (15) is satisfied, the performance of transmission strategy

(12) may be significantly affected by the specific mechanism used for generating such quantities. In this connection,

a sensible choice should fulfill the following three properties:
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(a) in order to minimize the volume of the non-transmission region, the vector ỹik and the weight matrix W i
k have

to be tailored to the prior distribution of the measurement yik so that ỹik coincides with the predicted value of yik

and W i
k is proportional to the inverse innovation covariance (see Section 2.1);

(b) the mechanism for generating the vectors ỹik and the weight matrices W i
k must use only information available

to both the sensor i and the fusion node F ;

(c) the weight matrices W i
k must satisfy condition (15) in order to ensure boundedness of the estimation error at

the fusion node.

In order to derive a predictor for the measurement yik, it is convenient to put the system (1) in standard form by

separating the part of the system that is unobservable from yik. By invoking classical results on linear system theory

(see ?, Lemma 4.2), this can always be done by means of a suitable nonsingular transformation matrix T i so that

the transformed system matrices take the form

(T i)−1AT i =

⎡

⎢

⎢

⎣

Ai
1 0

Ai
21 Ai

2

⎤

⎥

⎥

⎦

, CiT i =
[

Ci
1 0

]

, (T i)−1 =

⎡

⎢

⎢

⎣

Di
1

Di
2

⎤

⎥

⎥

⎦

with (Ai
1, C

i
1) completely observable by construction. Since the output yik is not influenced at all by the unobservable

part of the system, as far as prediction of yik is concerned, one can restrict its attention to the observable subsystem

with state xi
k

△
= Di

1xk and equations

xi
k+1 =Ai

1x
i
k +Di

1wk (20)

yik =Ci
1x

i
k + vik . (21)

Then, by redefining zik
△
= ciky

i
k + (1 − cik)ỹ

i
k and Ri

k

△
= R + (1 − cik)

�i

mi+2 (W
i
k)

−1, the prediction ŷik∣k−1 of the

measurement yik given the information available to both the sensor i and the fusion node F up to time k− 1 can be

computed by means of the following recursion:

⎧











































⎨











































⎩

x̂i
k∣k−1 = Ai

1x̂
i
k−1∣k−1,

ŷik∣k−1 = Ci
1x̂

i
k∣k−1,

P i
k∣k−1 = Ai

1P
i
k−1∣k−1(A

i
1)

′
+ Di

1Q(Di
1)

′,

Si
k = Ri

k + Ci
1P

i
k∣k−1(C

i
1)

′

Ki
k = P i

k∣k−1(C
i
1)

′
(Si

k)
−1

x̂i
k∣k = x̂i

k∣k−1 +Ki
k(z

i
k − Ci

1x̂
i
k∣k−1),

P i
k∣k = P i

k∣k−1 − P i
k∣k−1(C

i
1)

′ (
Si
k

)−1
Ci

1P
i
k∣k−1.

(22)
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Taking into account the desired properties (a)-(c), as well as the results of Section 2.1, a reasonable choice is

ỹik = ŷik∣k−1 , (W i
k)

−1 =
1

tr(Si
k)

Si
k (23)

The normalization factor tr(Si
k) is a way for ensuring that condition (15) is satisfied in that 1

tr(Si

k
)
Si
k ≤ I. Of course

other choices for the normalization factor can be devised (e.g., the spectral radius of Si
k). The main reason for

preferring the trace is that it can be computed with little computational effort from the remote sensors.

4 State estimation: the case of estimate transmission

Let us now consider the case of estimate transmission, supposing that each sensor i transmits, instead of its local

measurement yik, a local estimate x̂i
k∣k on the basis of a data-driven strategy of the type

cik =

⎧





⎨





⎩

0 , if ∥x̂i
k∣k − x̃i

k∥
2
W i

k

≤ �i

1 , otherwise

(24)

where the vectors x̃i
k, k ∈ ℤ+, the positive definite weight matrices W i

k, k ∈ ℤ+, and the positive reals �i have to be

chosen so as to ensure that the transmission rate constraint (3) is satisfied.

The estimate x̂i
k∣k is supposed to be computed at full rate from the measurements yi0:k by means of a Kalman

filter recursion applied to the observable subsystem (20)-(21), i.e., (22) with the virtual measurement zik replaced

by the true measurement yik and Ri
k replaced by Ri. Notice that, since each pair (Ai

1, C
i
1) is completely observable

by construction, all the local Kalman filters are guaranteed to provide a mean-square-stable estimate of the locally

observable state variables xi
k.

As well known, different fusion algorithms can be devised to combine data collected from multiple sensors and related

information in order to derive a fused estimate x̂k∣k of the true state xk (see Li et al., 2003, and the references therein).

In what follows, a fusion algorithm based on a BLUE criterion is proposed. To this end, for the sake of simplicity,

Assumption A2 is replaced by the following:

A2’. Q > 0 , Ri > 0 for i = 1, 2, . . . , s, and (A,C) is observable.

The case of (A,C) detectable but not completely observable could be dealt with by adopting more involved fusion

algorithms (see, for instance, the BLUE fusion with prior in Li et al., 2003).

Since each local estimate x̂i
k∣k summarizes the information collected by sensor i up to time k, it is reasonable to take

into account only such quantities when computing the fused estimate x̂k∣k. In this connection, one can interpret each

local estimate x̂i
k∣k as a measurement zik of the true state xk collected through the (virtual) measurement channel

zik = Di
1 xk + (x̂i

k∣k − xi
k) . (25)
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Here, the estimation error x̂i
k∣k − xi

k plays the role of a (virtual) measurement noise.

Of course, equation (25) can be directly applied only for the indices i for which an estimate has been received (i.e.,

for which cik = 1). However, in view of the results of Section 2, one can treat the case of no transmission by replacing

(25) with

zik = Di
1 xk + (x̂i

k∣k − xi
k)− ui

k (26)

where zik = x̃i
k and ui

k is uniformly distributed in the ellipsoid �iℰWk
as well as uncorrelated with the estimation

error x̂i
k∣k − xi

k.

Summing up, by defining zk
△
= coli

(

cikx̂
i
k∣k + (1− cik)x̃

i
k

)

, �k
△
= coli

(

x̂i
k∣k − xi

k

)

− coli
(

(1− cik)u
i
k

)

and H
△
=

coli
(

Di
1

)

, the information available at node F can be treated as originating from the measurement channel zk =

Hxk + �k. Then the fused estimate x̂k∣k can be obtained from zk according to a BLUE criterion as

x̂k∣k =
(

H ′Σ−1
k H

)−1
H ′Σ−1

k zk (27)

where Σk is the covariance of the virtual measurement noise �k. As for the computation of Σk, one can write

Σk =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

P 1,1
k ⋅ ⋅ ⋅ P 1,s

k
...

. . .
...

P s,1
k ⋅ ⋅ ⋅ P s,s

k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ diagi

(

(1− cik)
�i

mi + 2
(W i

k)
−1

)

where P i,j
k

△
= E

{

(x̂i
k∣k − xi

k)(x̂
j
k∣k − xj

k)
′
}

. Clearly, one has P i,i
k = P i

k∣k for any i = 1, . . . , s. For what concerns the

cross-covariances P i,j
k , noting that the estimation error x̂i

k∣k − xi
k can be expressed in terms of x̂i

k−1∣k−1 − xi
k−1 as

x̂i
k∣k − xi

k = (I −Ki
kC

i
1)[A

i
1(x̂

i
k−1∣k−1 − xi

k−1)−Di
1wk−1] +Ki

kv
i
k ,

each P i,j
k can be obtained from P i,j

k−1 by means of the recursion

P i,j
k = (I −Ki

kC
i
1)(A

i
1P

i,j
k−1(A

j
1)

′
+Di

1Q(Dj
1)

′)(I −Kj
kC

j
1)

′

being wk−1, v
i
k, and vjk mutually uncorrelated by virtue of assumption A1.

It is worth noting that, in the worst case, the proposed fusion rule requires that O(s2) recursions be performed.

Clearly, this is somehow unavoidable if one wants to take into account all the cross-covariances among the sensor

estimates. However, in many situations, the actual complexity is rather smaller (e.g., if all the sensors are identical

only one covariance and one cross-covariance has to be computed). Further, if computational complexity at the fusion

node is a concern, different fusion rules can be adopted that disregard the information on the cross-covariances (see,

e.g., the covariance intersection fusion rule which would require only O(s) recursions (Julier and Uhlmann, 1997)).
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Similarly to Section 3, the following theorem can be stated.

Theorem 2 Suppose that Assumptions A1 and A2’ hold and that each sensor transmits its local estimate x̂i
k∣k

according to the data-driven strategy (24). If for each i = 1, 2, . . . , s the weight matrices W i
k satisfy the condition

W i
k ≥ �iI (28)

for some positive real �i, then the estimation error xk − x̂k∣k is uniformly bounded in mean square error for any

possible choice of the sequences {x̃i
k, k ∈ ℤ+}, i.e.,

lim sup
k→∞

E{∥xk − x̂k∣k∥
2} < +∞ . (29)

Proof: Let x̄k∣k be the estimate obtained at time k by replacing zk with z̄k
△
= coli

(

x̂i
k∣k

)

in equation (27). Then, one

has

x̂k∣k = x̄k∣k +
(

H ′Σ−1
k H

)−1
H ′Σ−1

k (zk − z̄k)

and consequently

E{∥xk − x̂k∣k∥
2} ≤ 2E{∥xk − x̄k∣k∥

2}+ 2
∥

∥

∥

(

H ′Σ−1
k H

)−1
H ′Σ−1

k

∥

∥

∥

2

E{∥zk − z̄k∥
2} . (30)

Consider the first term in the right-hand side of (30). Since x̄k∣k is computed on the basis of the true local estimate

vector z̄k, it can be seen that

E{∥xk − x̄k∣k∥
2} ≤ tr

(

H ′Σ−1
k∣kH

)−1

. (31)

For the sake of compactness, let

Σk∣k
△
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

P 1,1
k ⋅ ⋅ ⋅ P 1,s

k
...

. . .
...

P s,1
k ⋅ ⋅ ⋅ P s,s

k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

By defining Φk
△
= diagi

(

Ai
1 −Ki

kC
i
1A

i
1

)

, the asymptotic behavior of Σk∣k can be analyzed by noting that it obeys

the Lyapunov recursion Σk∣k = ΦkΣk−1∣k−1Φ
′
k + Ωk, where Ωk is a suitable matrix that accounts for the terms

dependent on Q and Ri. Since such a recursion does not depend on the transmission pattern {ck, k ∈ ℤ+}, it is an

easy matter to check that, under assumption A2’: (i) each Kalman gain Ki
k converges exponentially to a steady-state

gain Ki; (ii) the matrix Φk converges exponentially to the strictly Schur matrix Φ
△
= diagi

(

Ai
1 −KiCi

1A
i
1

)

; (iii) the

matrix Ωk converges exponentially to a positive definite matrix Ω.

Hence, as k tends to infinity, the covariance Σk∣k exponentially converges to the unique positive definite solution Σ
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of the Algebraic Lyapunov Equation (ALE) Σ = ΦΣΦ′ +Ω. This, in turn, implies that, under condition (28),

lim sup
k→∞

tr
(

Σk∣k

)

≤ tr
(

Σ
)

+
s
∑

i=1

�i

(mi + 2)�i

Then, uniform boundedness of E{∥xk − x̄k∣k∥
2} follows from (31) and from the fact that, under assumption A2’,

H is full-rank by construction. In order to conclude the proof, it is sufficient to note that the second term in the

right-hand side of (30) remains bounded as well. This simply follows from the fact that, under condition (28), one

always has ∥zk − z̄k∥
2 ≤

∑s
i=1 �

i/�i (which can be shown following the lines of the proof of Theorem 1). □

As to the choice of the vectors x̃i
k and of the weight matrices W i

k, similar considerations to those of Section 3 can be

made (see points (a)-(c)). With this respect, notice that x̂i
k∣k−ni

k

= (Ai
1)

ni

k x̂k−ni

k
∣k−ni

k

provides the best prediction

of the observable sub-state xi
k on the basis of the information available to both the sensor i and the fusion node F

up to time k − 1. Thus, a natural choice corresponds to setting

x̃i
k = x̂i

k∣k−ni

k

, (W i
k)

−1 =
1

tr(P
i

k∣k−1)
P

i

k∣k−1, (32)

where

P
i

k∣k−1 = Ai
1

[

P i
k−1∣k−1 + (1− cik−1)

�i

mi+2 (W
i
k−1)

−1
]

(Ai
1)

′
+Di

1Q(Di
1)

′

= P i
k∣k−1 + (1− cik−1)

�i

mi+2A
i
1(W

i
k−1)

−1(Ai
1)

′
.

Notice that the covariance matrix P
i

k∣k−1 takes into account the fact that, in case of no transmission at time k − 1,

the fusion node knows that the local estimate x̂i
k−1∣k−1 is in a neighborhood of x̂i

k−1∣k−ni

k−1
−1

.

As a final remark, it is pointed out that data-driven transmission strategies similar to (24), with the choices x̃i
k =

x̂i
k∣k−ni

k

and W i
k = I, have been already proposed by Xu and Hespanha (2005) and Hespanha et al. (2007) in the case

of a single remote sensor supposing unreliable communication (i.e., each message can be dropped by the network with

a certain probability). However, as evident from the foregoing developments, the extension to the multi-sensor case is

not straightforward and requires many additional efforts, mainly due to the issues concerning the local observability

decompositions and the correlations among the estimates. In this connection, the main contribution of this section

lies in the development of a novel optimal fusion rule for the multi-sensor case ensuring boundedness of the estimation

error at the fusion node.

5 A way to account for packet drops

The fusion algorithms for the data-driven strategies discussed in Sections 3 and 4 interpret a missed reception of

data from a particular sensor at a given time instant as an intentional missed transmission, due to the failure of

the transmission test, and thus exploit this accordingly considering suitable virtual measurement and measurement

noise. Of course, this makes the performance of data-driven strategies somehow sensitive to packet drops (for instance
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due to congestion). This section discusses a possible way to tackle this problem. For the sake of brevity, only the

case of estimate trasmission is considered; the case of measurement transmission could be handled in a similar way.

Let rik be a binary variable which is equal to 1 if at time k the fusion node has received a packet from sensor i and

zero otherwise. Hereafter, with a little abuse of notation, ni
k will denote the number of time instants elapsed since the

last data received from sensor i. In a communication channel without packet losses, it clearly results that rik = cik.

Conversely, in presence of packet losses, it can happen that rik = 0 even if cik = 1. A probabilistic way to account for

packet drops is by modelling the transmission channel as a discrete-time Markov chain with two states, i.e. loss (L)

and no-loss (N), and transition probabilities ℙ(N ∣L) = pr, ℙ(L∣L) = 1−pr, ℙ(L∣N) = pc, ℙ(N ∣N) = 1−pc.
4 Notice

that rik = cik when the state of the communication channel is N , while rik = 0 when the state of the communication

channel is L. Hence, if rik = 1 the fusion node knows that the channel is in the state N while if rik = 0, because of the

Markov chain assumption, it can compute the probability of the channel to be in the state L or N at time k. More

specifically, let �i
k∣k be the probability that the i-th communication channel is in the state L at time k conditioned

to the sequence ri0:k, then when rik = 0 application of the Bayes recursion yields

�i
k∣k =

ℙ(rik = 0∣L)�i
k∣k−1

ℙ(rik = 0∣L)�i
k∣k−1 + ℙ(rik = 0∣N)(1− �i

k∣k−1)
, (33)

where ℙ(rik = 0∣L) and ℙ(rik = 0∣N) denote the probabilities that no packet has been received from sensor i

given that the i-th communication channel is in the state L and, respectively, N . Clearly, ℙ(rik = 0∣L) = 1 and

ℙ(rik = 0∣N) = ℙ(cik = 0); the latter probability will be denoted by �i
k. From (33) and the Markov chain assumption,

it thus follows that

�i
k∣k =

�i
k∣k−1

�i
k + (1− �i

k)�
i
k∣k−1

, �i
k+1∣k = (1− pr)�

i
k∣k + pc(1− �i

k∣k). (34)

Conversely, in the case rik = 1, it results that �i
k∣k = 0. By updating and propagating �i

k∣k, ℙ(c
i
k = 0∣rik = 0) can be

computed as

ℙ(cik = 0∣rik = 0) =
ℙ(rik = 0∣cik = 0)ℙ(cik = 0)

ℙ(rik = 0∣cik = 0)ℙ(cik = 0) + ℙ(rik = 0∣cik = 1)ℙ(cik = 1)
=

�i
k

�i
k + (1− �i

k)�
i
k∣k

△
= �i

k, (35)

and ℙ(cik = 1∣rik = 0) = 1− �i
k.

Remark 1 In principle, the probability �i
k could be computed as the probability that the transmision test (24) is

not satisfied for the considered choice of x̃i
k and W i

k, conditioned to all the information shared by the fusion node

and sensor i at time k. Unfortunately, the on-line calculation of �i
k turns out to be cumbersome as it would require

the determination of a possibly non-Gaussian distribution and its integration over an ellipsoid. In most situations,

this has to be ruled out due to computational limitations of remote sensors. Hence, suitable approximations have

4 In the literature, this is usually referred to as Gilbert–Elliott channel model (Huang and Dey, 2007). Here, for simplicity,

it is assumed that the transition probabilities are the same for each sensor.
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to be adopted. A first simple approach is to set �i
k equal to its asymptotic average 1 − �i. Clearly, the accuracy of

this approximation depends on the specific case under study and is difficult to quantify. However, if necessary, more

accurate approaches can be conceived. For instance, one can observe that, for the suggested choice (32) and when

the local filter is in steady state, the probability �i
k depends only on ni

k, i.e., �
i
k = �i(ni

k). Thus, since each local

filter converges exponentially to the steady state, it seems reasonable to compute off line an approximation �̂i(⋅) of

the function �i(⋅) and then set �i
k = �̂i(ni

k).

The probabilities �i
k can be used to account for packet drops in the fusion algorithms discussed in this paper by

resorting to well-known results on estimation in the presence of multiple models (Bar-Shalom et al., 2001). In fact,

in the case rik = 0 (i.e., no packet has been received from node i at time k), the two possible situations cik = 0 and

cik = 1 can be interpreted as two possible models leading to two different estimate-covariance pairs
(

m
i,[0]
k , V

i,[0]
k

)

and
(

m
i,[1]
k , V

i,[1]
k

)

, respectively. More specifically, as discussed in Section 4, the case of no transmission would correspond

to

m
i,[0]
k = x̃i

k , V
i,[0]
k = P i

k∣k +
�i

mi + 2

(

W i
k

)−1
.

Further, in case of packet drop, i.e., cik = 1, an open-loop prediction should be used

m
i,[1]
k = x̂i

k∣k−ni

k

, V
i,[1]
k = P i

k∣k−ni

k

.

Then, given the modal probabilities computed as in (35), the two model-conditioned estimate-covariance pairs can

be combined as follows (see Bar-Shalom et al., 2001, p. 443)

mi
k = �i

k m
i,[0]
k + (1− �i

k)m
i,[1]
k ,

V i
k = �i

k V
i,[0]
k + (1− �i

k)V
i,[1]
k + �i

k (m
i,[0]
k −mi

k)(m
i,[0]
k∣k −mi

k)
T + (1− �i

k) (m
i,[1]
k −mi

k)(m
i,[1]
k −mi

k)
T .

(36)

Clearly, this implies that the virtual measurement vector zk is redefined as zk
△
= coli

(

rikx̂
i
k∣k + (1− rik)m

i
k

)

and that

the virtual noise covariance is redefined according to (36).

As a final remark, notice that for the suggested choice (32) equation (36) becomes

mi
k = x̂i

k∣k−ni

k

, V i
k = �i

k V
i,[0]
k + (1− �i

k)V
i,[1]
k . (37)

6 Simulation results

The goal of this section is to evaluate the performance of the proposed transmission strategies. To this end, the

centralized multi-sensor network is used to estimate the state of an object whose motion is described by the kinematic
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nearly-constant velocity model:

xk+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 Δ 0 0

0 1 0 0

0 0 1 Δ

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xk + wk, yi
k =

⎡

⎢

⎢

⎣

1 0 0 0

0 0 1 0

⎤

⎥

⎥

⎦

xk + vi
k,

where: Δ = 0.1 is the sampling time; the unknown state vector is given by the position and velocity components

along the coordinate axes, i.e., x = [px, vx, py, vy]
′; yi

k is the measurement of the object’s position in Cartesian

coordinates provided by the i-th sensor. The covariance matrices of measurement noise have been assumed equal to

Ri,j = diag(r, r)�ij for each pair of sensors i, j, where r > 0 and �ij is the Kronecker delta. Conversely, the covariance

matrix of process noise has been assumed equal to Q = Gq with

G =

⎡

⎢

⎢

⎣

G0 0

0 G0

⎤

⎥

⎥

⎦

, G0 =

⎡

⎢

⎢

⎣

Δ3/3 Δ2/2

Δ2/2 Δ

⎤

⎥

⎥

⎦

and q > 0. Transmission rates that are reciprocal of integers, i.e., � with 1/� ∈ ℤ+, have been considered. The

following transmission strategies have been compared:

∙ Periodic Measurement Transmission (PMT): sensors transmit periodically their measurements once every

1/� time instants, the phase shift among the sensors being random.

∙ Data-Driven Measurement Transmission (DDMT): the strategy of equations (12) and (23) for measurement

transmission; the threshold � has been tuned so as to obtain the desired transmission rate �.

∙ Periodic Estimate Transmission (PET): sensors transmit periodically their estimates once every 1/� time

instants, the phase shift among the sensors being random.

∙ Data-Driven Estimate Transmission (DDET): the strategy of equations (24) and (32) for estimate trans-

mission; the threshold � has been tuned so as to obtain the desired transmission rate �.

In order to investigate the robustness of data-driven strategies to packet loss, simulations have been performed

considering an unreliable channel with transition probabilities pc = 0.1 and pr = 0.9 (i.e., there is a probability of

10% that a transmitted packet is not received from the fusion node). Thus, all the above transmission strategies have

been modified as described in Section 5 to take into account the effect of packet drops. For the sake of simplicity,

the probabilities �i
k in (35) have been approximated by 1− �i. For periodic strategies, there is no practical change

in the fusion algorithm to manage packet drops.

The comparison among the four strategies has been carried out via Monte Carlo simulations with independent runs

obtained for random generated trajectories by varying the measurement and process noises realizations. The time

averaged square error (TASE) at the fusion node F , TASE = 1
T

∑T
k=1(xk − x̂k∣k)

′(xk − x̂k∣k), has been computed
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for each simulation run and for each strategy. Then, the mean and the maximum of the TASE over the Monte Carlo

runs have been considered as performance indices. The simulation time T and the number of Monte Carlo runs have

been chosen equal to 600 and 1000, respectively. Finally, in all simulations the transmission rate �i has been fixed

to 0.1 for all sensors and communication strategies.

Fig. 1 shows the behavior of the mean TASE for the considered strategies as a function of the number of sensors

for q = 5 ⋅ 10−4 and r = 0.3. By comparing the performance results of the four strategies, several conclusions can

be drawn. First of all, transmitting the estimates is better than transmitting the measurements. In fact, PET and

DDET have a lower TASE than PMT and DDMT. This is coherent with what has been already observed in (Xu

and Hespanha, 2005; Gupta et al., 2007). Second, data-driven strategies are better than periodic strategies. Notice,

in fact, that DDMT provides a notable improvement with respect to PMT in terms of both mean and maximum

TASE. In particular, the improvement of the mean TASE for DDMT w.r.t. PMT is almost 47%, when the number

of sensors is lower than 5, and decreases to 38% in the 10-sensor case. Also DDET provides an improvement with

respect to PET. The improvement ranges between 28% (1 sensor) and 9% (10 sensors) for the mean TASE and is

always more than 13% for the maximum TASE. Finally, the performance of periodic w.r.t. data-driven strategies

is worse in the worst-case (maximum TASE) than in the average case (mean TASE). This depends on the fact

that, whenever the phase shift among the sensors is not well distributed (i.e., all sensors are almost in-phase), the

estimation performance of the periodic strategies undergoes a notable degradation.

Further insights can be obtained by observing the trend of the trace of the covariance matrix P i
k∣k for the two

strategies PET and DDET (which is shown in Fig. 2 for a given sensor i in the case of no packet drops). Recall that

P i
k∣k is the covariance used in the fusion algorithm to combine the estimate from the i-th sensor with the estimates

from the other sensors. For PET, the trend of the trace is periodic and varies linearly from a minimum value,

obtained in correspondence of the instant in which an estimate is transmitted from sensor i, to a maximum value

obtained at the instant before transmission. Conversely, for the data driven strategy, it can be noticed that: (i) the

trend of the trace for DDET is aperiodic, since the transmissions are determined by the transmission test (24); (ii)

trace remains constant between two consecutive transmissions. In fact, from (24) we can determine a region which

includes the estimate of the i-th sensor (even if this estimate is not transmitted) and, thus, determine a bound for

the variance of the estimate used in the fusion algorithm. This mainly determines the performance advantages of

data driven over periodic strategies. It must also be pointed out that for data-driven strategies the transmission rate

is achieved only on average, while for a short time window of a single run the transmissions are allowed to be more

or less frequent (see fig. 2) based on necessity, as established by the transmission test (24).

From the above results, it can be concluded that data-driven strategies are particularly convenient in sensor networks

characterized by a low communication rate and a small number of sensors. In this case, in fact, because of the low

number of transmissions between the sensors and the fusion node, the estimation performance becomes very sensitive

18



(a) (b)

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of sensors

M
ea

n 
T

A
S

E

 

 

DDMT
PMT
PET
DDET

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of sensors

M
ax

 T
A

S
E

 

 

DDMT
PMT
PET
DDET

Fig. 1. Mean (a) and maximum (b) TASE for the considered strategies as a function of the number of sensors in the case

q = 5 ⋅ 10−4 and r = 0.3.
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Fig. 2. Trace of the covariance matrix used in the fusion algorithm for PET (a) and DDET (b) in a single run and for a given

sensor.

to the transmission strategy (i.e., deciding when transmitting an estimate or a measurement) and, thus, data-driven

strategies can significantly improve performance.

7 Conclusions

The paper has addressed the state estimation problem in a centralized sensor network assuming that: (1) estimates

are required at a distant location from the sensors connected via a communication link; (2) a limitation on the

communication rate of each sensor is imposed; (3) each sensor node has enough processing capability to compute

local state estimates. Data-driven strategies for deciding which data transmit have been investigated. Condition

ensuring the mean square stability of the estimation error dynamics at the fusion node have been derived and

novel data-driven transmission strategies have been proposed. Simulation results, concerning tracking of a moving
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object, have been presented to show the performance improvement with respect to periodic transmission strategies.

The extensions of the proposed results in order to deal with nonlinear sensors, exploiting nonlinear observability

decompositions, as well as distributed sensor networks (Carli et al., 2008; Spanos and Murray, 2005) are currently

under development.
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