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Abstract— Energy efficiency is a crucial issue for any task
involving wireless sensor networks. The present paper addresses
nonlinear state estimation over a centralized sensor network, i.e.
a set of sensor nodes communicating with a central information
fusion unit, and proposes smart data-driven strategies by which
sensors decide which data transmit to the central unit so as to
reduce data communication, and thus avoid congestion prob-
lems as well as prolong the network lifetime, while providing
enhanced performance with respect to periodic transmission.
Both measurement and estimate transmission strategies are
developed. To cope with nonlinear sensors that cannot fully ob-
serve the state, suitable nonlinear observability decompositions
are employed. A bearing-only tracking simulation case-study
is presented in order to demonstrate the effectiveness of the
proposed approach.

I. I NTRODUCTION

The recent and rapid advances in WSN (Wireless Sensor
Network) technology pose challenging estimation issues re-
lated to the possibility of optimally exploiting the distributed
information provided by the WSN while preserving as much
as possible the limited energy resources of the wireless
sensor nodes and, thus, prolonging the network lifetime.
Since, as well known, data communication represents by far,
for a sensor node, the most energy-consuming task, the idea
of controlling data transmission so as to achieve a trade-off
between communication costs and estimation performance
has recently received a certain attention in the literature(see
[1], [2], [3], [4], [5] and the references therein). This can
be done either in a centralized or in a distributed way. In
the former setting, the fusion node selects only a subset
of the available sensors to receive the information [6], [7].
Conversely, in a distributed setting, each sensor node decides
whether or not the data should be transmitted only on the
grounds of the locally available information.

Recent work [5] has concerned a network architecture, in
which the sensor nodes - equipped with processing capabil-
ities - transmit data (either raw measurements or computed
estimates) to the central fusion node, providing estimation
strategies that properly balance data processing in the WSN
nodes and data communication from the sensor nodes to the
central unit. The idea in [5] is to control transmission in
sensor nodes by selectively transmitting data (measurements
or estimates) whose distance, in a suitably weighted norm,
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from a properly defined prediction computed on the basis
of information available to both the sensor node and the
fusion unit exceeds a given threshold chosen according
to the desired transmission rate. The data-driven selective
transmission strategies proposed in [5] provide significant
performance improvements with respect to periodic transmis-
sion operating at the same rate but are unable to cope with the
presence of nonlinear sensors that cannot fully observe the
target process (e.g. angle-only or range-only or Doppler-only
position sensors employed for target localization/tracking).
This paper extends the data-driven measurement and estimate
transmission strategies to general nonlinear systems making
use of nonlinear observability decompositions at the sensor
level.

A. Problem Formulation

The present paper addresses estimation of the state of a
discrete-time dynamical system

xk+1 = f(xk) + wk (1)

given measurements collected from multiple sensors

yik = hi(xk) + vik , i = 1, . . . , s (2)

under a limitation on the communication rate from each
remote sensor unit to a central information fusion unit. Each
remote sensor collects noisy measurements of the given
system, can process them to find filtered estimates and
transmits, at a reduced rate, either measurements or estimates
to the fusion node. The fusion node, on the basis of the data
received from the remote sensors, should provide, in the best
possible way, an estimate of the system state.

In the foregoing, we formalize the concept ofcommuni-
cation strategy (CS)with fixed rateαi for sensori. To this
end, let us introduce for each sensori binary variablescik
such thatcik = 1 if sensori transmits at timek or cik = 0
otherwise. Then, a decision mechanism with rateαi ∈ (0, 1)
can be formally defined as any, deterministic or stochastic,
mechanism of generatingcik such that

lim
t→∞

1

t

t
∑

k=1

E
{

cik
}

= αi (3)

whereE{·} denotes the expectation operator. This indicates
that, for each sensor, the averaged number of data trans-
missions per time unit is constrained to take a valueαi.
Such a constraint can be used to model all those practical
situations in which the sensing units and the monitoring unit
are remotely dislocated with respect to each other and the
communication rate between them is severely limited.



Notations:: Z+ is the set of positive integers; given a
square matrixM , tr(M) denotes its trace; given a positive

definite matrix M , EM
△
= {ζ : ζ ′Mζ ≤ 1} denotes the

ellipsoid centered at the origin associated withM ; ‖ζ‖M
△
=

(ζ ′Mζ)
1/2 is the weighted norm of the vectorζ; given ma-

trices M1, . . . ,Ms, diag(M1, . . . ,Ms) denotes the block-
diagonal matrix whose diagonal blocks areM1, . . . ,Ms;
while col(M1, . . . ,Ms) is the matrix obtained by stacking
M1, . . . ,Ms one on top of the other.

II. DATA -DRIVEN STRATEGIES FOR MEASUREMENT

TRANSMISSION

In the spirit of the results of [5], it is supposed that each
sensori transmits its local measurementyik on the basis of
a data-driven strategy of the type

cik =

{

0 , if ‖yik − ỹik‖
2
W i

k

≤ δi

1 , otherwise
(4)

where the vectors̃yik, k ∈ Z+, the positive definite weight
matricesW i

k, k ∈ Z+, and the positive realsδi have to be
chosen so as to ensure that the transmission rate constraint
(3) is satisfied.

Hereafter, the process noisewk and the measurement
noises vik, i = 1, . . . , s in (1)-(2) are supposed to be
zero-mean stochastic processes withE{wkw

′
t} = Qδkt,

E{vikw
′
t} = 0, and E{vik(v

j
t )

′} = Ri δij δkt where δij
denotes the Kronecker delta.

A. Operations at fusion node

One of the advantages of a data-driven strategy over non
data driven strategies (e.g., periodic) is that, even when no
transmission is performed from the sensor node, the fusion
node knows that the measurementyik belongs to the ellipsoid
δiE i

Wk
. Such information can be fruitfully exploited by suit-

ably modifying the nonlinear filtering algorithm implemented
in the fusion node. In fact, it has been shown in [5] that the
case of no transmission from sensori at timek can be treated
as if a virtual measurementzik = ỹik were generated by the
measurement channel

zik = hi(xk) + vik − ui
k (5)

whereui
k is uniformly distributed in the ellipsoidδiE i

Wk
and

uncorrelated withvik. Note that thevik − ui
k has zero-mean

and covariance matrix1

E{(vik − ui
k)(v

i
k − ui

k)
′} = E{vik(v

i
k)

′}+ E{ui
k(u

i
k)

′}

= Ri +
δi

mi + 2
(W i

k)
−1,

wheremi
△
= dim(yik). As discussed in [5], this is possible

from a Bayesian point of view in that, regardless of the
choice of ỹik, the posterior PDF ofxk conditioned to the
fact that no data have been received (i.e.,cik = 0) coincides
with the posterior PDF ofxk conditioned to the fact that

1Recall that a uniform random variable taking value in an ellipsoidEM ⊂

R
m has covariance matrix equal to[(m+ 2)M ]−1.

a measurementzik = ỹik has been originated from a virtual
measurement channel (5).

In view of the foregoing considerations, by defining

zik
△
= ciky

i
k + (1− cik)ỹ

i
k

Ri
k

△
= Ri + (1− cik)

δi

mi + 2
(W i

k)
−1 (6)

and, accordingly,

zk
△
= col

(

z1k, . . . , z
s
k

)

,

Rk
△
= diag

(

R1
k, . . . , R

s
k

)

,

h(·)
△
= col

(

h1(·), . . . , hs(·)
)

,

the estimatêxk|k at the fusion node can be computed by
means of the following recursion

(

x̂k|k, Pk|k

)

= upd
(

x̂k|k−1, Pk|k−1, zk, Rk, h
)

,
(

x̂k+1|k, Pk+1|k

)

= pred
(

x̂k|k, Pk|k, Q, f
)

. (7)

Here and in the following,upd(·) denotes the updating step
of some nonlinear filtering algorithm; its first and second
arguments are the predicted estimate and covariance, its third
argument is the measurement vector, its fourth argument
is the covariance of the additive measurement noise, and
its last argument is the (non)linear measurement function.
Similarly,pred(·) denotes the prediction step of the nonlinear
filtering algorithm; its first two arguments are the updated
estimate and covariance, its third argument is the covariance
of the additive process noise, and the last argument is the
(non)linear function which relates the state at timek with
the state at timek + 1.

Notice that the filtering stepspred(·) and upd(·) can
be performed via any nonlinear filter such as for instance
the Extended Kalman filter, the Unscented Kalman filter
(UKF), or a particle filter [8], [9]. UKF represents a good
tradeoff between accuracy and computational cost and, for
this reason, will be adopted in the subsequent developments.

B. Operations at sensor node

As should be evident, the performance of transmission
strategy (4) may be significantly affected by the specific
mechanism used for generating the quantitiesỹik and W i

k.
In this connection, in view of the discussion of Section 2.1
of [5], a sensible choice can be obtained by tailoring the
vector ỹik and the weight matrixW i

k to the prior distribution
of the measurementyik so thatỹik coincides with the predicted
value ofyik andW i

k is proportional to the inverse innovation
covariance. In this way, supposing that the PDF ofyik
is approximately characterized by a radial symmetry, the
volume of the non-transmission region is close to being
minimal (see Proposition 1 of [5]). Further, since the vector
ỹik is used in the fusion node in order to define the vectorzk
and compute the estimatêxk|k, the mechanism for generating
the vectorsỹik and the weight matricesW i

k must use only
information available to both the sensori and the fusion
node. A last important requirement that should be fulfilled



is that the volume of the non-transmission region does not
grow unbounded with time. In fact, in a linear setting, it has
been shown that this is a sufficient condition for preserving
the stability of the estimation error at the fusion node for
any positive transmission rate [5]. Summing up, taking into
account such desired properties, a reasonable choice is

ỹik = ŷik|k−1 , (W i
k)

−1 =
1

tr(Si
k)

Si
k (8)

whereŷik|k−1 is a prediction ofyik based on the information
shared by the fusion node and sensori up to timet− 1 and
Si
k is the corresponding covariance. The normalization factor

tr(Si
k) is a way for ensuring that the volume of the non-

transmission region is always bounded in that1
tr(Si

k
)
Si
k ≤ I.

Of course other choices for the normalization factor can be
devised (e.g., the spectral radius ofSi

k). The main reason
for preferring the trace is that it can be computed with little
computational effort from the remote sensors.

The main difficulty in computing the prediction̂yik|k−1 is
that in general, even assuming collective observability from
the whole set of sensors, the state vector need not be observ-
able from a single sensor. This means that, locally in a remote
sensor, it may not be possible to construct a stable filter for
estimating the whole state of system (1). Nevertheless, it may
still be possible to compute the predictionŷik|k−1 by resorting
to an observability decomposition of the state space.

To this end, consider the noise-free system

xk+1 = f(xk) (9)

yik = hi(xk) (10)

and consider the set of functions

Θ
△
= {hi(x), hi ◦ fN (x), N = 1, 2 . . .}.

wherefN denotes theN -th composition of f, i.e. the function
f composed with itselfN times. As well known, under
suitable assumptions, observability of system (9) from the
output yik corresponds to the fact thatdim (span dΘ) = n
almost everywhere, wheredΘ is the differential ofΘ and
n is the system order. If, instead,span dΘ has constant
dimensionni,o < n in the set of interest then observability
does not hold, but it might be possible to perform a state
space decomposition with respect to the system observability
properties. Hereafter we shall assume that, for all the sensors
for which observability does not hold, such a decomposition
exists or, more precisely, that there exists a change of
coordinatesq = T i(x) such that system (9) can be rewritten
as

qi,ok+1 = f̃ i,o(qi,ok ) (11)

qi,ōk+1 = f̃ i,ō(qi,ok , qi,ōk ) (12)

yik = h̃i(qi,ok ) (13)

whereqi,o has dimensionni,o, qi,ō has dimensionn− ni,o,
q = col

(

qi,o, qi,ō
)

= col
(

T i,o(x), T i,ō(x)
)

, and the subsys-
tem made up by (11) and (13) is observable by construction.
Notice that, in general, the observability decomposition will

be different for different sensors, hence the dependence
on the index i. Discussions on the existence of such a
decomposition in a discrete-time setting can be found, for
instance, in [10], [11]. As evident from (11)-(13), in the
noise-free case, the outputyik depends only on the observable
part of the system. Thus one can exploit this fact and
construct a filter for the observable subsystem in order to
obtain a prediction̂yik|k−1 of the measurementyik.

In practice, turning back our attention to the noisy case
(9), each sensor will consider only the subsystem

qi,ok+1 = f̃ i,o(qi,ok ) + gi(qi,ok , qi,ōk , wk) (14)

yik = h̃i(qi,ok ) + vik (15)

where the functiong(·) has the property thatg(·, ·, 0) = 0.
While, in general, in the presence of noises there is not
a clear decoupling between observable and nonobservable
states, several techniques can all the same be devised for
constructing a filter for (14)-(15) wheneverqi,ōk belongs to
a (known) compact set, which is usually the case when
dealing with state estimation for physical systems. For ex-
ample, the simplest alternative consists in treating the term
gi(qi,ok , qi,ōk , wk) as an additive noise vector. Alternatively,
a more accurate approach amounts to considering the vector
qi,ōk as a slowly time-varying unknown parameter and resort-
ing to robustness arguments. Notice that when the functions
f(·) and hi(·) are smooth then the functiongi(·) will be
smooth as well, thus the contribution of the second term in
the right hand side of(14) will in general be small for small
disturbanceswk.

Taking into account subsystem (14)-(15), the operations
for computing the prediction̂yik|k−1 in nodei are as follows

(

q̂i,ok|k, P
i
k|k

)

= upd(q̂i,ok|k−1, P
i
k|k−1, z

i
k, R

i
k, h̃

i)
(

q̂i,ok+1|k, P
i
k+1|k

)

= pred(q̂i,ok|k, P
i
k|k, Q, f̃o,i, gi)

(

ŷik+1|k, S
i
k

)

= proj(q̂i,ok+1|k, P
i
k+1|k, h̃

i)

(16)

Hereproj(·) denotes the function that projects the predicted
estimate and relative covariance on the measurement space;
its first two arguments are the predicted estimate and covari-
ance and its last argument is the (non)linear function that
projects the observable state in the measurement space. Such
a projection can, for example, be computed by means of the
unscented transform [8]. Notice that, with a little abuse of
notation, we have augmented the arguments ofpred(·) by
including also the (non)linear functiongi. Notice also that
the proposed filter does not use the true measurementyik
and covarianceR but, instead, uses the virtual measurement
zik and its covarianceRi

k as defined in (6). This choice
is motivated by the fact that, as discussed in the previous
section, the filter (16) should be also runned in the fusion
node in order to compute the virtual measurementzk and,
consequently, the fused estimatex̂k|k.

C. An example: bearing only tracking

In this section, the case of bearing only tracking is
analyzed in order to show how the foregoing discussion



applies to a context of practical interest. The problem is that
of estimating the state of an object whose motion is described
by the kinematic nearly-constant velocity model

xk+1 =









1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1









xk + wk,

where∆ is the sampling interval; the unknown state vector
is given by the position and velocity components along the
coordinate axes(ξ, η), i.e., x = col(ξ, η, ξ̇, η̇). The state has
to be estimated given measurements collected from a network
of direction-of-arrival (DOA) sensors

yik = atan2
(

ηk − ηi, ξk − ξi
)

+ vik , i = 1, . . . , s (17)

whereatan2(·) denotes the four-quadrant inverse tangent and
(ξi, ηi) is the position of thei-th sensor.

As well known, it is not possible to observe the whole
state from a single angular sensor. To see this, note that the
N -th composition off(·) takes the form

fN (x) = col (ξ +N∆vx, η +N∆vy, vx, vy)

and, consequently,

d
(

hi ◦ fN
)

=
1

(ξN,i)2 + (ηN,i)2

×
(

−ηN,idξ + ξN,idη −N∆ηN,idξ̇ +N∆ξN,idη̇
)

where

ξN,i △
= ξ +N∆vx − ξi , ηN,i △

= η +N∆vy − ηi .

It is an easy matter to see thatdhi, d(hi ◦ f), andd(hi ◦ f2)
are mutually independent but, for anyN ≥ 3, one can write

d(h◦fN ) = βN,i
1 (x)dhi+βN,i

2 (x)d(hi◦f)+βN,i
3 (x)d(hi◦f2)

where

βN,i
1 (x)

△
=

ξ0,i + η0,i

ξN,i + ηN,i

(

1 +
N2 − 3N

2

)

βN,i
2 (x)

△
=

ξ1,i + η1,i

ξN,i + ηN,i

(

2N −N2
)

βN,i
3 (x)

△
=

ξ2,i + η2,i

ξN,i + ηN,i

N2 −N

2
.

Hence, the dimension ofspan(dΘ) is 3. As suggested in
[10], in general the differentialdΘ can be a useful start-
ing point for constructing the observability decomposition.
However, in this case, this is not necessary since the decom-
position becomes apparent when the system is rewritten in
terms of modified polar (MP) coordinates [9], [12], [13]. The
MP state vector is defined as

qi = col

(

θ̇i,
ṙi

ri
, θi,

1

ri

)

. (18)

whereθi denotes the bearing-angle measured from theξ-axis
counterclockwise,̇θi is the angular velocity,ri is the range
from sensor position, anḋri the range-rate. Figure 1 shows
the target-sensor geometry for the MP coordinates system.

η

ξ

ṙiθ̇i

ri

θi

Fig. 1. MP Coordinate System sensor-target geometry

The Cartesian state vectorxk and the MP state vectorqik are
related at all times by the following nonlinear one-to-one
transformation

qi =























(ξ − ξi)η̇ − (η − ηi)ξ̇

(ξ − ξi)2 + (η − ηi)2

(ξ − ξi)ξ̇ + (η − ηi)η̇

(ξ − ξi)2 + (η − ηi)2

atan2
(

η − ηi, ξ − ξi
)

1/
√

(ξ − ξi)2 + (η − ηi)2























. (19)

It can be shown that only the first three components of
the vectorqi are observable from a single non-moving DOA

sensor [13]. In fact, by definingqi,o
△
= col(θ̇i, ṙi/ri, θi) and

qi,ō
△
= 1/ri, the dynamics ofqi,o can be written as in (14)

and, of course, the measurement equations take the form

yik = Cqi,o + vik .

whereC
△
= [0 0 1]. Further, in this particular case, the

function g(·) in (14) takes the formgi(qi,ō, qi,ōwk). Thus,
taking into account the fact that all bearing sensors have a
limited and known range for detecting the presence of an
object, the quantityqi,ōwk can be treated as a disturbance
with unknown but bounded covariance.

Notice that, notwithstanding the lack of observability from
a single sensor, the target state can be reconstructed at
the fusion node provided that the number of sensorss
that transmit their measurements is greater than or equal2.
Actually two sensors may not be sufficient for observability
if target and sensors are aligned.

III. D ATA -DRIVEN STRATEGIES FOR ESTIMATE

TRANSMISSION

Let us now consider the case of estimate transmission,
supposing that each sensori transmits, instead of its local
measurementyik, a local estimate. Taking into account the
development of Section II-B, only the component of the state
that is locally observable is estimated and sent to the fusion
node. This means that each sensor computes an estimateq̂i,ok|k

of the stateqi,ok of the observable subsystem by means of the



nonlinear filtering recursion
(

q̂i,ok|k, P
i
k|k

)

= upd(q̂i,ok|k−1, P
i
k|k−1, y

i
k, R

i, h̃i)
(

q̂i,ok+1|k, P
i
k+1|k

)

= pred(q̂i,ok|k, P
i
k|k, Q, f̃o,i, gi)

(20)

Comparing such a recursion with (20), one can see that
here the true measurementyik is considered instead of the
virtual measurementzik. This means that the estimateq̂i,ok|k is
computed using all the locally available information. Then,
the local estimate is transmitted according to a data-driven
strategy of the form

cik =

{

0 , if ‖q̂i,ok|k − q̃i,ok ‖2
W i

k

≤ δi,

1 , otherwise,
(21)

where the vectors̃qi,ok , k ∈ Z+, the positive definite weight
matricesW i

k, k ∈ Z+, and the positive realsδi have to be
chosen so as to ensure that the transmission rate constraint
(3) is satisfied.

Also in this case, the general principles discussed at the
beginning of Section II-B can be used as a guideline for
choosing the vectors̃qi,ok , k ∈ Z+ and the positive definite
weight matricesW i

k, k ∈ Z+. Accordingly, the idea is to set
q̃i,ok equal to the best prediction ofqi,ok that can be computed
on the basis of the information that is common to both sensor
i and the fusion node up to timek − 1. In particular, if one
denotes byni

k ≥ 0 the number of time instants elapsed from
the last transmission of sensori, i.e.,ni

k is such thatci
k−ni

k

=

1 and cik−1 = · · · = ci
k−ni

k
+1

= 0, then a natural choice

corresponds to setting̃qi,ok = q̂i,o
k|k−ni

k

. Such a prediction can
be recursively computed as
(

q̂
i,o

k|k−ni

k

, P
i

k|k−ni

k

)

=
{

pred(q̂i,o
k−1|k−ni

k−1

, P i

k−1|k−ni

k−1

, Q, f̃o,i, gi) if cik−1 = 0

q̂
i,o

k|k−1
, P i

k|k−1
if cik−1 = 1

As for the weight matrixW i
k, one can compute, for example

through the unscented transform, an approximation, sayΛi
k,

of the covariance of̂qi,ok|k − q̂i,o
k|k−ni

k

and then set

(W i
k)

−1 =
1

tr(Λi
k)

Λi
k

where, as in (8), the normalization is a means for ensuring
that the volume of the non-transmission region remains
uniformly bounded.

As for the derivation of the fused estimatêxk|k in the
fusion node, we adopt an approach based on the idea of
interpreting each local estimatêqi,ok|k as a measurementzik of
the true statexk collected through the (virtual) measurement
channel

zik = T i,o(xk) + ǫik (22)

where, the estimation errorǫik
△
= q̂i,ok|k − T i,o(xk) plays the

role of a (virtual) measurement noise with covariance equal
to the estimation error covarianceP i

k|k. While, equation (22)
can be directly applied only for the indicesi for which an
estimate has been received (i.e., for whichcik = 1), one can
once again exploit the fact that, for a data-driven transmission

strategy, even in case of no transmission it is known that the
estimatex̂i

k|k belongs to a certain ellipsoidδiEWk
. Thus, ne

can treat the case of no transmission by replacing (22) with

zik = T i,o(xk) + ǫik − ui
k (23)

where zik
△
= q̃i,ok and ui

k is uniformly distributed in the
ellipsoid δiEWk

. Summing up, by defining

zik
△
= cik q̂

i,o
k|k + (1− cik)q̃

i,o
k , i = 1, . . . , s ,

Ri
k

△
= P i

k|k + (1− cik)
δi

ni,o + 2
(W i

k)
−1, i = 1, . . . , s ,

zk
△
= col

(

z1k, . . . , z
s
k

)

,

Rk
△
= diag

(

R1
k, . . . , R

s
k

)

,

h(·)
△
= col

(

T 1,o(·), . . . , T s,o(·)
)

,

the estimatêxk|k at the fusion node can be computed by
means of a recursion which is formally analogous to (7).

Finally, observe that, because of the common process
noise, the estimateŝqi,ok|k are actually dependent. The naive
independence assumption has been adopted since standard
techniques for fusing correlated information (e.g., covariance
intersection) cannot be applied to the nonlinear and non-fully
observable case. The development of alternative fusion rules
(possibly based on the moving horizon estimation paradigm
[14]) will be subject of future research.

IV. SIMULATION RESULTS

The goal of this section is to evaluate the performance
of the proposed transmission strategies when applied to the
network of bearing sensors described in section II-C. The
covariance matrix of process noise has been assumed equal
to Q = ζQ0 with

Q0 =









∆3/3 0 ∆2/2 0
0 ∆3/3 0 ∆2/2

∆2/2 ∆ 0 0
0 0 ∆2/2 ∆









,

ζ > 0 and sampling interval∆ = 0.1 s. The following
transmission strategies have been compared:

• Data-Driven Measurement Transmission (DDMT):
the strategy of Section II; the thresholdsδi have been
tuned so as to obtain the desired transmission ratesαi.

• Periodic Measurement Transmission (PMT): sensors
transmit periodically their measurements once every
1/αi time instants, the phase shift among the sensors
being random.

• Data-Driven Estimate Transmission (DDET): the
strategy of Section III; the thresholdsδi have been tuned
so as to obtain the desired transmission ratesαi.

• Periodic Estimate Transmission (PET): sensors trans-
mit periodically their estimates once every1/αi time
instants, the phase shift among the sensors being ran-
dom.

The comparison among the four strategies has been carried
out via Monte Carlo simulations with independent runs



obtained for random generated trajectories by varying the
measurement and process noises realizations. Thetime aver-
aged square error(TASE) at the fusion nodeF , TASE =
1
T

∑T
k=1(xk−x̂k|k)

′(xk−x̂k|k), has been computed for each
simulation run and for each strategy. Then, the mean and
the maximum of the TASE over the Monte Carlo runs have
been considered as performance indices. The simulation time
T and the number of Monte Carlo runs have been chosen
equal to600 and1000, respectively.

Consider a network with eight sensors located at
(−16.67 + 16.67i, 0) for i = 0, 1, . . . , 7. A target moves in
the first quadrant and the target’s trajectory is generated so
as to guarantee observability at each time instant from the
overall sensor network. In all simulations the transmission
rateαi has been fixed to0.1 for all sensors and transmission
strategies. The target initial state is[60, 60, 0.1, 0.1]′, the
variance of the measurement noiseR = 3 10−4 rad (1◦

standard deviation), the variance of the process noiseζ =
10−3. The simulation results are shown in Table I. It can
be noticed that transmitting the estimates is better than
transmitting the measurements and data-driven strategiesare
better than the periodic ones. These results are in agreement
with those obtained in [5] by the same strategies in the linear
case. The relative percentage of TASE reduction of data-
driven w.r.t. periodic strategies for both cases, transmitting
the estimates and transmitting the measurements, have also
been reported in Table I to help in the comparison.

A difference between the linear case treated in [5] and
bearing-only tracking is that the transmission rate depends on
the target trajectory. In particular, we have noticed that for the
data-driven strategies (especially for DDET) the transmission
rate increases at the decrease of the distance between target
and sensor. In other words, sensors transmit more frequently
when the distance target-sensor decreases. This means that
data-driven strategies perform a natural sensor-scheduling
in the nonlinear case. Sensors that are closer to the target
(and, thus, sensors that have a more accurate estimate of
the state) transmit more frequently. This is an interesting
feature of data-driven strategies that we intend to investigate
in future work. Notice that, for a fair comparison between
the strategies with a constant transmission rate (the periodic
ones) and the data-driven strategies, all simulations have
been performed by generating trajectories that ensure that
the average transmission rateαi is equal to the fixed value
0.1 for all sensors and transmission strategies (i.e., the target
is always “far enough” from the sensors).

V. CONCLUSIONS

The paper has provided a contribution towards energy-
efficient management of a centralized wireless sensor net-
work employed for estimating the state of a dynamical
system. An interesting solution to this problem has been
provided in [5] but this solution is not applicable in certain
situations of practical interest, like e.g. angle-only or rangle-
only or Doppler-only target tracking, wherein there are
nonlinear sensors that cannot fully observe the system. This

TASE PMT DMT PET DDET

s = 2
avg 0.8532 0.2660 (68%) 0.4483 0.1997 (55%)
max 3.6511 1.0250 (71%) 3.3815 0.7300 (79%)

s = 4
avg 0.5864 0.1819 (68%) 0.4213 0.1500 (63%)
max 2.6720 0.6188 (76%) 2.9492 0.6238 (78%)

s = 6
avg 0.4367 0.1364 (68%) 0.4081 0.1260 (69%)
max 1.5589 0.5010 (67%) 3.1153 0.6301 (78%)

s = 8
avg 0.3825 0.1065 (72%) 0.3633 0.1011 (72%)
max 1.3968 0.3510 (74%) 2.4125 0.4182 (82%)

TABLE I

CASE 2: MEDIUM PROCESS NOISE VARIANCE

paper has filled this practical gap, providing novel data-
driven transmission strategies that can be used for general
collectively observable (i.e. observable from the whole set
of sensors but non necessarily from a single one) non-
linear systems. Future work along this line will concern:
(1) centralized fusion techniques which do not rely on the
independence assumption among local estimates, and (2)
nonlinear observability decompositions for other types of
sensors (e.g., Doppler-only).
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