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Abstract
A fundamental task in machine learning is to
compare the performance of multiple algorithms.
This is usually performed by the frequentist
Friedman test followed by multiple comparisons.
This implies dealing with the well-known short-
comings of null hypothesis significance tests. We
propose a Bayesian approach to overcome these
problems. We provide three main contributions.
First, we propose a nonparametric Bayesian ver-
sion of the Friedman test using a Dirichlet pro-
cess (DP) based prior. We show that, from a
Bayesian perspective, the Friedman test is an in-
ference for a multivariate mean based on an ellip-
soid inclusion test. Second, we derive ajoint pro-
cedure for the multiple comparisons which ac-
counts for their dependencies and which is based
on the posterior probability computed through
the DP. The proposed approach allows verifying
the null hypothesis, not only rejecting it. Third,
as a practical application we show the results in
our algorithm forracing, i.e. identifying the best
algorithm among a large set of candidates se-
quentially assessed. Our approach consistently
outperforms its frequentist counterpart.

1. Introduction

A fundamental task in machine learning is to compare
multiple algorithms. The non-parametric Friedman test
(Demšar, 2006) is recommended to this end. The advan-
tages of the non-parametric approach are that it doesnot
average measures taken on different data sets; it doesnot
assume normality of the sample means; it isrobustto out-
liers. The Friedman test is a null-hypothesis significance
tests. It thus controls the Type I error, namely the proba-
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bility of rejecting the null hypothesis when it is true. The
framework of null hypothesis significance tests has how-
ever important drawbacks. For instance one usually sets the
significance level to 0.01 or 0.05, without having the pos-
sibility of an optimal trade-off between Type I and Type II
errors.

Instead, Bayesian tests of hypothesis (Kruschke, 2010) es-
timate the posterior probability of the null and of the al-
ternative hypothesis, which allows to take decisions which
minimize the posterior risk. See (Kruschke, 2010) for a
detailed discussion of further advantages of Bayesian hy-
pothesis testing. However there are currently no Bayesian
counterparts of the Friedman test. Our first contribution
is a Bayesian version of the Friedman test. We adopt
the Dirichlet process (DP) (Ferguson, 1973) as a model
for the prior. The DP has been already used to de-
velop Bayesian counterparts of frequentist non-parametric
estimators such as Kaplan-Meier (Susarla & Van Ryzin,
1976), the Kendall’s tau (Dalal & Phadia, 1983) and the
Wilcoxon signed-rank test (Benavoli et al., 2014). Our
novel derivation shows that, from a Bayesian perspective,
the Friedman test is an inference for a multivariate mean
based on an ellipsoid inclusion test.

When the frequentist Friedman test rejects the null hy-
pothesis, a series of multiple pairwise comparison are
performed in order to assess which algorithm is signif-
icantly different from which. The traditional post-hoc
analysis controls the family-wise Type I error (FWER),
namely the probability of finding at least one Type I error
among the null hypotheses which are rejected when per-
forming the multiple comparisons. The traditional Bon-
ferroni correction for multiple comparisons controls the
FWER but yields too conservative inferences. More mod-
ern approaches for controlling the FWER are discussed
in (Demšar, 2006; Garcia & Herrera, 2008). All such ap-
proaches simplistically treat the multiple comparisons as
independent from each other. But when comparing al-
gorithms{a, b, c}, the outcome of the comparisons (a,b),
(a,c), (b,c) arenot independent.
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Our second contribution is ajoint procedure for the anal-
ysis of the multiple comparisons which accounts for their
dependencies. We adopt the definition of Bayesian multiple
comparison of (Gelman & Tuerlinckx, 2000). We analyze
the posterior probability computed through the Dirichlet
process, identifying statements ofjoint comparisons which
have high posterior probability. The proposed procedure
is a compromise between controlling the FWER and per-
forming no correction of the significance level for the mul-
tiple comparisons. Our Bayesian procedure produces more
Type I errors but less Type II errors than procedures which
controls the family-wise error. In fact, it does not aim at
controlling the family-wise error. On the other hand, it pro-
duces both less Type I and less Type II errors than running
independent tests without correction for the multiple com-
parison, thanks to its ability in capturing the dependencies
of the multiple comparisons.

Our overall procedure thus consists of a Bayesian Friedman
test, followed by a joint analysis of the multiple compari-
son.

1.1. Racing

Racing addresses the problem of identifying the best al-
gorithms among a large set of candidates. Racing is
particularly useful when running the algorithms is time-
consuming and thus they cannot be evaluated many times,
for instance when comparing different configurations of
time-consuming optimization heuristics. The idea of rac-
ing (Maron & Moore, 1997) is to test the set of algorithms
in parallel and to discard early those recognized as inferior.
Inferior candidates are recognized through statistical tests.
The race thus progressively focuses on the better models.

There are both frequentist and Bayesian approaches for
racing. A peculiar feature of Bayesian algorithms
(Maron & Moore, 1997; Chien et al., 1995) is that they are
able to eliminate also models whose performance is very
similar with high probability (indistinguishable models).
Detecting two indistinguishable models correspond toac-
cept the null hypothesis that their performance is equiv-
alent. It is instead impossible to accept the null hypoth-
esis for a frequentist test. However the applicability of
such Bayesian racing approaches (Maron & Moore, 1997;
Chien et al., 1995) is restricted, as they assume the normal-
ity of observations.

Non-parametric frequentist are generally preferred for rac-
ing (Birattari, 2009, Chap.4.4). A popular racing algorithm
is the F-race (Birattari et al., 2002). It first performs the fre-
quentist Friedman test, followed by the multiple compar-
isons if the null hypothesis of the Friedman is rejected. Be-
ing frequentist, the F-race cannot eliminate indistinguish-
able models.

None of the racing procedures discussed so far can exactly
compute the probability (or the confidence) of a series of
sequential statements which are issued during the multiple
comparisons, since they treat the multiple comparisons as
independent.

Our novel procedure allows both to detect indistinguishable
models and to model the dependencies between the multi-
ple comparisons.

2. Friedman test

The comparison of multiple algorithms are organized in the
following matrix:

Performance on different cases

A
lg

o
ri
th

m
s

X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

...
...

Xm1 Xm2 . . . Xmn

(1)

whereXij denotes the performance of thei-th algorithm on
thej-th dataset (fori = 1, . . . ,m andj = 1, . . . , n). The
performance of algorithms on different cases can refer for
instance to the accuracy of different classifiers on multiple
data sets (Demšar, 2006) or the maximum value achieved
by different solvers on different optimization problems
(Birattari et al., 2002).

The performances obtained on different data sets are as-
sumed to be independent. The algorithms are then ranked
column-by-column obtaining the matrixR of the ranks
Rij , i = 1, . . . ,m andj = 1, . . . , n, with Rij the rank of
thei-th algorithm with respect to to the other observations
in thej-th column. The row sum

∑m
i=1 Rij = m(m+1)/2

is a constant (i.e., the sum of the firstm integer), while the
column sumRi =

∑n
j=1 Rij , i = 1, . . . ,m, is affected by

the differences between the algorithms. The null hypoth-
esis of the Friedman test is that the different samples are
drawn from populations with identical medians. Under the
null hypothesis the statistic

Q =
12

nm(m+ 1)

n
∑

j=1

[

Rj −
n(m+ 1)

2

]2

,

is approximately chi-square distributed withm− 1 degress
of freedom. The approximation is reliable whenn > 7. We
denote byγ the significance of the test. The null hypoth-
esis is rejected when the statistic exceed the critical value,
namely when:

Q > χ2
m−1,γ . (2)

Form = 2 the Friedman test reduces to a sign test.
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3. Directional multiple comparisons

If the Friedman test rejects the null hypothesis one has to
establish which are the significantly different algorithms.
The commonly adopted statistic for comparing thei-th
and thej-th algorithm is (Demšar, 2006; Garcia & Herrera,
2008):

z = (Ri −Rj)/

√

m(m+ 1)

6n
,

which is normally distributed. Comparing this statistics
with the critical value of the normal distribution yields the
mean ranks test. A shortcoming of the mean rank test is
that the decisions regarding algorithmsi, j depends also
on the scores of all the other algorithms in the set. This is
a severe issue which can have a negative impact both on
Type I and the Type II errors (Miller , 1966; Gabriel, 1969;
Fligner, 1984); see also (Hollander et al., 2013, Sec. 7.3).

Alternatively, one can compare algorithmi to algorithm
j via either theWilcoxon signed-rank testor thesign test
(Conover & Conover, 1980). The Wilcoxon signed-rank
test has more power than the sign test, but it assumes that
the distribution of the data is symmetric w.r.t. its median.
When this is not the case, the Wilcoxon signed-rank test
is not calibrated. Conversely, the sign test does not re-
quire any assumption on the distribution of the data. Pair-
wise comparisons are often performed in a two-sided fash-
ion. In this case a Type I error correspond to a claim
of difference between two algorithms, while the two al-
gorithms have instead identical performance. However,
it is hardly believable that two algorithms have an actu-
ally identical performance. It is thus more interesting run-
ning one-sided comparisons. We thus perform the multi-
ple comparisons in a directional fashion (Williams et al.,
1999): for each pairi, j of algorithms we select the one-
sided comparison yielding the smallestp-value. A Type S
error (Gelman & Tuerlinckx, 2000) is done every time we
wrongly claim that algorithmi is better thanj, while the
opposite is instead true. The output of this procedure will
consist in the set of all directional claims for which thep-
value is smaller than a suitably corrected threshold.

4. Dirichlet process

The Dirichlet process was developed by Ferguson
(Ferguson, 1973) as a probability distribution on the space
of probability distributions. LetX be a standard Borel
space with Borelσ-field BX andP be the space of prob-
ability measures on(X,BX) equipped with the weak topol-
ogy and the corresponding Borelσ-field BP. LetM be the
class of all probability measures on(P,BP). We call the
elementsµ ∈ M nonparametric priors. An element ofM is
called a Dirichlet process distributionD(α) with base mea-
sureα if for every finite measurable partitionB1, . . . , Bm

of X, the vector(P (B1), . . . , P (Bm)) has a Dirichlet

distribution with parameters(α(B1), . . . , α(Bm)), where
α(·) is a finite positive Borel measure onX. Consider the
partitionB1 = A andB2 = Ac = X\A for some measur-
able setA ∈ X, then if P ∼ D(α), let s = α(X) stand
for the total mass ofα(·), from the definition of the DP we
have that(P (A), P (Ac)) ∼ Dir(α(A), s − α(A)), which
is a Beta distribution. From the moments of the Beta distri-
bution, we can thus derive that:

E [P (A)] =
α(A)

s
, V [P (A)] =

α(A)(s − α(A))

s2(s+ 1)
, (3)

where we have used the calligraphic lettersE andV to de-
note expectation and variance w.r.t. the Dirichlet process.
This shows that the normalized measureα∗(·) = α(·)/s of
the DP reflects the prior expectation ofP , while the scal-
ing parameters controls how muchP is allowed to deviate
from its mean. IfP ∼ D(α), we shall also describe this
by sayingP ∼ Dp(s, α∗). LetP ∼ Dp(s, α∗) andf be a
real-valued bounded function defined on(X,B). Then the
expectation with respect to the Dirichlet process ofE[f ] is

E
[

E(f)
]

= E

[
∫

fdP

]

=

∫

fdE [P ] =

∫

fdα∗. (4)

One of the most remarkable properties of the DP priors
is that the posterior distribution ofP is again a DP. Let
X1, . . . , Xn be an independent and identically distributed
sample fromP andP ∼ Dp(s, α∗), then the posterior dis-
tribution ofP given the observations is

P |X1, . . . , Xn ∼ Dp

(

s+ n,
sα∗ +

∑n
i=1 δXi

s+ n

)

, (5)

whereδXi
is an atomic probability measure centered at

Xi. The Dirichlet process satisfies the property of conju-
gacy, since the posterior forP is again a Dirichlet process
with updated unnormalized base measureα +

∑n
i=1 δXi

.
From (3),(4) and (5) we can easily derive the posterior
mean and variance ofP (A) and, respectively, posterior
expectation off . Some useful properties of the DP
(Ghosh & Ramamoorthi(2003, Ch.3)) are the following:

(a) Consider an elementµ ∈ M which puts all its mass at
the probability measureP = δx for somex ∈ X. This
can also be modeled asDp(s, δx) for eachs > 0.

(b) Assume thatP1 ∼ Dp(s1, α
∗
1), P2 ∼ Dp(s2, α

∗
2),

(w1, w2) ∼ Dir(s1, s2) and P1, P2, (w1, w2)
are independent, then (Ghosh & Ramamoorthi, 2003,
Sec.3.1.1):

w1P1+w2P2 ∼ Dp

(

s1 + s2,
s1α

∗
1 + s2α

∗
2

s1 + s2

)

. (6)

(c) LetP have distributionDp(s+ n,
sα∗+

∑n
i=1

δXi

s+n ). We
can write

P = w0P0 +

n
∑

i=1

wiδXi
, (7)
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where (w0, w1, . . . , wn) ∼ Dir(s, 1, . . . , 1) and
P0 ∼ Dp(s, α∗) (it follows by (a)-(b)).

5. A Bayesian Friedman test

Let us denote withX the vector of performances
[X1, . . . , Xm]T for m algorithms so that the records algo-
rithms/dataset can be rewritten as

X
n = {X1, . . . ,Xn}, (8)

that is a set ofn vector valued observations ofX, i.e.,Xj

coincides with thej-column of the matrix in (1). Let P
be the unknown distribution ofX, assume that the prior
distribution ofP is Dp(s, α∗), our goal is to compute the
posterior ofP . From (5), we know that the posterior ofP
is

Dp

(

s+ n, α∗
n =

sα∗ +
∑n

i=1 δXi

s+ n

)

. (9)

We adopt this distribution to devise a Bayesian counterpart
of the Friedman’s hypothesis test.

5.1. The case m = 2 - Bayesian sign test

Assume there are only two algorithmsX = [X1, X2]
T , in

the next sections we will show how to assess if algorithm2
is better than algorithm1 (one-sided test), i.e.,X2 > X1,
and how to assess if there is a difference between the two
algorithms (two-sided test), i.e.,X1 6= X2. The next sec-
tion shows how to compare two algorithms. In particular
we show how to assess the probability that a score ran-
domly drawn for algorithm 1 is higher than a score ran-
domly drawn for algorithm 2,P (X2 > X1). This eventu-
ally leads to the design of a one-sided test. We then discuss
how to test the hypothesis of the score of two algorithms
being originated from distributions with significantly dif-
ferent medians (two-sided test).

5.1.1. ONE-SIDED TEST

In probabilistic terms, algorithm2 is better than algorithm
1, i.e.,X2 > X1, if:

P (X2 > X1) > P (X2 < X1) equiv.P (X2 > X1) >
1

2
,

where we have assumed thatX1 andX2 are continuous so
thatP (X2 = X1) = 0. In Section6 we will explain how
to deal with the presence of tiesX1 = X2. The Bayesian
approach to hypothesis testing defines a loss function for
each decision:

L(P, a) =

{

K0I{P (X2>X1)>0.5} if a = 0,
K1I{P (X2>X1)≤0.5} if a = 1.

(10)

where the first row gives the loss we incur by taking the
actiona = 0 (i.e., declaring thatP (X2 > X1) ≤ 0.5)

when actuallyP (X2 > X1) > 0.5, while the second row
gives the loss we incur by taking the actiona = 1 (i.e.,
declaring thatP (X2 > X1) > 0.5) when actuallyP (X2 >
X1) ≤ 0.5. Then, it computes the expected value of this
loss w.r.t. the posterior distribution ofP :

E [L(P, a)] =

{

K0P [P (X2 > X1) > 0.5] if a = 0,
K1P [P (X2 > X1) ≤ 0.5] if a = 1,

(11)
where we have exploited the fact that
E [I{P (X2>X1)>0.5}] = P [P (X2 > X1) > 0.5] (here
we have used the calligraphic letterP to denote probability
w.r.t. the DP). Thus, we choosea = 1 if

P [P (X2 > X1) > 0.5] > K1

K1+K0
, (12)

anda = 0 otherwise. When the above inequality is satis-
fied, we can declare thatP (X2 > X1) > 0.5 with proba-
bility K1

K0+K1
. For comparison with the traditional test we

will take K1

K0+K1
= 1−γ. However the Bayesian approach

allows to set the decision rule in order to optimize the pos-
terior risk. Optimal Bayesian decision rules for different
types of risk are discussed for instance by (Müller et al.,
2004).

Let us now computeP [P (X2 > X1) > 0.5] for the DP in
(9). From (7) with P ∼ Dp (s+ n, α∗

n), it follows that:

P (X2 > X1) = w0P0(X2 > X1) +

n
∑

i=1

wiI{X2i>X1i},

where (w0, w1, . . . , wn) ∼ Dir(s, 1, . . . , 1) and P0 ∼
Dp(s, α∗). The sampling ofP0 from Dp(s, α∗) should
be performed via stick breaking. However, if we take
α∗ = δX0

, we know from property (a) in Section4 that
P0 = δX0

and thus we have that

P [P (X2 > X1) > 0.5] = PDir

[

n
∑

i=0

wiIX2i>X1i
>

1

2

]

,

(13)
wherePDir is the probability w.r.t. the Dirichlet distri-
bution Dir(s, 1, . . . , 1). In other words, as the prior
base measure is discrete, also the posterior base mea-
sureαn = sδX0

+
∑n

i=1 δXi
is discrete with finite sup-

port {X0,X1, . . . ,Xn}. Sampling from such DP reduces
to sampling the probabilitywi of each elementXi in
the support from a Dirichlet distribution with parameters
(α(X0), α(X1), . . . , α(Xn)) = (s, 1, . . . , 1).

Hereafter, for simplicity, we will therefore assume that
α∗ = δx. In Section7, we will give more detailed justi-
fications for this choice. Notice, however, that the results
of the next sections can easily be extended to generalα∗.

5.1.2. TWO-SIDED TEST

In the previous section, we have derived a Bayesian version
of the one-sided hypothesis test, by calculating the poste-
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rior probability of the hypotheses to be compared. This
approach cannot be used to test the two-sided hypothesis
P (X2 > X1) = 0.5 (a = 0) againstP (X2 > X1) 6= 0.5
(a = 1) sinceP (X2 > X1) = 0.5 is a point null hypoth-
esis and, thus, its posterior probability is zero. A way to
approach two-sided tests in Bayesian analysis is to use the
(1 − γ)% symmetric (or equal-tail) credible interval (SCI)
(Gelman et al., 2013; Kruschke, 2010). If 0.5 lies outside
the SCI ofP (X2 > X1), we take the decisiona = 1, oth-
erwisea = 0:

a = 0 if 0.5 ∈ (1− γ)% SCI(P (X2 > X1)),

a = 1 if 0.5 /∈ (1− γ)% SCI(P (X2 > X1)).

SinceP (X2 > X1) is univariate distributed, its SCI can
be computed as follows: SCI(P (X2 > X1)) = [c, d], with
c, d are respectively theγ/2% and(1− γ/2)% percentiles
of the distribution ofP (X2 > X1).

5.2. The case m ≥ 3 - Bayesian Friedman test

The aim of this section is to derive a DP based Bayesian
version of the Friedman test. To obtain this new test, we
generalize the approach derived in the previous section for
the two-sided hypothesis test. Consider the following func-
tion:

R(Xi) =
m
∑

i6=k=1

I{Xi>Xk} + 1, (14)

that is the sum of the indicators of the eventsXi > Xk,
i.e., the algorithmi is better than algorithmk. Therefore,
R(Xi) gives the rank of the algorithmi among them al-
gorithms we are considering. The constant1 has been
added to have1 ≤ R(Xi) ≤ m, i.e., minimum rank
one and maximum rankm. Our goal is to test the point
null hypothesis thatE[R(X1), . . . , R(Xm)]T is equal to
[(m+1)/2, . . . , (m+1)/2]T , where(m+1)/2 is the mean
rank of a algorithm under the hypothesis that they have the
same performance. To test this point null hypothesis, we
can check whether:

[(m+ 1)/2, . . . , (m+ 1)/2]T

∈ (1− γ)% SCR(E[R(X1), . . . , R(Xm)]T ),

where SCR is the symmetric credible region for
E[R(X1), . . . , R(Xm)]T . When the inclusion does not
hold, we declare with probability1−γ that there is a differ-
ence between the algorithms. To compute SCR, we exploit
the following results.

Theorem 1. When α∗ = δx the mean of
[R(X1), . . . , R(Xm)]T is:

E[R(X1), . . . , R(Xm)]T = w0R0 +Rw, (15)

where (w0,w
T ) = (w0, w1, . . . , wn) ∼

Dir(s, 1, 1, . . . , 1), R is the matrix of ranks and
R0 =

∫

[R(X1), . . . , R(Xm)]T dα∗(X). The mean
and covariance ofw0R0 +Rw are:

µ = E [w0R0 +Rw] = sR0

s+n + R1

s+n , (16)

Σ = Cov [w0R0 +Rw]
= E[w2

0 ]R0R
T
0 +RE[ww

T ]RT

+ R0E[w0w
T ]RT +RE[ww0]R

T
0

− E [w0R0 +Rw]E [w0R0 +Rw]
T
,

(17)

where 1 is a n-dimensional vector of ones and
the expectations on the r.h.s. are taken w.r.t.
(w0,w

T ) ∼ Dir(s, 1, . . . , 1). �

Its proof and that of the next theorems can be found in the
appendix (supplementary material). For a largen, we have
that

µ = E [w0R0 +Rw] ≈ 1
nR1,

Σ = Cov [w0R0 +Rw]
≈ RE[ww

T ]RT −RE[w]E[wT ]RT ,

(18)

which tends respectively to the sample mean and sample
covariance of the vectors of ranks. Hence, for a largen we
can approximately assume that the null hypothesis mean
ranks vectorµ0 is included in the(1− γ)% SCR if

(µ− µ0)
T
Σ

−1 (µ− µ0)
∣

∣

∣

m−1
≤ ρ, (19)

where
∣

∣

m−1
means that we must take onlym − 1 com-

ponents of the vectors and the covariance matrix,1
µ0 =

[(m+ 1)/2, . . . , (m+ 1)/2]T and

ρ = Finv(1− γ,m− 1, n−m+ 1)
(n− 1)(m− 1)

n−m+ 1
,

whereFinv is the inverse of theF -distribution. There-
fore, from a Bayesian perspective, the Friedman test is an
inference for a multivariate mean based on an ellipsoid in-
clusion test. Note that, for smalln we should compute the
SCR by Monte Carlo sampling probability measures from
the posterior DP (9) P = w0P0 +

∑n
j=1 wjδXj

. We leave
the calculation of the exact SCR for future work.
The expression in (16) for the posterior expectation of
E[R(X1), . . . , R(Xm)]T w.r.t. the DP in (9) remains valid
for a genericα∗ since

E [Rm0] = E
[

∫
∑m−1

k=1 I{Xm>Xk}(X)dP0(X)
]

=
∫
∑m−1

k=1 I{Xm>Xk}(X)dE [P0(X)]

=
∫
∑m−1

k=1 I{Xm>Xk}(X)dα∗(X)
(20)

1 Note in fact thatµT
1 = m(m+1)/2 (a constant), therefore

there are onlym− 1 degrees of freedom.
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It can be observed that (16) is the sum of two terms. The
second term is proportional to the sampling mean rank of
algorithmXm, where the mean is taken over then datasets.
The first term is instead proportional to the prior mean rank
of the algorithmXm. Notice that fors → 0 the posterior
expectation ofE[R(X1), . . . , R(Xm)] reduces to:

E
[

E[R(X1), . . . , R(Xm)]T |Xn
]

= 1
n [R1, . . . , Rm]

T
.

(21)
Therefore, fors → 0 we obtain the mean ranks used in the
Friedman test.

5.3. A Bayesian multiple comparisons procedure

When the Bayesian Friedman test rejects the null hypoth-
esis that all algorithms under comparison perform equally
well, that is when the inequality in (19) is not satisfied, our
interest is to identify which algorithms have significantly
different performance. Following the directional multiple
comparisons procedure introduced in section3, we first
need to consider, for each of thek = m(m−1)/2 pairsi, j
of algorithms, the posterior probability of the alternative
hypothesesP (Xi > Xj) > 0.5 andP (Xj > Xi) > 0.5
and select the statement with the largest posterior proba-
bility. Then, we need to perform a multiple comparisons
procedure testing all thek = m(m − 1)/2 selected state-
ments, sayXj > Xi. For this, we follow the approach
proposed in (Gelman & Tuerlinckx, 2000) that starts from
the statement having the highest posterior probability and
accepts as many statements as possible stopping when the
joint posterior probability of all them being true is less than
1− γ. The multiple comparison proceeds as follows.

• For each comparison perform a Bayesian sign test and
derive the posterior probabilityP(P (Xj > Xi) >
0.5) that the hypothesisP (Xj > Xi) > 0.5 is
true (that is, algorithmj is betteri) and vice versa
P(P (Xi > Xj) > 0.5). Select the direction with
higher posterior probability for each pairi, j.

• Sort the posterior probabilities obtained in the previ-
ous step for the various pairwise comparisons in de-
creasing order. LetP1, . . . ,Pk be the sorted poste-
rior probabilities,S1, . . . , Sk the corresponding state-
mentsXj > Xi andH1, . . . , Hk the corresponding
hypothesesP (S1) > 0.5, . . . , P (Sk) > 0.5.

• Accept all the statementsSi with i ≤ ℓ, whereℓ is the
greatest integer s.t.:P(H1 ∧H2 ∧ · · · ∧Hℓ) > 1− γ.

Note that, if none of the hypotheses has at least1 − γ
posterior probability of being true, then we make no state-
ment. The joint posterior probability of multiple hypothe-
sesP(H1 ∧H2 ∧ · · · ∧Hℓ) can be computed numerically
by Monte Carlo sampling the probability measuresP =

∑n
j=0 wjδXj

with (w0, w1, . . . , wn) ∼ Dir(s, 1, . . . , 1)
and evaluating the fraction of times all theℓ conditions (one
for each statement under consideration)

P (Sj) =
n
∑

l=0

wlI{Sj} > 0.5, j = 1, . . . , ℓ

are verified simultaneously. This way we assure that the
posterior probability1−P(H1∧H2 ∧ · · · ∧Hℓ) that there
is an error in the list of accepted statements is lower than
γ. Thus the Bayesian does not assume independence be-
tween the different hypotheses, like the frequentist; instead
it considers their joint distribution. Assume, for example,
thatX1 andX2 are very highly correlated (take for sim-
plicity X1 = X2); when using the Bayesian test, if we ac-
cept the statementX1 > X3 we will automatically accept
alsoX2 > X3, whereas this is not true for the frequen-
tist test with either the Bonferroni or the Holm’s correction
(or other sequential procedures). On the other side, if the
p-value of two statements is 0.05, the frequentist approach
without correction will accept both of them, whereas this is
not true for our approach, since the joint probability of two
hypotheses having marginal posterior probability of 0.95,
can very easily be lower than 0.95.

6. Managing ties

To account for the presence of ties between the perfor-
mances of two algorithms (Xi = Xj), the common ap-
proach is to replace the rankingIXj>Xi

(which assigns1 if
Xj > Xi and0 otherwise) withI{Xj>Xi} + 0.5I{Xj=Xi}

(which assigns1 if Xj > Xi, 0.5 if Xj = Xi and0 oth-
erwise). Consider for instance the one-sided test in Section
5.1.1. To account for the presence of ties, we will to test the
hypothesis[P (Xi < Xj) +

1
2P (Xi = Xj)] ≤ 0.5 against

[P (Xi < Xj) +
1
2P (Xi = Xj)] > 0.5. Since

P (Xi < Xj) +
1
2P (Xi = Xj) =

E
[

I{Xj>Xi} +
1
2I{Xj=Xi}

]

= E[H(Xj −Xi)],

where H(·) denotes the Heaviside step function, i.e.,
H(z) = 1 for z > 0, H(z) = 0.5 for z = 0 andH(z) = 0
for z < 0. The results presented in the previous sections
are still valid if we substituteI{Xj>Xi} with H(Xj −Xi)
andP0(Xj > Xi) with P0(Xj > Xi) + 0.5P0(Xj = Xi).

7. Choosing the prior parameters

The DP is completely characterized by its prior parame-
ters: the prior strength (or precision)s and the normalized
base measureα∗. According to the Bayesian paradigm,
we should select these parameters based on the available
prior information. When no prior information is available,
there are several alternatives to define a noninformative DP.
The first solution to this problem has been proposed first
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by (Ferguson, 1973) and then by (Rubin, 1981) under the
name of Bayesian Bootstrap (BB). It is the limiting DP
obtained when the prior strengths goes to zero. In this
case the choice ofα∗ is irrelevant, since the posterior in-
ferences only depend on data fors → 0. Ferguson has
shown in several examples that the posterior expectations
derived using the limiting DP coincide with the correspond-
ing frequentist statistics (e.g., for the sign test statistic, for
the Mann-Whitney statistic etc.). In (16), we have shown
that this is also true for the Friedman statistic. However,
the BB model has faced quite some controversy, since it is
not actually noninformative and moreover it assigns zero
posterior probability to any set that does not include the
observations (Rubin, 1981). This latter issue can also give
rise to numerical problems. For instance, in the Bayesian
Friedman the covariance matrix obtained in (18) under the
limiting DP is often ill-conditioned, and thus the matrix
inversion in (19) can be numerically unstable. Instead, us-
ing a “non-null” prior introduces regularization terms in the
covariance matrix, as can be seen from (18). For this rea-
son, we have assumeds > 0 andα∗ = δX1=X2=···=Xm

,
so that a prioriE [E[H(Xj − Xi)]] = 1/2 for eachi, j
andE [E[R(Xi)]] = (m + 1)/2. This allows us to over-
come the effects of ill-conditioning, although this prior is
not “noninformative”: a-priori we are assuming that all the
algorithms have the same performance. However, it has the
nice feature that the decisions of the Bayesian sign test im-
plemented with this prior does not depend on the choice of
s as it is shown in the next theorem.

Theorem 2. Whenα∗ = δX1=X2
, we have that

P
[

P (X2 > X1) +
1
2P (X2 = X1) >

1
2

]

=
∫ 1

0.5
Beta(z;ng, n− nt − ng)dz

= 1−B1/2(ng, n− nt − ng),

(22)

where ng =
∑n

i=1 I{X2>X1}, nt =
∑n

i=1 I{X2=X1}

andB1/2(·, ·) is the regularized incomplete beta function
computed at1/2. �

An alternative solution to the problem of choosing the
parameters of the DP in case of lack of prior informa-
tion, which is “noninformative”and solves ill-conditioning,
is represented by the prior near-ignorance DP (IDP)
(Benavoli et al., 2014). It consists of a class of DP pri-
ors obtained by fixings > 0 (e.g., s = 1) and by let-
ting the normalized base measureα∗ vary in the set of all
probability measures. Sinces > 0, IDP introduces regu-
larization terms in the covariance matrix. Moreover, it is a
model of prior ignorance, since a priori it assumes that all
the relative ranks of the algorithms are possible. Posterior
inferences are therefore derived considering all the possi-
ble prior ranks, which results in lower and upper bounds
for the inferences (calculated considering the least favor-

Si p-value 1− P(Hi) 1 − P(H1 ∧ · · · ∧ Hi)

Sign test Bayesian test Bayesian test
X1 < X3 0.0000 0.0000 0.0000
X1 < X4 0.0000 0.0000 0.0000
X1 < X2 0.0000 0.0000 0.0000
X2 < X3 0.0494 0.0307 0.0307
X2 < X4 0.0494 0.0307 0.0595
X3 < X4 0.5722 0.5000 0.5263

Table 1.P-values and posterior probabilities of the sign and
Bayesian tests.

able and the most favorable prior rank). The application of
IDP to multivariate inference problems, as in (19), can be
computationally quite involving.

Example 1. Considerm = 4 algorithmsX1, X2, X3 and
X4 tested onn = 30 datasets and assume that the mean
ranks of the algorithms areR1 = 1.3, R2 = 2.5, R3 =
2.90 andR4 = 3.30 (the observations considered in this
example can be found in the supplementary material). This
gives a p-value of10−9 for the Friedman test and, thus,
we can reject the null hypothesis. We can then start the
multiple comparisons procedure to find which algorithms
are better (if any). Each pair of algorithmsi, j is com-
pared in the directionXj > Xi that gives a number of
times the conditionXj > Xi is verified in then observa-
tions larger thann/2 = 15. This way we guarantee that
the p-value for the comparison in the selected direction is
more significant than in the opposite direction. We apply
the Bayesian multiple comparison procedure to the four
simulated algorithms and compare it to the traditional pro-
cedure using the sign test. Table1 compares the p-values
obtained for the sign-test with the posterior probabilities
1 − P(Hi) of the hypothesisP (Si) > 0.5 being false
given by the Bayesian procedure. Note that the p-value of
the sign-test is always lower that the posterior probabil-
ity obtained with the priorα∗ = δX1=X2=X3=X4

showing
that the sign-test somehow favors the null hypothesis. The
third column of Table1 shows the posterior probabilities
1 − P(H1 ∧ · · · ∧ Hi) that at least one of the hypotheses
P (S1) > 0.5, . . . , P (Si) > 0.5 is false. All statements for
which this probability is smaller thanγ = 0.05 are retained
as significant. Thus, while only three p-values of the sign-
test fall below the conservative thresholdγ/(k − i + 1)
of the Holm’s procedure, and five p-value falls below the
unadjusted thresholdγ, the Bayesian test shows that up to
four statements the probability of error remains below the
thresholdγ = 0.05.

7.1. Racing experiments

We experimentally compare our procedure (Bayesian
Friedman test with joint multiple comparisons) with the
well-established F-race. The setting are as follows. We
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perform both the frequentist and the Friedman with sig-
nificanceα=0.05. For the Bayesian multiple comparison,
we accept statements of joint comparison whose posterior
probability is larger than 0.95. For the frequentist multiple
comparison we consider two options: using the sign test
(S) or the mean-ranks (MR) test. This yield the follow-
ing algorithms: Bayesian race, F-RaceS and F-RaceMR.
Within the F-race we perform the multiple comparison
keeping the significance level at 0.05, thus without con-
trolling the FWER error. This is the approach described by
(Birattari et al., 2002). By controlling the FWER the pro-
cedure would loose too power making less effective the rac-
ing. This remain true even if more modern procedures than
the Bonferroni correction are adopted. This also indirectly
shows that controlling the FWER is not always the best op-
tion. Within the Bayesian race, we define two algorithms
as indistinguishable if12 − ǫ < P (X2 > X1) < 1

2 + ǫ,
whereǫ = 0.05.

We considerq candidates in each race. We sample the re-
sults of thej-th candidate from a normal with meanµi and
varianceσ2

i . Before each race, the meansµ1, . . . , µq are
uniformly sampled from the interval[0, 1]; the variances
σ2
1 = · · · = σ2

q = ρ2. The best algorithm is thus the one
with the highest mean. We fix the overall number of max-
imum allowed assessments toM = 300. For each assess-
ment of an algorithm we decreaseM of one unit. In this ex-
perimental setting, everytime we assess thei-th algorithm
we increase the number of random generated observations
(from the normal with meanµi and varianceσ2

i ) of five
new observations. If multiple candidates are still present
when the number of maximum assessments is achieved,
we choose the candidate which has so far the best average
performance. We perform200 repetitions for each setting.
In each experiment we track the following indicators: the
absolute distance between the rank of the candidate even-
tually selected and the rank of the best algorithm (mean
absolute error, denoted byMAE) and the fraction of the
number of required iterations w.r.t. the maximum allowed
M (denoted byITER).

Setting Bayesian F-RaceS F-RaceMR

q, ρ # ITER MAE # ITER MAE # ITER MAE

30, 1 0.63 0.70 0.67 0.80 0.58 0.77
50, 1 0.72 0.92 0.80 1.22 0.69 1.15
100, 1 0.75 1.84 0.84 2.31 0.70 2.05
100, 0.5 0.67 1.15 0.74 1.19 0.62 1.26
100, 0.1 0.36 0.28 0.36 0.30 0.35 0.30
200, 0.1 0.50 0.46 0.51 0.63 0.50 0.58

Table 2.Experimental results of racing.

The simulation results are shown in Table2 for different
values ofq and ρ. From Table2, it is evident that our
method is the best in terms of MAE. F-RaceMR is in some
case faster than our method, but it has always a higher

MAE. Instead, F-RaceS is always outperformed by our
method both in terms of MAE and ITER. F-RaceS and the
Bayesian tests perform the pairwise multiple comparisons
with a sign test and, respectively, a Bayesian version of the
sign test, so they are quite similar. The lower ITER of the
Bayesian method is also due to the fact that it can declare
that two algorithms are indistinguishable. This allows to
remove many algorithms and so to speed up the decision
process. Table3 reports the average number of algorithms
removed because indistinguishable in the above listed case-
studies. Note that, the pairs declared as indistinguishable
from the Bayesian test were always be truly indistinguish-
able according to the adopted criterion described above.
Therefore, the Bayesian test is very accurate on detecting
when two algorithms are indistinguishable.

Setting Bayesian
q, ρ # indistinguishable

30, 1 0.9
50, 1 1.7
100, 1 4.5
100, 0.5 3.1
100, 0.1 2.4
200, 0.1 2.7

Table 3.Average number of algorithms declared to be indistin-
guishable.

Although the Bayesian method removes more algorithms,
it has lower MAE than F-RaceS , because with the joint test
is able to reduce the number of Type-I errors, but without
penalizing the power too much.

8. Conclusions

We have proposed a novel Bayesian method based on the
Dirichlet Processes (DP) for performing the Friedman test,
together with ajoint procedure for the analysis of the mul-
tiple comparisons which accounts for their dependencies
and which is based on the posterior probability computed
through the DP. We have then employed this new test for
performing algorithms racing. Experimental results have
shown that our approach is competitive both in terms of ac-
curacy and speed in detecting the best algorithm. We plan
to extend this work in two directions. The first is to im-
plement Bayesian versions of other multiple nonparametric
tests such as for instance the Kruskal-Wallis test. Second,
we plan to derive new tests for algorithms racing which are
able to compare the algorithms using more than one metric
at the same time.
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