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Abstract

A fundamental task in machine learning is to
compare the performance of multiple algorithms.
This is usually performed by the frequentist
Friedman test followed by multiple comparisons.
This implies dealing with the well-known short-
comings of null hypothesis significance tests. We
propose a Bayesian approach to overcome these
problems. We provide three main contributions.
First, we propose a nonparametric Bayesian ver-
sion of the Friedman test using a Dirichlet pro-
cess (DP) based prior. We show that, from a
Bayesian perspective, the Friedman test is an in-
ference for a multivariate mean based on an ellip-
soid inclusion test. Second, we deriv@mt pro-
cedure for the multiple comparisons which ac-
counts for their dependencies and which is based
on the posterior probability computed through
the DP. The proposed approach allows verifying
the null hypothesis, not only rejecting it. Third,
as a practical application we show the results in
our algorithm forracing, i.e. identifying the best
algorithm among a large set of candidates se-
guentially assessed. Our approach consistently
outperforms its frequentist counterpart.

1. Introduction

bility of rejecting the null hypothesis when it is true. The
framework of null hypothesis significance tests has how-
ever important drawbacks. For instance one usually sets the
significance level to 0.01 or 0.05, without having the pos-
sibility of an optimal trade-off between Type | and Type Il
errors.

Instead, Bayesian tests of hypothegisuschke 2010 es-
timate the posterior probability of the null and of the al-
ternative hypothesis, which allows to take decisions which
minimize the posterior risk. Sed&(uschke 2010 for a
detailed discussion of further advantages of Bayesian hy-
pothesis testing. However there are currently no Bayesian
counterparts of the Friedman test. Our first contribution
is a Bayesian version of the Friedman test. We adopt
the Dirichlet process (DP)Herguson1973 as a model

for the prior. The DP has been already used to de-
velop Bayesian counterparts of frequentist non-parametri
estimators such as Kaplan-Meiesusarla & Van Ryzin
1976, the Kendall's tau Dalal & Phadia 1983 and the
Wilcoxon signed-rank testBenavoli et al. 2014. Our
novel derivation shows that, from a Bayesian perspective,
the Friedman test is an inference for a multivariate mean
based on an ellipsoid inclusion test.

When the frequentist Friedman test rejects the null hy-
pothesis, a series of multiple pairwise comparison are
performed in order to assess which algorithm is signif-
icantly different from which. The traditional post-hoc
analysis controls the family-wise Type | error (FWER),

A fundamental task in machine learning is to comparenamely the probability of finding at least one Type | error
multiple algorithms. The non-parametric Friedman testamong the null hypotheses which are rejected when per-
(Dem3ay 2009 is recommended to this end. The advan-forming the multiple comparisons. The traditional Bon-
tages of the non-parametric approach are that it da¢s ferroni correction for multiple comparisons controls the
average measures taken on different data sets; it doies FWER but yields too conservative inferences. More mod-
assume normality of the sample means; ibisustto out-  ern approaches for controlling the FWER are discussed
liers. The Friedman test is a null-hypothesis significancen (Demsay 2006 Garcia & Herrera2008. All such ap-
tests. It thus controls the Type | error, namely the probaproaches simplistically treat the multiple comparisons as
independent from each other. But when comparing al-
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Our second contribution is jaint procedure for the anal- None of the racing procedures discussed so far can exactly
ysis of the multiple comparisons which accounts for theircompute the probability (or the confidence) of a series of
dependencies. We adopt the definition of Bayesian multiplsequential statements which are issued during the multiple
comparison of Gelman & Tuerlinckx 2000. We analyze comparisons, since they treat the multiple comparisons as
the posterior probability computed through the Dirichletindependent.
process, |dent|fy|r_19 stateme_ntsmfnt comparisons which Our novel procedure allows both to detect indistinguisaabl
have high posterior probability. The proposed procedure : .
: . . models and to model the dependencies between the multi-
is a compromise between controlling the FWER and per- .
) . L ple comparisons.

forming no correction of the significance level for the mul-
tiple comparisons. Our Bayesian procedure produces more _
Type | errors but less Type Il errors than procedures whick2. Friedman test
controls the family-wise error. In fact, it does not aim at . . . . .

i . ) . The comparison of multiple algorithms are organized in the
controlling the family-wise error. On the other hand, itpro . .

. _following matrix:

duces both less Type | and less Type Il errors than running
independent tests without correction for the multiple com-

parison, thanks to its ability in capturing the dependencie Performance on different cases

n
of the multiple comparisons. E X1 X Xin
. . . ‘E X21 X22 e Xgn (1)
Our overall procedure thus consists of a Bayesian Friedman S . . . .
test, followed by a joint analysis of the multiple compari- < ' ' :
son. X1 X2 oo X
1.1. Racing whereX;; denotes the performance of théh algorithm on

the j-th dataset (fok = 1,...,mandj = 1,...,n). The
Racing addresses the problem of identifying the best alperformance of algorithms on different cases can refer for
gorithms among a large set of candidates. Racing isnstance to the accuracy of different classifiers on mutipl
particularly useful when running the algorithms is time- qata setsPemsay 2006 or the maximum value achieved

consuming and thus they cannot be evaluated many timegy, different solvers on different optimization problems
for instance when comparing different configurations of Birattari et al, 2002.

time-consuming optimization heuristics. The idea of rac- ] )
ing (Maron & Moore 1997 is to test the set of algorithms The performances obtained on different data sets are as-

in parallel and to discard early those recognized as inferio SUmed to be independent. The algorithms are then ranked
Inferior candidates are recognized through statisticsiste c0lumn-by-column obtaining the matrik of the ranks

The race thus progressively focuses on the better models.fij» © = 1,...,mandj = 1,...,n, with R;; the rank of
thei-th algorithm with respect to to the other observations

There are both frequentist and Bayesian approaches fg the j-th column. The row sum ., Rij = m(m+1)/2
racing. A peculiar feature of Bayesian algorithmsis a constant (i.e., the sum of the firstinteger), while the
(Maron & Moore 1997 Chien et al. 1993 is that they are  cojumn sumi; = S Rij,i=1,...,m,is affected by
able to eliminate also models whose performance is veryne differences between the algorithms. The null hypoth-
similar with high probability indistinguishable models  esjs of the Friedman test is that the different samples are

Detecting two indistinguishable models correspondde  drawn from populations with identical medians. Under the
ceptthe null hypothesis that their performance is equiv-py|| hypothesis the statistic

alent. It is instead impossible to accept the null hypoth-

esis for a frequentist test. However the applicability of 19 n n(m + 1) 2
such Bayesian racing approachbtafon & Mooreg 1997, Q= ——— {Rj - 7] ,
Chien et al, 1999 is restricted, as they assume the normal- nm(m + 1) = 2

ity of observations.

is approximately chi-square distributed with— 1 degress
of freedom. The approximation s reliable when- 7. We
denote byy the significance of the test. The null hypoth-

is the F-raceBirattari et al, 2002). It first performs the fre- S . L
quentist Friedman test, followed by the multiple compar-ES1S 1S rejected when the statistic exceed the criticaleyalu
’ namely when:

isons if the null hypothesis of the Friedman is rejected. Be-
ing frequentist, the F-race cannot eliminate indistinguis Q>x% . 2)
able models. ’

Non-parametric frequentist are generally preferred for ra
ing (Birattari, 2009 Chap.4.4). A popular racing algorithm

Form = 2 the Friedman test reduces to a sign test.
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3. Directional multiple comparisons distribution with parameterén(B;), ..., a(B,,)), where

. . , a(-) is a finite positive Borel measure éh Consider the
If the Friedman test rejects the null hypothesis one has t?)artitionBl — AandB, = A° = X\ A for some measur-

establish which are the significantly different algorithms able setd € X, then if P ~ D(a), lets = a(X) stand
The commonly _adOF’_ted St"’}t'St'C for comparing B for the total mass ofe(-), from the definition of the DP we
and thej-th algorithm is Dem3ar2006 Garcia & Herrera have tha{ P(A), P(A)) ~ Dir(a(A),s — a(A)), which

2008: ( ) is a Beta distribution. From the moments of the Beta distri-
m(m + i i .
2= (Ri—Rj)/ e bution, we can thus derive that:
a(A) a(A)(s — a(A))

which is normally distributed. Comparing this statistics &[P(A)] = ——=, V[P(A)] = 3 . (3)
with the critical value of the normal distribution yieldseth s s+ 1)

mean ranks testA shortcoming of the mean rank test is Where we have used the calligraphic lett&rand)’ to de-
that the decisions regarding algorithrijsj depends also Nnote expectation and variance w.r.t. the Dirichlet process
on the scores of all the other algorithms in the set. This isThis shows that the normalized measut¢-) = «(-)/s of

a severe issue which can have a negative impact both dhe DP reflects the prior expectation Bf while the scal-
Type | and the Type Il errordMiller, 1966 Gabrie| 1969 ing parametes controls how muchP is allowed to deviate

Fligner, 1984; see alsoHlollander et al.2013 Sec. 7.3).  from its mean. IfP ~ D(«), we shall also describe this
) o , by sayingP ~ Dp(s,a*). Let P ~ Dp(s,a*) andf be a
Alternatively, one can compare algorithitto algorithm .5 |.yalued bounded function defined @0, B). Then the

j via either theWilcoxon signed-rank tesir thesign test gy nectation with respect to the Dirichlet processif] is
(Conover & Conover1980. The Wilcoxon signed-rank

test has more power than the sign test, but it assumes thatg[E(f)] — [/ fdP] _ /fdﬁ[P] _ /fda*. (4)
the distribution of the data is symmetric w.r.t. its median.

When this is not the case, the Wilcoxon signed-rank tesbne of the most remarkable properties of the DP priors
is not calibrated. Conversely, the sign test does not res that the posterior distribution oP is again a DP. Let
quire any assumption on the distribution of the data. Pairx, . X, be an independent and identically distributed
wise comparisons are often performed in a two-sided fashsample frompP andP ~ Dp(s, o*), then the posterior dis-

ion. In this case a Type | error correspond to a claimripution of P given the observations is
of difference between two algorithms, while the two al-

gorithms have instead identical performance. However, P|Xy,..., X, ~ Dp <S +n, M) . (5
it is hardly believable that two algorithms have an actu- s+n

ally identical performance. It is thus more interesting-run where éx, is an atomic probability measure centered at
ning one-sided comparisons. We thus perform the multi-X;. The Dirichlet process satisfies the property of conju-
ple comparisons in a directional fashiowi(liams et al, gacy, since the posterior fd? is again a Dirichlet process
1999: for each pairi, j of algorithms we select the one- with updated unnormalized base measure Z?:l dx, .
sided comparison yielding the smallgstalue. A Type S From @3),(4) and 6) we can easily derive the posterior
error (Gelman & Tuerlinckx 2000 is done every time we mean and variance aP(A) and, respectively, posterior
wrongly claim that algorithm is better thary, while the  expectation off. Some useful properties of the DP
opposite is instead true. The output of this procedure willlGhosh & Ramamoorti{2003 Ch.3)) are the following:
consist in the set of all directional claims for which the

value is smaller than a suitably corrected threshold. (a) Consider an element € M which puts all its mass at
the probability measur® = §, for somer € X. This
can also be modeled d@3p(s, d,,) for eachs > 0.

. (b) Assume thatP, ~ Dp(s1,a3), P ~ Dp(sa,a3),
The Dirichlet process was developed by Ferguson (w1,ws) ~ Dir(si,s5) and Pi, Pa, (wy,ws)

(Ferguson_1_973_as_a p_robablhty distribution on the space are independent, theGhosh & Ramamoorth2003
of probability distributions. LefX be a standard Borel Sec.3.1.1);

space with Boreb-field Bx andP be the space of prob- e
ability measures ofiX, Bx_) equlppgd with the weak topol- w1 Py + 1wy Py ~ Dp (Sl + 5 s1oq + smz) . (6)
ogy and the corresponding Borelfield Bp. Let M be the 81 + 82

class of all probability measures ¢R, Bp). We call the o R
elementg: € M nonparametric priors. An elementlifis ~ (¢) Let P have distributionDp(s + n, —5=—=+). We
called a Dirichlet process distributidn(«) with base mea- can write N

sureq if for every finite measurable partitioRy, . . : ’,Bm P = woPy + Z widx,, @)
of X, the vector(P(B;),...,P(B,,)) has a Dirichlet

4. Dirichlet process

i=1
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where (wg,w1,...,w,) ~ Dir(s,1,...,1) and when actuallyP(X, > X;) > 0.5, while the second row
Py ~ Dp(s, ™) (it follows by (a)-(b)). gives the loss we incur by taking the actian= 1 (i.e.,
declaring that’(Xs > X;) > 0.5) when actuallyP(Xs >
5. A Bayesian Friedman test X;1) < 0.5. Then, it computes the expected value of this

loss w.r.t. the posterior distribution &f:

Let us denote withX the vector of performances -
) KoP[P(Xy> X1)>05] ifa=0,
[X1,...,X,,]T for m algorithms so that the records algo- £ [L(P, a)] = { Koz {PEXQ i Xlg z 0 5} :f Z _
rithms/dataset can be rewritten as ! 2 V=" (1’1)
n here we have exploited the fact that
X" = {Xy,...,X,), @ Y
X } Elp(x,>x,)>051 = P[P(X2 > X1) > 0.5] (here

that is a set of: vector valued observations 8%, i.e., X; ~ We have used the calligraphic let@erto denote probability
coincides with thej-column of the matrix in ). Let P W.r.t. the DP). Thus, we choose= 1 if

be the unknown distribution oK, assume that the prior PP(Xs> X1) > 0.5] > g, (12)
distribution of P is Dp(s, a*), our goal is to compute the _ e )
posterior ofP. From @), we know that the posterior ¢~ @nda = 0 otherwise. When the above inequality is satis-

is fied, we can declare th& (X, > X;) > 0.5 with proba-
* T 0%, bility —£1—. For comparison with the traditional test we
Dp (S +n,af = M—Z—lxl) ) (9) ) y KO+KI1< p .
s+n will take Tor = 1—7 However the Bayesian approach
We adopt this distribution to devise a Bayesian counterpardllows to set the decision rule in order to optimize the pos-
of the Friedman’s hypothesis test. terior risk. Optimal Bayesian decision rules for different
types of risk are discussed for instance Mu(ler et al,
5.1. Thecase m = 2 - Bayesian sign test 2009.

Let us now comput@® [P(X, > X;) > 0.5] for the DP in

. B T
Assume there are only two algoriths = [ X1, X5]', in (9). From () with P ~ Dy (s + n, %), it follows that:

the next sections we will show how to assess if algorithm
is better than algorithm (one-sided test), i.eXs > X;, n

and how to assess if there is a difference between the two! (X2 > X1) = woPo(X2 > X1) + ZwiI{X2i>Xli}’
algorithms (two-sided test), i.eX; # X,. The next sec- =1

tion shows how to compare two algorithms. In particularwhere (wo, w1, ..., w,) ~ Dir(s,1,...,1) and Py ~
we show how to assess the probability that a score ranPp(s,«*). The sampling ofP, from Dp(s, «*) should
domly drawn for algorithm 1 is higher than a score ran-be performed via stick breaking. However, if we take
domly drawn for algorithm 2P(X, > X;). This eventu- o = dx,, we know from property (a) in Sectioh that
ally leads to the design of a one-sided test. We then discus® = dx, and thus we have that

how to test the hypothesis of the score of two algorithms

being originated from distributions with significantly €if P [P(Xx, > X}) > 0.5] = Pp;,
ferent medians (two-sided test).

= 1
ZwiIX2i>Xli > 5] )

i=0

(13)
5.1.1. ONE-SIDED TEST where Pp,;,. is the probability w.r.t. the Dirichlet distri-
bution Dir(s,1,...,1). In other words, as the prior

In probabilistic terms, algorithr is better than algorithm

| - base measure is discrete, also the posterior base mea-
1,i.e,Xo > X4, if:

surea, = sdx, + Y., 0x, is discrete with finite sup-
_ 1 port{Xy, Xy, ...,X,}. Sampling from such DP reduces
P(Xz > X1) > P(Xz < X1) equiv. P(Xz > X1) > 5. to sampling the probabilitys; of each elementX; in

) the support from a Dirichlet distribution with parameters
where we have assumed that and X, are continuous so (X)), a(X1), ..., (X)) = (s, 1,...,1).

that P(X,> = X1) = 0. In Section6 we will explain how o )
to deal with the presence of tie§, = X,. The Bayesian Hereatfter, for simplicity, we will therefore assume that

approach to hypothesis testing defines a loss function foft” = dx- In Section7, we will give more detailed justi-
each decision: fications for this choice. Notice, however, that the results

_ of the next sections can easily be extended to genétal
L(P,a) = { Koltp(x,>x1)>051  ifa=0, (10)
’ Kilip(x,>x)<05y  ifa=1 5.1.2. TWO-SIDED TEST

where the first row gives the loss we incur by taking theln the previous section, we have derived a Bayesian version
actiona = 0 (i.e., declaring thatP(X, > X;) < 0.5) of the one-sided hypothesis test, by calculating the poste-
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rior probability of the hypotheses to be compared. Thiswhere (wg,w?’) = (wo, Wi, ..., wy) ~
approach cannot be used to test the two-sided hypothesigir(s,1,1,...,1), R is the matrix of ranks and
P(X2 > X1) = 0.5 (a = 0) againstP(X, > X1) #05 Ry = [[R(X1),...,R(Xy)]Tda*(X). The mean
(a = 1) sinceP(X2 > X;) = 0.5 is a point null hypoth-  and covariance ofuyRy + Rw are:

esis and, thus, its posterior probability is zero. A way to _ SR R1

approach two-sided tests in Bayesian analysis is to use the p=EwoRo + Rw] = otn s (16)

(1 — )% symmetric (or equal-tail) credible interval (SCI)

(Gelman et al.2013 Kruschke 2010. If 0.5 lies outside ¥ = CovlwRy+ Rw]
the SCI of P(X> > X;), we take the decision = 1, oth- = E[wi]RoRy + RE[ww!|R”
erwisea = 0: + RoEwewT|RT + RE[wwo|R{ (17)
a=0if 0.5 € (1 —+)% SCI(P(Xs > X1)), —  E[wyRo+ Rw] E [woRo + Rw]” |
a=1if0.5¢ (1 —-~)%SCIP(Xs > X1)). where 1 is a n-dimensional vector of ones and
the expectations on the rh.s. are taken w.rt.
Since P(X, > Xi) is univariate distributed, its SCI can (wo,w") ~ Dir(s,1,...,1). u

be computed as follows: S@P(X2 > X1)) = [c, d], with
¢, d are respectively the /2% and(1 — ~v/2)% percentiles

L= Its proof and that of the next theorems can be found in the
of the distribution ofP (X, > X;).

appendix (supplementary material). For a langeve have
that

u

5.2. Thecase m > 3 - Bayesian Friedman test

E [woRo + RW] ~ %Rl,
The_a|m of this section is to derive a bP pased Bayesian Cov [woRo + Rw] (18)
version of the Friedman test. To obtain this new test, we T T T T

. ST . i REww'|R' — RE[w]E[w']R",
generalize the approach derived in the previous section for
the two-sided hypothesis test. Consider the following func which tends respectively to the sample mean and sample

Q|

tion: covariance of the vectors of ranks. Hence, for a largee
i can approximately assume that the null hypothesis mean
R(X:) = Z Iixi>xy 1, (14)  ranks vectoy is included in theg1 — v)% SCR if
i#k=1
T s —1
that is the sum of the indicators of the eveiifs > X, (B —ro)” Z77 (1 — 1) I (19)

i.e., the algorithmi is better than algorithrk. Therefore,

R(X;) gives the rank of the algorithmamong then al- where|  means that we must take only — 1 com-

gorithms we are considering. The constdnhas been Ponents of the vectors and the covariance matyix, =

added to havd < R(X;) < m, ie., minimum rank [(m+1)/2,...,(m+1)/2]" and

one and maximum rank:. Our goal is to test the point . (n—1)(m—1)

null hypothesis thatE[R(X1), ..., R(X,,)| is equal to  p=FInvV(l —y,m—1n—m+1)——"——

m+1)/2,...,(m+1)/2]T, where(m+1)/2 is the mean L . R

Eénk of)é algorit(hm un)ée]r the hypéthesis){hat they have thj(vhereFm” is the inverse of the-distribution. There-

same performance. To test this point null hypothesis, w ore, from a Bayes'?‘” perspectwe, the Frledman_test_ IS an
inference for a multivariate mean based on an ellipsoid in-

can check whether: .
clusion test. Note that, for small we should compute the

)

[(m+1)/2,...,(m+1)/2]" SCR by Monte Carlo sampling probability measures from
T - the posterior DPQ) P = wo Py + 2?21 w;ox,. We leave
€ (1 =7)% SCRE[R(X1), ..., R(Xm)]"), the calculation of the exact SCR for future work.

The expression in1@) for the posterior expectation of
E[R(X1),..., R(Xn)]" w.r.t. the DP in 9) remains valid
for a generiax* since

where SCR is the symmetric credible region for
E[R(X1),...,R(X,,)]T. When the inclusion does not
hold, we declare with probability—~ that there is a differ-

ence between the algorithms. To compute SCR, we exploit  £[R,,,] = & U Zm—l Iix, > x (X)dPo(X)

k=1
the following results. em—
’ =[O0 T x0 (X)dE [Po(X)]

— : m—1 *
Theorem 1. When a* = 6 the mean of = 205 I xg (X)da™ (X) (20)
[R(X1), ..., R(Xm)T is:

! Note in fact thaps” 1 = m(m+1)/2 (a constant), therefore
E[R(X1),...,R(X,)]Y = woRo+Rw, (15) there are onlyn — 1 degrees of freedom.
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It can be observed that ) is the sum of two terms. The Z};O wjox,; With (wo,w1,...,w,) ~ Dir(s,1,...,1)
second term is proportional to the sampling mean rank ofind evaluating the fraction of times all theonditions (one
algorithmX,,, where the mean is taken over thelatasets.  for each statement under consideration)

The first term is instead proportional to the prior mean rank N

of the algorithm.X,,,. Notice that fors — 0 the posterior P(S;) = Zwlf{sj} >05, j=1,....¢

expectation oE[R(X1), ..., R(X,,)] reduces to: =

E[E[R(X1), ..., R(Xn)T X" = L [Ry,..., R are verified simultaneously. This way we assure that the
(21) posterior probability — P(H; A Ha A - - - A Hy) that there
Therefore, fors — 0 we obtain the mean ranks used in the is an error in the list of accepted statements is lower than

Friedman test. ~. Thus the Bayesian does not assume independence be-
tween the different hypotheses, like the frequentistgiadt
5.3. A Bayesian multiple comparisons procedure it considers their joint distribution. Assume, for example

that X; and X, are very highly correlated (take for sim-
When the Bayesian Friedman test rejects the null hypothpncity X = X>); when using the Bayesian test, if we ac-
esis that all algorithms under comparison perform equall){:ept the statement; > X3 we will automatically accept
well, that is when the inequality irlLQ) is not satisfied, our also X» > X3, whereas this is not true for the frequen-
interest is to identify which algorithms have significantly it test with either the Bonferroni or the Holm’s correctio
different performance. Following the directional mulépl (or other sequential procedures). On the other side, if the
comparisons procedure introduced in sectB)rW(.a first  p.value of two statements is 0.05, the frequentist approach
need to consider, for each of the= m(m —1)/2 pairsi,j  without correction will accept both of them, whereas this is
of algorithms, the posterior probability of the alternativ ¢ true for our approach, since the joint probability of two

hypotheses>(X; > X;) > 0.5 andP(X; > Xi) > 0.5 pypotheses having marginal posterior probability of 0.95,
and select the statement with the largest posterior probgsgp, very easily be lower than 0.95.

bility. Then, we need to perform a multiple comparisons
procedure testing all the = m(m — 1)/2 selected state- 6. M . .
ments, sayX,; > X;. For this, we follow the approach ™~ anaging ties

proposed inGelman & Tuerlinckx200Q that starts from 14 account for the presence of ties between the perfor-
the statement having the highest posterior probability angh,ances of two algorithmsX;, = X;), the common ap-
accepts as many statements as possible stopping when tBPoach is to replace the rankidg - x, (which assigng if
joint posterior probability of all them being true is lesaith X, > X, and0 otherwise) withI{JX.;X.} +0.50x,—x
1 — . The multiple comparison proceeds as follows. (which assignd if X; > X;, 0.5 if X, = X, and0 oth-
erwise). Consider for instance the one-sided test in Sectio
e For each comparison perform a Bayesian sign test ang.1.1 To account for the presence of ties, we will to test the
derive the posterior probabilitP (P(X; > X;) >  hypothesi§P(X; < X;) + $P(X; = X;)] < 0.5 against
0.5) that the hypothesis’(X; > X;) > 05is  [P(X; < X;)+ $P(X; = X;)] > 0.5. Since
true (that is, algorithiy is betteri) and vice versa
P(P(X; > X;) > 0.5). Select the direction with P(X; < Xj) 4+ 5P(Xi = X;) =
higher posterior probability for each paiir;. EIix,>xy + 31ix,=x,y] = E[H(X; — X)),

e Sort the posterior probabilities obtained in the previ-where H(-) denotes the Heaviside step function, i.e.,
ous step for the various pairwise comparisons in de#(z) = 1forz > 0, H(z) = 0.5for z = 0 andH(z) = 0
creasing order. LePy,..., P, be the sorted poste- for z < 0. The results presented in the previous sections
rior probabilities,Ss, . . ., Sy, the corresponding state- are still valid if we substitutd x - x,) with H(X; — X;)
mentsX; > X; and Hy,..., H, the corresponding andPy(X; > X;) with Po(X; > X;) +0.5P(X; = X;).
hypothese$(S1) > 0.5,..., P(Sk) > 0.5.

e Accept all the statemenfs with i < ¢, wherel is the 7. Choosmg the prior parameters

greatestinteger s.t?(H1 AHx A---AHg) >1—7.  The DP is completely characterized by its prior parame-
ters: the prior strength (or precisionnd the normalized
Note that, if none of the hypotheses has at Ielast v base measure*. According to the Bayesian paradigm,
posterior probability of being true, then we make no statewe should select these parameters based on the available
ment. The joint posterior probability of multiple hypothe- prior information. When no prior information is available,
sesP(Hy A Hy A --- A\ Hy) can be computed numerically there are several alternatives to define a noninformative DP
by Monte Carlo sampling the probability measur@s—= The first solution to this problem has been proposed first
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by (Ferguson1973 and then by Rubin 1981) under the Si glé’r?'ti‘; 1;31),7;%1)6& i
name of Bayesian Bootstrap (BB). It is the limiting DP X, < X5 _ 0.0000 0.0000 0.0000
obtained when the prior strengthgoes to zero. In this X1 < X4  0.0000 0.0000 0.0000

i e X I X, < X2  0.0000 0.0000 0.0000
case the choice af* is irrelevant, since the posterior in- Xo < X5 00494 0.0307 0.0307
ferences only depend on data for— 0. Ferguson has Xp <Xy 00494 0.0307 0.0595

X3 < X4 0.5722 0.5000 0.5263

shown in several examples that the posterior expectations
derived using the limiting DP coincide with the correspond-
ing frequentist statistics (e.qg., for the sign test statior Table __l.P-vaIues and posterior probabilities of the sign and
the Mann-Whitney statistic etc.). I16), we have shown Bayesiantests.

that this is also true for the Friedman statistic. However,

the BB model has faced quite some controversy, since it is

not actually noninformative and moreover it assigns zergaple and the most favorable prior rank). The application of

posterior probability to any set that does not include thepp to multivariate inference problems, as itg), can be
observationsRubin 1981). This latter issue can also give computationally quite involving.

rise to numerical problems. For instance, in the Bayesian

Friedman the covariance matrix obtained 18)(under the . .
limiting DP is often ill-conditioned, and thus the matrix Exa@mple 1. Considen = 4 algorithms X, X,, X3 and
inversion in (L9) can be numerically unstable. Instead, us-X4 tested om = 30 datasets and assume that the mean

ing a “non-null” prior introduces regularizationtermsiret ~ fanks of the algorithms aré?, = 1.3, Ry = 2.5, R3 =

covariance matrix, as can be seen frat8)( For this rea- 2.90 and R4 = 3.30 (the observations considered in this
son, we have assumed> 0 anda* = 6. _x X example can be found in the supplementary material). This
’ 1=X2="=Xm?

so that a priori€[E[H (X, — X;)]] = 1/2 for eachi, j gives a p—_value ot0~? for the Ffiedman test and, thus,
and€[E[R(X,)]] = (m + 1)/2. This allows us to over- W€ can reject th_e null hypothesis. We can then stgrt the
come the effects of ill-conditioning, although this prier i Multiple comparisons procedure to find which algorithms
not “noninformative”: a-priori we are assuming that all the @€ Petter (if any). Each pair of algorithms j is com-
algorithms have the same performance. However, it has theared in the direction; > X; that gives a number of
nice feature that the decisions of the Bayesian sign test imimes the conditionY; > X; is verified in then observa-

plemented with this prior does not depend on the choice ofions larger thann/2 = 15. This way we guarantee that
s as it is shown in the next theorem. the p-value for the comparison in the selected direction is

more significant than in the opposite direction. We apply
the Bayesian multiple comparison procedure to the four

Theorem 2. Whena™ = 6, —x,, we have that simulated algorithms and compare it to the traditional pro-
P(Xo> X 1p(Xy = X1) > 1 cedure using the sign test. Takleeompares the p-values
P[fl( 32 taf _1) 3P (X );) 2] 22) obtained for the sign-test with the posterior probabiltie

— Jop DCHANZ g, TV T T ) A2 1 — P(H;) of the hypothesis?(S;) > 0.5 being false

=1-=Biya(ng,n —ny —ny), given by the Bayesian procedure. Note that the p-value of

wheren, = >0 Iix,oxiy, e = o Iix,—x,y  the sign-testis always lower that the posterior probabil-
and B 5 (-, ) is the regularized incomplete beta function ity obtained with the prion” = dx, = x,=x,=x, showing
computed at /2. m that the sign-test somehow favors the null hypothesis. The

third column of Tablel shows the posterior probabilities
) ) ) 1—P(H1A--- A H;) that at least one of the hypotheses
An alternative solution to the problem of choosing theP(Sl) > 0.5,...,P(S;) > 0.5 is false. All statements for
parameters ‘?‘f the DP in case of lack of prior informa-,hich this probability is smaller tham — 0.05 are retained
tion, whichis “noninformative”and solvesill-conditiamd,  5q gignificant. Thus, while only three p-values of the sign-
is represented by the prior near-ignorance DP (IDP)egt fa1l helow the conservative threshejd(k — i + 1)
(Benavoli et al. 2014. It consists of a class of DP pri- ot the Holm's procedure, and five p-value falls below the
ors obtained by fixings > 0 (e.9.,s = 1) and by let-  ,nadjusted threshold, the Bayesian test shows that up to

ting the normalized base measurevary in the set of all ¢4, statements the probability of error remains below the
probability measures. Sinee> 0, IDP introduces regu- thresholdy = 0.05.

larization terms in the covariance matrix. Moreover, it is a
model of prior ignorance, since a priori it assumes that z_;\II7_1_ Racing experiments
the relative ranks of the algorithms are possible. Posterio
inferences are therefore derived considering all the possiWe experimentally compare our procedure (Bayesian
ble prior ranks, which results in lower and upper boundsFriedman test with joint multiple comparisons) with the

for the inferences (calculated considering the least favorwell-established F-race. The setting are as follows. We
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perform both the frequentist and the Friedman with sig-MAE. Instead, F-Race is always outperformed by our
nificancea=0.05. For the Bayesian multiple comparison, method both in terms of MAE and ITER. F-Racand the

we accept statements of joint comparison whose posteridBayesian tests perform the pairwise multiple comparisons
probability is larger than 0.95. For the frequentist muétip with a sign test and, respectively, a Bayesian version of the
comparison we consider two options: using the sign tessign test, so they are quite similar. The lower ITER of the
(S) or the mean-ranks (MR) test. This yield the follow- Bayesian method is also due to the fact that it can declare
ing algorithms: Bayesian race, F-Rgacand F-Racgr. that two algorithms are indistinguishable. This allows to
Within the F-race we perform the multiple comparisonremove many algorithms and so to speed up the decision
keeping the significance level at 0.05, thus without con-process. Tabl8 reports the average number of algorithms
trolling the FWER error. This is the approach described byremoved because indistinguishable in the above listed case
(Birattari et al, 2002. By controlling the FWER the pro- studies. Note that, the pairs declared as indistinguighabl
cedure would loose too power making less effective the racfrom the Bayesian test were always be truly indistinguish-
ing. This remain true even if more modern procedures thamable according to the adopted criterion described above.
the Bonferroni correction are adopted. This also indiyectl Therefore, the Bayesian test is very accurate on detecting
shows that controlling the FWER is not always the best opwhen two algorithms are indistinguishable.

tion. Within the Bayesian race, we define two algorithms
as indistinguishable it — e < P(X> > X1) < 1 +¢,

wheree = 0.05. Setting Bayesian
q,p # indistinguishable

We considel candidates in each race. We sample the re- 30,1 0.9
sults of thej-th candidate from a normal with mean and 15606 11 ‘11;
variances?. Before each race, the meaps, . . ., lg are 100,0.5 31
uniformly sampled from the intervd0, 1]; the variances 100, 0.1 24

9 9 9 . . 200, 0.1 2.7
of = --- = o, = p°. The best algorithm is thus the one

with the highest mean. We fix the overall number of max-

imum allowed assessmentsié — 300. For each assess- 'able 3 Average number of algorithms declared to be indistin-
ment of an algorithm we decreas€of one unit. In thisex-  9uishable.

perimental setting, everytime we assessitiie algorithm

we increase the number of random generated observatiofdthough the Bayesian method removes more algorithms,
(from the normal with meam; and Varianceyf) of five it has lower MAE than F-Ragg because with the joint test
new observations. If multiple candidates are still presents able to reduce the number of Type-I errors, but without
when the number of maximum assessments is achieve@€enalizing the power too much.

we choose the candidate which has so far the best average

performance. We perfor00 repetitions for each setting. 8 Conclusions

In each experiment we track the following indicators: the

absolute distance between the rank of the candidate eveMe have proposed a novel Bayesian method based on the
tually selected and the rank of the best algorithm (mearPirichlet Processes (DP) for performing the Friedman test,
absolute error, denoted BMAE) and the fraction of the together with goint procedure for the analysis of the mul-

number of required iterations w.r.t. the maximum allowedtiple comparisons which accounts for their dependencies
M (denoted by TER). and which is based on the posterior probability computed

through the DP. We have then employed this new test for
performing algorithms racing. Experimental results have

Setting Bayesian F-Rage F-Racey r i iti i -
o HITER MAE #ITER WAE #ITER MAE shown that our approach is _competltlve both in terms of ac
curacy and speed in detecting the best algorithm. We plan
30,1 063 070 067 080 058  0.77 . . 2 o .
501 0.72 0.92 0.80 1.22 0.69 115 to extend this work in two directions. The first is to im-
100, 1 075 184 084 231 070  2.05 plement Bayesian versions of other multiple nonparametric
100, 0.5 0.67 1.15 0.74 1.19 0.62 1.26 . .
100,01 036 028 036 030 035 030 tests such as for instance the Kruskal-Wallis test. Second,
200,0.1 050 046 051 063 050 0.8 we plan to derive new tests for algorithms racing which are
able to compare the algorithms using more than one metric
Table 2.Experimental results of racing. at the same time.

The simulation results are shown_ ir! Ta@éor different Acknowledgments

values ofg and p. From Table2, it is evident that our

method is the best in terms of MAE. F-Ragg is in some  This work was partly supported by the Swiss NSF grant
case faster than our method, but it has always a highanos. 200021146606 / 1.
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