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Abstract—Energy efficiency is a crucial issue for any task from a properly defined prediction computed on the basis
involving wireless sensor networks. The present paper addresses of information available to both the sensor node and the
nonlinear state estimation over a centralized sensor network, i.e. fusion unit exceeds a given threshold chosen according

a set of sensor nodes communicating with a central information to the desired t .S te. The data-dri o
fusion unit, and proposes smart data-driven strategies by which 0 € C€SIred transmission rate. Ihe dala-driven seectiv

sensors decide which data transmit to the central unit so as to transmission strategies proposed in [5] provide signitican
reduce data communication, and thus avoid congestion prob- performance improvements with respect to periodic tragsmi

lems as well as prolong the network lifetime, while providing  sion operating at the same rate but are unable to cope with the
enhanced performance with respect to periodic transmission. hesance of nonlinear sensors that cannot fully observe the

Both measurement and estimate transmission strategies are t t [ [ | D
developed. To cope with nonlinear sensors that cannot fully ob- arget process (€.g. angle-only or range-only or Doppiey-o

serve the state, suitable nonlinear observability decompositions POsition sensors employed for target localization/tragki
are employed. A bearing-only tracking simulation case-study This paper extends the data-driven measurement and estimat

is presented in order to demonstrate the effectiveness of the transmission strategies to general nonlinear systemsngaki
proposed approach. use of nonlinear observability decompositions at the senso

I. INTRODUCTION level.

The recent and rapid advances in WSN (Wireless Sensfr Problem Formulation
Network) technology pose challenging estimation issues re The present paper addresses estimation of the state of a
lated to the possibility of optimally exploiting the digitited discrete-time dynamical system
information provided by the WSN while preserving as much _
as possible the limited energy resources of the wireless a1 = flon) + @)
sensor nodes and, thus, prolonging the network lifetim@iven measurements collected from multiple sensors
Since, as well known, data communication represents by _far, yi = Ri(zy) +ol, i=1,...,s )
for a sensor node, the most energy-consuming task, the idea
of controlling data transmission so as to achieve a trafle-dfnder a limitation on the communication rate from each
between communication costs and estimation performané@mote sensor unit to a central information fusion unit.fEac
has recently received a certain attention in the literaisee remote sensor collects noisy measurements of the given
[1], [2], [3], [4], [5] and the references therein). This cansystem, can process them to find filtered estimates and
be done either in a centralized or in a distributed way. I¥ansmits, at a reduced rate, either measurements or éstima
the former setting, the fusion node selects only a subst the fusion node. The fusion node, on the basis of the data
of the available sensors to receive the information [6], [7]received from the remote sensors, should provide, in the bes
Conversely, in a distributed setting, each sensor nodeldgci Possible way, an estimate of the system state.
whether or not the data should be transmitted only on the In the foregoing, we formalize the concept e@dmmuni-
grounds of the locally available information. cation strategy (CSith fixed ratea’ for sensori. To this

Recent work [5] has concerned a network architecture, i@nd, let us introduce for each sensobinary variablesc,
which the sensor nodes - equipped with processing capatﬁUCh thatcj, = 1 if sensori transmits at timek or cj, = 0
ities - transmit data (either raw measurements or computé&gherwise. Then a decision mechanism with rattes (0, 1)
estimates) to the central fusion node, providing estimmatiocan be formally defined as any, deterministic or stochastic,
strategies that properly balance data processing in the WSRgchanism of generating, such that

nodes and data communication from the sensor nodes to the 1< , 4
central unit. The idea in [5] is to control transmission in flim n Z ]E{c§C = o 3)
sensor nodes by selectively transmitting data (measursmen et

or estimates) whose distance, in a suitably weighted norfjghereE{-} denotes the expectation operator. This indicates
. : o _ that, for each sensor, the averaged number of data trans-
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Notations:: Z. is the set of positive integers; given aa measurement; = g has been originated from a virtual
square matrixM, tr(M) denotes its trace; given a positivemeasurement channel (5).

definite matrix M, &y 2 {¢:¢'M¢ <1} denotes the In view of the foregoing considerations, by defining

ellipsoid centered at the origin associated with ||¢|| s 2
(C’M()1/2 is the weighted norm of the vectgr given ma-
trices M*',..., M*, diag(M*',..., M*) denotes the block- Ri R+ (1—¢)
diagonal matrix whose diagonal blocks até!, ..., M*;

while col(M1,... M?*) is the matrix obtained by stacking and, accordingly,

M1, ..., M? one on top of the other.

2z = Gup+ (1= )ik

%

1>

m(wli)_l (6)

zp = col(z,...,24) ,
Il. DATA-DRIVEN STRATEGIES FOR MEASUREMENT N
TRANSMISSION R, = diag (R}G, ... ,R;”;) ;
In the spirit of the results of [5], it is supposed that each b N L(nL s
sensor; transmits its local measuremegit on the basis of () = col(B'(),-.,h())
a data-driven strategy of the type the estimateiy,; at the fusion node can be computed by
. { 0, if [jyi -7l <6 @ means of the following recursion
C. — ) k R .
: 1, otherwise (Zriks Pog) = upd (Zk -1, Prjr—1 26> Ries h)

. _ . @)
where the vectorgi, k € Z,, the positive definite weight (e Prsrie) = pred (Znje, Phie Q. £) -

matricesWy, k € Z, and the positive real§’ have to be  Here and in the followingupd(-) denotes the updating step
chosen so as to ensure that the transmission rate constrgjfilsome nonlinear filtering algorithm; its first and second

(3) is satisfied. _ arguments are the predicted estimate and covarianceirils th
Hereafter, the process noise, and the measurement grgument is the measurement vector, its fourth argument
noises v, ¢ = 1,...,s in (1)-(2) are supposed to be s the covariance of the additive measurement noise, and

zero-mean stochastic processes Wwrwi} = QOke,  its last argument is the (non)linear measurement function.
E{viwi} = 0, and E{vy(v;)’} = R'di; 0xe Where d;;  Similarly, pred(-) denotes the prediction step of the nonlinear
denotes the Kronecker delta. filtering algorithm; its first two arguments are the updated
estimate and covariance, its third argument is the covegian

. of the additive process noise, and the last argument is the
One of the advantages of a data-driven strategy over N@Rqn)linear function which relates the state at tifmavith
data driven strategies (e.g., periodic) is that, even When fne state at time: -+ 1.

transmission is performed from t_he sensor node, the fusion Notice that the filtering stepgpred(-) and upd(-) can
niooie knows that the measuremgftbelongs to the ellipsoid he performed via any nonlinear filter such as for instance
9"y, - Such information can be fruitfully exploited by suit- the Extended Kalman filter, the Unscented Kalman filter
gbly mod|fy|ng the nonllnea_r filtering algorithm |mplemedt (UKF), or a particle filter [8], [9]. UKF represents a good
in the fusion node. In fact, it has been shown in [5] that thgaqeoff between accuracy and computational cost and, for

case of no transmission from sensat timek can be treated s reason, will be adopted in the subsequent developments
as if a virtual measuremenf, = g; were generated by the

measurement channel B. Operations at sensor node

A. Operations at fusion node

(5) As should be evident, the performance of transmission
‘ o strategy (4) may be significantly affected by the specific
whereu; is uniformly distributed in the ellipsoid’y,, and mechanism used for generating the quantigigsand W;.

uncorrelated withv;. Note that thev], — uj, has zero-mean |In this connection, in view of the discussion of Section 2.1

= h o) o

and covariance matrix of [5], a sensible choice can be obtained by tailoring the
N N R NV i i i i vectorg: and the weight matrixV; to the prior distribution
B{ (v — up) (v —wp)} = E{v’“(vk)i} +E{ug (ui)} of the measuremeny, so thaty! coincides with the predicted
= R+ 0 (Wit value ofy; andW; is proportional to the inverse innovation
m; + 2 covariance. In this way, supposing that the PDF yif

wherem; 2 dim(y}). As discussed in [5], this is possible is approximately character!ze-d by a radllal symmetry, Fhe
volume of the non-transmission region is close to being

from a Bayesian point of view in that, regardless of the . . " )
choice of i, the posterior PDF ofi;, conditioned to the minimal (see Proposition 1 of [5]). Further, since the vecto

fact that no data have been received (ig.= 0) coincides g Is used in the fusi_on node in order to _define the veejor
with the posterior PDF of;, conditioned to the fact that and compute the estimatg., the mechanism for generating

the vectorsyi and the weight matrice®/; must use only
1Recall that a uniform random variable taking value in arpsthd&,; C information aYa"ab'e to bOth the sensorand the fu3|o_n
R™ has covariance matrix equal fom + 2) M|~ node. A last important requirement that should be fulfilled



is that the volume of the non-transmission region does nbe different for different sensors, hence the dependence
grow unbounded with time. In fact, in a linear setting, it ha®n the indexi. Discussions on the existence of such a
been shown that this is a sufficient condition for preservindecomposition in a discrete-time setting can be found, for
the stability of the estimation error at the fusion node foinstance, in [10], [11]. As evident from (11)-(13), in the
any positive transmission rate [5]. Summing up, taking intmoise-free case, the outpyjt depends only on the observable
account such desired properties, a reasonable choice is part of the system. Thus one can exploit this fact and
. ' 4 1 4 construct a filter for the observable subsystem in order to
Ui = Ohpp_rs, (WH™' = roa S (8) obtain a predictiory;,, , of the measuremeny;.
(St In practice, turmng back our attention to the noisy case
Wherey,i‘k_1 is a prediction ofyi based on the information (9), each sensor will consider only the subsystem
shared by the fusion node and sensaoip to timet — 1 and i, _ Fioy 4o i,0
Si is the corresponding covariance. The normalization factor U1 = f (,qk )+,g (4”5 a.% w) (14)
tr(S%) is a way for ensuring that the volume of the non- Yo = h'(ay”)+u (15)
transmission region is always bounded in th{i\%— St <I. \where the functiony(-) has the property thay(-,-,0) = 0.
Of course other choices for the normalization factor can b@/hile, in general, in the presence of noises there is not
devised (e.g., the spectral radius §f). The main reason 5 clear decoupling between observable and nonobservable
for preferring the trace is that it can be computed withdittl siates, several techniques can all the same be devised for
computational effort from the remote sensors. constructing a filter for (14)-(15) wheneve}; belongs to
The main difficulty in computing the predictioff,, , IS a (known) compact set, which is usually the case when
that in general, even assuming collective observabiliyfr - gealing with state estimation for physical systems. For ex-
the whole set of sensors, the state vector need not be obsefiple, the simplest alternative consists in treating then te
able from a single sensor. This means that, Iocallymaremo& “’7% ° wy,) as an additive noise vector. Alternatively,
sensor, it may not be possible to construct a stable filter fgf more accurate approach amounts to considering the vector
estimating the whole state of system (1). Neverthelessajt m ,i- a5 a slowly time-varying unknown parameter and resort-
still be possible to compute the predictigf), _, by resorting  ing to robustness arguments. Notice that when the functions

to an observablllty Qecomposn_lon of the state space. f(-) and hi(-) are smooth then the functiogi(-) will be
To this end, consider the noise-free system smooth as well, thus the contribution of the second term in
_ the right hand side of14) will in general be small for small
x“: - fi(xk) ) disturbancesuy,.
y. = h'(zx) (10) Taking into account subsystem (14)-(15), the operations
and consider the set of functions for computing the predicti0|g§€‘,€_1 in node: are as follows
A i i ~1,0 i
0 = {r'(z), hio fN(z), N=1,2...}. quPk‘k) = upd(qk‘k 17Pk|k 1,zk,Rk,h )
wheref" denotes theV-th composition of f, i.e. the function qk+1|k7 k+1|k) = Pred(qkw k|k7Q TN (16)
f composed with itselfN times. As well known, under ( SZ) — proj(§i° ., Pi i)
suitable assumptions, observability of system (9) from the \Yk+1lk> k) = PPOINGp 112 F o1 [e0

output y;. corresponds to the fact thaim (spand®) = n Hereproj(-) denotes the function that projects the predicted
almost everywhere, wherd® is the differential of© and estimate and relative covariance on the measurement space;
n is the system order. If, insteadpand© has constant its first two arguments are the predicted estimate and covari
dimensionn® < n in the set of interest then observability ance and its last argument is the (non)linear function that
does not hold, but it might be possible to perform a statgrojects the observable state in the measurement spade. Suc
space decomposition with respect to the system obsetyabily projection can, for example, be computed by means of the
properties. Hereafter we shall assume that, for all thewsns ynscented transform [8]. Notice that, with a little abuse of
for which observability does not hold, such a decompositioRotation, we have augmented the argumentgmefi(-) by
exists or, more precisely, that there exists a change ﬁfcludmg also the (non)linear functiogf. Notice also that
coordinates; = 7" (x) such that system (9) can be rewrittenthe proposed filter does not use the true measurement

as and covarianceR but, instead, uses the virtual measurement
g0 = fo(g) (11) zi and its covarianceR! as defined in (6). This choice
kol . T - is motivated by the fact that, as discussed in the previous
= e q°) (12)  section, the filter (16) should be also runned in the fusion
y;f = Bi(q;@o) (13) node in order to compute the virtual measuremgntnd,

_ _ o consequently, the fused estimatg;,.
whereg¢®° has dimensiom®*°, ¢>° has dimensiom — n®°,

g = col (¢°, ¢*°) = col (T%*(x), T"*(x)), and the subsys- C. An example: bearing only tracking
tem made up by (11) and (13) is observable by construction. In this section, the case of bearing only tracking is
Notice that, in general, the observability decompositiagh w analyzed in order to show how the foregoing discussion



applies to a context of practical interest. The problem & th Ul
of estimating the state of an object whose motion is desdribe .
by the kinematic nearly-constant velocity model 0" yi
1 0 A 0
P 01 0 A - r
+1 0 0 1 0 k W,
00 0 1 0

- 3

where A is the sampling interval; the unknown state vector
is given by the position and velocity components along the
coordinate axe${,n), i.e.,x = 601(577],577'7). The state has

to be estimated given measurements collected from a network
of direction-of-arrival (DOA) sensors

Fig. 1. MP Coordinate System sensor-target geometry

‘ _ ‘ _ The Cartesian state vectoy, and the MP state vect@?€ are
yp = atan2 (g — ', & — &) + vy, i=1,...,s (17) related at all times by the following nonlinear one-to-one

transformation
whereatan2(-) denotes the four-quadrant inverse tangent and

(¢',1*) is the position of the-th sensor. [ (=€ —(p—n)E ]
As well known, it is not possible to observe the whole (E—€2+ (n—1)2
state from a single angular sensor. To see this, note that the O ‘
N-th composition off(-) takes the form J— (§—=&)E+m—n")n (19)
- )2 72
N (z) = col (€ + NAv,,n + NAv,, v, vy) €=¢) +(77 77).
atan2 (77 —n" €& — 5’)
and, consequently, : :
) L 1/V(E=E)2+(n—n)? |

0 I7) = G ey
N N N o N It can be shown that only the first three components of
X (*77 td§ 4+ & dn — NAn ™ dE + NAE™ dﬂ) the vectorg® are observable from a single non-moving DOA
where sensor [13]. In fact, by defining/-® £ col(6, 7 /rt, ") and
YN . . . . .
Ni & i Ni D ¢“° = 1/r", the dynamics of;"° can be written as in (14)
=8+ NAv, = &8, n =0+ NAwv, — and, of course, the measurement equations take the form

It is an easy matter to see th#it’, d(h'o f), andd(h’ o f?)

are mutually independent but, for afly > 3, one can write yi = Cq"° +vj,.
N\ _ N/ . 7 N,i 7 Ny . 7 2
d(hof™) = By " (x)dh*+ 5y (x)d(h' o f)+55 7 (2)d(h'of")  wherec 2 [0 0 1]. Further, in this particular case, the
where function g(-) in (14) takes the forny®(¢“?, ¢"°wy,). Thus,
04 1 04 9 taking into account the fact that all bearing sensors have a
N A 4T N*<—3N . .
V(@) = Sy ! — limited and known range for detecting the presence of an
3 1" + 771 ' object, the quantity*°w; can be treated as a disturbance
Ny a &+t ON — N2 with unknown but bounded covariance.
2 (@) = R ( ) . . . .
3 T Notice that, notwithstanding the lack of observabilityrfro
pNi(g) 2 24 n> N2-N a single sensor, the target state can be reconstructed at
3 T ENG N 2 the fusion node provided that the number of sensers

that transmit their measurements is greater than or equal
Actually two sensors may not be sufficient for observability
if target and sensors are aligned.

Hence, the dimension ofpan(dO) is 3. As suggested in
[10], in general the differential© can be a useful start-
ing point for constructing the observability decompositio
However, in this case, this is not necessary since the decom-

position becomes apparent when the system is rewritten in  Ill. DATA-DRIVEN STRATEGIES FOR ESTIMATE
terms of modified polar (MP) coordinates [9], [12], [13]. The TRANSMISSION

MP state vector is defined as . . L
Let us now consider the case of estimate transmission,

q" = col (97 —, 0, ) (18) supposing that each sensotransmits, instead of its local
measuremeny;, a local estimate. Taking into account the
whered’ denotes the bearing-angle measured from¢thais ~ development of Section 1I-B, only the component of the state
counterclockwise§' is the angular velocityy® is the range that is locally observable is estimated and sent to the fusio
from sensor position, and the range-rate. Figure 1 showsnode. This means that each sensor computes an es'qm@te
the target-sensor geometry for the MP coordinates systewf.the stateq of the observable subsystem by means of the



nonlinear filtering recursion

Pl ) = wpd(@s . Pl o v BB
k+1]k Pli+1|k) = pred(q; ., Py, Q. . g")

Comparing such a recursion with (20), one can see thghere Z 2 gy’ and u is uniformly distributed in the

here the true measuremept is considered instead of the gJjipsoid 5i€y, . Summing up, by defining
virtual measurement;.. This means that the estimajg’, is

strategy, even in case of no transmission it is known that the
estimate;, belongs to a certain ellipsoidl &, . Thus, ne
can treat the case of no transmission by replacing (22) with

(23)

1,0
Qx>

~1,0

q

(20) . . . .
zp, =T"°(xk) + €}, — uy,

i 4 4,0

computed using all the locally available information. Then z; = Ly, T (1- c};)q};", i=1,...,s,
the local estimate is transmitted according to a data-drive | _ , i ,
strategy of the form R, = Py +(1- cZ)m(W;)*l, i=1,...,s,
; ~4,0  ~0,0(2 i A
CZ:{ 0, if ||qk\k qy || i S(S; (21) zZr, = COI(Z;%,...,ZZ) ,
1, otherwis
| & R, = diag(Ri,...,RZ),
where the vectorg,°, k € Z,, the positive definite weight

1>

matricesW;, k € Z., and the positive real§’ have to be k()

col (TH°(+), ..., T*°()) ,
chosen so as to ensure that the transmission rate constrajnt . .
(3) is satisfied %he estimatet;,,, at the fusion node can be computed by

Also in this case, the general principles discussed at tHB€ans of a recursion which is formally analogous to (7).
beginning of Section II-B can be used as a guideline for Finally, observe that, because of the common process
choosing the vector§,°, k € Z, and the positive definite noise, the estimate@i’l‘;C are actually dependent. The naive
weight matricedV}, k € Z,.. Accordingly, the idea is to set independence assumption has been adopted since standard
q,° equal to the best prediction of° that can be computed techniques for fusing correlated information (e.g., c@aese
on the basis of the information that is common to both sensgitersection) cannot be applied to the nonlinear and ntn-fu
i and the fusion node up to time— 1. In particular, if one  gpservaple case. The development of alternative fusisrul

denotes by, = O'the numbgr .Of tlrrle'lnstants elal_psed from(possibly based on the moving horizon estimation paradigm
the last transmission of sensipi.e.,n;, is such that [14]) will be subject of future research

_ k—nj
1 and ¢,_; =---

= 0, then a natural choice

;. Such a prediction can
k

= Ci )

“k—nj+1
corresponds to setting® = q;’ﬁ%n
be recursively computed as

IV. SIMULATION RESULTS

The goal of this section is to evaluate the performance
of the proposed transmission strategies when applied to the

(qA;:c’ﬁcfnL’P’i‘k*”;;) = network of bearing sensors described in section II-C. The
£0,0 i Foi i\ it i covariance matrix of process noise has been assumed equal
d ' i P, i ) ) T f —1 — .
{ ” (q’“;*‘k*"i=—1’ etk @I T 0@ = Qo vith
G5 P if ¢, =
klk—12 1 k|k—1 ‘ k—1 A?’/?) 0 A2/2 0
As for the weight matri¥4;;, one can compute, for example 0 A3/3 0 A?%)2
through the unscented transform, an approximation,/say Qo = A2/2 A 0 0 ’
of the covariance 0@};& - q;’l‘;fni and then set 0 0 AZ)2 A

k

1

—1 7
WO g M
where, as in (8), the normalization is a means for ensuring
that the volume of the non-transmission region remains
uniformly bounded.

As for the derivation of the fused estimaig ; in the
fusion node, we adopt an approach based on the idea of
interpreting each local estimaf¢, as a measuremeny of
the true state:; collected through the (virtual) measurement

channel .
2h =T (ay) + ¢l

¢ > 0 and sampling intervalA = 0.1s. The following
transmission strategies have been compared:

« Data-Driven Measurement Transmission (DDMT)

the strategy of Section Il; the thresholds have been
tuned so as to obtain the desired transmission rates
Periodic Measurement Transmission (PMT) sensors
transmit periodically their measurements once every
1/t time instants, the phase shift among the sensors
being random.

Data-Driven Estimate Transmission (DDET) the
strategy of Section IlI; the thresholdshave been tuned
S0 as to obtain the desired transmission rates

(22)

~1,0 .

where, the estimation erraf, 2 Gy, — T"°(x1) plays the
role of a (virtual) measurement noise with covariance equal
to the estimation error covarian(t%k. While, equation (22)
can be directly applied only for the indicésfor which an
estimate has been received (i.e., for whig¢h= 1), one can The

Periodic Estimate Transmission (PET) sensors trans-
mit periodically their estimates once everya' time
instants, the phase shift among the sensors being ran-
dom.

comparison among the four strategies has been carried

once again exploit the fact that, for a data-driven transiois out via Monte Carlo simulations with independent runs



. . . : TASE | PMT DMT PET DDET
obtained for random generated trajectories by varying the avg | 0.8532 | 02660 (68%)| 0.4483 | 0.1997 (55%)

measurement and process noises realizationstifteeaver- | =2 | max | 3.6511| 1.0250 (71%)| 3.3815 | 0.7300 (79%)
aged square erro(TASE) at the fusion nodé’, TASE = s_4 | avg [ 05864] 0.1819 568%3 0.42137 0.1500 Ees%g
1T o N A = max | 2.6720 | 0.6188 (76%)| 2.9492 | 0.6238 (78%
7 2=t (Tr = Tkjk)' (T — ki), has been computed for each———— 0 a0 T3 6g96) 02081 01260 (69%)
simulation run and for each strategy. Then, the mean and =6 | ax | 15589 | 0.5010 (67%)| 3.1153 | 0.6301 (78%)

the maximum of the TASE over the Monte Carlo runs have s_g | ag [ 03825] 0.1065 (72%)[ 0.3633 | 0.1011 (72%)

been considered as performance indices. The simulatia tir max | 1.3968 | 0.3510 (74%)| 2.4125 | 0.4182 (82%)
T and the number of Monte Carlo runs have been chosen TABLE |
equal to600 and 1000, respectively. CASE 2: MEDIUM PROCESS NOISE VARIANCE

Consider a network with eight sensors located at
(—16.67 + 16.67:,0) for i = 0,1,...,7. A target moves in
the first quadrant and the target’s trajectory is generated I%

. : . aper has filled this practical gap, providing novel data-
as to guarantee observability at each_ time instant fro_m_t iven transmission strategies that can be used for general
overall sensor network. In all simulations the transmissio

ratea’ has been fixed t6.1 for all sensors and transmission collectively observable (.. ob_servable fron_1 the whole se
strategies. The target initial state [80,60,0.1,0.1), the (.)f sensors but non necessarily from_ a_smglg one) non-
variance of the measurement noi&:’ 3 ’10_’4 rad (1° linear syst_ems. Fl_Jture wor!< along t_h|s line will concern:
. . N (1) centralized fusion techniques which do not rely on the
Tgagda_lr_?]ed:’;S:;?(;nthrisﬁgagfg ;’:K;[:v?] Iijrzo'(lzgslse r;o'ﬁeca independence assumption among local estimates, and (2)
be noticed that transmitting the estimates is better thr]wonlmear observability decompositions for other types of

transmitting the measurements and data-driven stratagies nsors (e.g., Doppler-only).

better than the periodic ones. These results are in agréemen REFERENCES
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