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Abstract

In the gambling foundation of probability theory, rationality requires that a subject should always (never) find desirable
all nonnegative (negative) gambles, because no matter the result of the experiment the subject never (always) decreases
her money. Evaluating the nonnegativity of a gamble in infinite spaces is a difficult task. In fact, even if we restrict the
gambles to be polynomials in Rn, the problem of determining nonnegativity is NP-hard. The aim of this paper is to
develop a computable theory of desirable gambles. Instead of requiring the subject to desire all nonnegative gambles,
we only require her to desire gambles for which she can efficiently determine the nonnegativity (in particular sum-of-
squares polynomials). We refer to this new criterion as bounded rationality.

Keywords: Bounded rationality, theory of desirable gambles, sum-of-squares polynomials, polynomial gambles,
updating.

1. Introduction

The subjective foundation of probability by de Finetti (1937) is based on the notion of rationality (coherence or
equiv. self-consistency). A subject is considered rational if she chooses her odds so that there is no bet that leads her to
a sure loss (no Dutch books are possible). In this way, since odds are the inverse of probabilities, de Finetti provided
a justification of Kolmogorov’s axiomatisation of probability as a rationality criterion on a gambling system.1

Later Williams (1975) and Walley (1991) showed that it is possible to justify probability in a simpler and more
elegant way. This approach is nowadays known as the theory of desirable gambles.2 To understand this gambling
framework, we introduce a subject, Alice, and an experiment whose result ω belongs to a possibility space Ω (e.g.,
the experiment may be tossing a coin or determining the future value of a derivative instrument). When Alice is
uncertain about the result ω of the experiment, we can model her beliefs about this value by asking her whether she
accepts engaging in certain risky transactions, called gambles, whose outcome depends on the actual outcome of the
experiment ω . Mathematically, a gamble is a bounded real-valued function on Ω , g : Ω → R, and if Alice accepts
a gamble g, this means that she commits herself to receive g(ω) utiles3 if the experiment is performed and if the
outcome of the experiment eventually happens to be the event ω ∈ Ω . Since g(ω) can be negative, Alice can also
lose utiles and hence the desirability of a gamble depends on Alice’s beliefs about Ω . Denote by L the set of all
the gambles on Ω . Alice examines gambles in L and comes up with the subset K of the gambles that she finds
desirable. How can we characterise the rationality of the assessments represented by K ?

Two obvious rationality criteria are: Alice should always accept (do not accept) gambles that are nonnegative
(negative), because no matter the result of the experiment she never (always) decreases her utiles. But there is a world
of difference between saying and doing. For instance, let us consider an infinite space of possibilities like Ω = R2

and the gamble: g(x1,x2) = 4x4
1 + 4x3

1x2− 3x2
1x2

2 + 5x4
2. Should Alice accept this gamble? In practice the answer to

this question does not only depend on Alice’s beliefs about the value of x1 and x2. We can in fact verify that the

IFully documented templates are available in the elsarticle package on CTAN.
1De Finetti actually considered only finitely additive probabilities, while σ -additivity is assumed in Kolmogorov’s axiomatisation.
2In this paper, we will refer in particular to the theory of almost desirable gambles.
3A theoretical unit of measure of utility, for indicating a supposed quantity of satisfaction derived from an economic transaction. It is expressed

in some linear utility scale

Preprint submitted to Journal of LATEX Templates December 20, 2018

http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle


above polynomial can be rewritten as (2x2
1− 2x2

2 + x1x2)
2 +(x2

2 + 2x1x2)
2 and, thus, is always nonnegative. Hence,

rationality implies that Alice should always accept it. However, in these cases, we must also take into account the
inherent difficulty of the problem faced by Alice when she wants to determine whether a given gamble is nonnegative
or not. In other words, we need to quantify the computational complexity needed to address rationality.
The aim of this paper is to develop a computable theory of desirable gambles by relaxing the rationality criteria dis-
cussed above. In particular, instead of requiring Alice to accept all nonnegative gambles, we only require Alice to
accept gambles for which she can efficiently determine the nonnegativity. We call this new criterion bounded ratio-
nality. The term bounded rationality was proposed by Herbert A. Simon (1957) – it is the idea that when individuals
make decisions, their rationality is limited by the tractability of the decision problem, the cognitive limitations of
their minds, and the time available to make the decision. Decision-makers in this view act as “satisficers”, seeking a
satisfactory solution rather than an optimal one. We do not propose our model as a realistic psychological model of
Alice’s behaviour, but we embrace the idea that the actual rationality of an agent is determined by its computational
intelligence.

In this paper, we exploit the results on SOS polynomials and theory-of-moments relaxation to make numerical
inferences in our theory of bounded rationality and to show that the theory of bounded rationality can be used to
approximate the theory of desirable gambles. At the same time, we provide a gambling interpretation of SOS opti-
mization. Some applications of the theoretical ideas presented in this paper can be found in Lasserre (2009); Benavoli
& Piga (2016); Piga & Benavoli (2017). For instance, Benavoli & Piga (2016) use this approach to derive a novel set-
membership filtering algorithm for nonlinear polynomial dynamical systems. Although their approach is not directly
formulated as a theory of bounded rationality, SOS polynomials are used to propagate a set of probability measures in
a computational efficient way through the dynamics of a nonlinear system. It is worth mentioning that a relaxation of
the rationality criteria for desirability has also been investigated by Schervish et al. (2000); Pelessoni & Vicig (2016).
The first work focuses on relaxations of the “avoiding sure loss” axiom, while the second one focuses on two different
criteria (additivity and positive scaling).

A preliminary version of this work appeared in (Benavoli et al., 2017a), but it includes an incorrect statement of
duality. This has led us to re-evaluate the whole theory, resulting in a new definition of bounded rationality that we
will present in the current manuscript.

2. Theory of desirable gambles

In this section, we briefly introduce the theory of desirable gambles. Let us denote by L + = {g ∈L : g≥ 0} the
subset of the nonnegative gambles and with K ⊂L the subset of the gambles that Alice finds desirable. How can
we characterise the rationality of the assessments in K ?

Definition 1. We say that K is a coherent set of (almost) desirable gambles (ADG) when it satisfies the following
rationality criteria:

A.1 If g ∈L + then g ∈K (Accepting Partial Gains);

A.2 If g ∈K then supg≥ 0 (Avoiding Sure Loss);

A.3 If g ∈K then λg ∈K for every λ > 0 (Positive Scaling);

A.4 If g,h ∈K then g+h ∈K (Additivity);

A.5 If g+δ ∈K for every δ > 0 then g ∈K (Closure).

The criterion A.5 does not actually follow from rationality and can be omitted (Seidenfeld et al., 1990; Walley,
1991; Miranda & Zaffalon, 2010). However, it is useful to derive a connection between the theory of desirable gambles
and probability theory and for this reason we consider it in this paper. This connection will be briefly discussed in
Section 3.

To explain these rationality criteria, let us introduce a simple example: the toss of a fair coin Ω = {Head,Tail}.
A gamble g in this case has two components g(Head) = g1 and g(Tail) = g2. If Alice accepts g then she commits
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Figure 1: Alice’s sets of coherent almost desirable gambles for the experiment of tossing a fair coin.

herself to receive/pay g1 if the outcome is Heads and g2 if Tails. Since a gamble is in this case an element of R2,
g = (g1,g2), we can plot the gambles Alice accepts in a 2D coordinate system with coordinate g1 and g2.

A.1 says that Alice is willing to accept any gamble g = (g1,g2) that, no matter the result of the experiment,
may increase her wealth without ever decreasing it, that is with gi ≥ 0 – Alice always accepts the first quadrant,
Figure 1(a). Similarly. Alice does not accept any gamble g = (g1,g2) that will surely decrease her wealth, that is
with gi < 0. In other words, Alice always does not accept the interior of the third quadrant, Figure 1(b). This is the
meaning of A.2. Then we ask Alice about g = (−0.1,1) – she loses 0.1 if Heads and wins 1 if Tails. Since Alice
knows that the coin is fair, she accepts this gamble as well as all the gambles of the form λg with λ > 0, because this
is just a “change of currency” (this is A.3). Similarly, she accepts all the gambles g+h for any h ∈L +, since these
gambles are even more favourable for her (this is basically A.4). Now, we can ask Alice about g = (1,−0.1) and the
argument is symmetric to the above case. We therefore obtain the following set of desirable gambles (see Figure 1(c)):
K2 = {g ∈R2 | 10g1 +g2 ≥ 0 and g1 +10g2 ≥ 0}. Finally, we can ask Alice about g = (−1,1) – she loses 1 if Heads
and wins 1 if Tails. Since the coin is fair, Alice may accept or not accept this gamble. A.5 implies that she must
accept it (closure). A similar conclusion can be derived for the symmetric gamble g = (1,−1). Figure 1(d) is her
final set of desirable gambles about the experiment concerned with the toss of a fair coin, which in a formula becomes
K3 = {g ∈R2 | g1 +g2 ≥ 0}. Alice does not accept any other gamble. In fact, if Alice would also accept for instance
h = (−2,0.5) then, since she has also accepted g = (1.5,−1), i.e., g ∈K3, she must also accept g+ h (because this
gamble is also favourable to her). However, g+h = (−0.5,−0.5) is always negative, Alice always loses utiles in this
case. In other words, by accepting h = (−2,0.5) Alice incurs a sure loss – she is irrational (A.2 is violated).

In this example, we can see that Alice’s set of desirable gambles is a closed half-space, but this does not have to
be always the case. For instance, if Alice does not know anything about the coin, she should only accept nonnegative
gambles: K = L +. This corresponds to a state of complete ignorance, but all intermediate cases from complete
beliefs on the probability of the coin to complete ignorance are possible. In general, K is a pointed (whose vertex
is the origin) closed convex cone that includes L + and excludes the interior of the negative orthant (this follows by
A.1–A.5).

For the coin, the space of possibilities is finite and in this case Alice can check if a gamble g is nonnegative by
simply examining the elements of the vector g. In this paper, we are interested in infinite spaces, in particular Ω =Rn,
where applying the above rationality criteria is far from easy. We aim at developing a theory of bounded rationality
for this case. Before doing that, we briefly recall the connection between ADG and probability theory.

3. Duality for ADG

Duality can be defined for general spaces of possibilities Ω (Walley, 1991). However, for the purpose of the
present paper, we consider gambles that are bounded real-valued function on Rn, i.e., g : Rn → R. Let A be an
algebra of subsets of Rn and µ : A → [−∞,∞] denotes a charge: that is µ is a finitely additive set function of A
(Aliprantis & Border, 2007, Ch.11). Let AR denote the algebra generated in R by the collection of all half open
intervals (Aliprantis & Border, 2007, Th.11.8):

Theorem 1. Every bounded (A ,AR)-measurable function is integrable w.r.t. any finite charge.
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Therefore, for any bounded (A ,AR)-measurable function g and finite charge µ we can define
∫

gdµ , which we
can interpret as a linear functional L(·) := 〈·,µ〉 on bounded (A ,AR)-measurable gambles g (with some abuse of
notation, we denote the set of bounded (A ,AR)-measurable functions with L ). We denote by M the set of all finite
charges on L and by M+ the set of nonnegative charges. A linear functional of gambles is said to be nonnegative
whenever it satisfies : L(g)≥ 0, for g ∈L +. A nonnegative linear functional is called a state if moreover it preserves
the unitary constant gamble. Hence, in this context, since 〈1,µ〉 =

∫
1dµ = 1, the set of states S corresponds to the

set of all probability charges. We define the dual of a subset D of L as:

D• =

{
µ ∈M :

∫
gdµ ≥ 0, ∀g ∈D

}
. (1)

Similarly, the dual of a subset R of M is the set:

R• =

{
g ∈L :

∫
gdµ ≥ 0, ∀µ ∈R

}
. (2)

Note that in both cases (·)• is always a closed convex cone (Aliprantis & Border, 2007, Lem.5.102(4)). Furthermore,
one has that (·)•• = (·), whenever (·) is a closed convex cone (Aliprantis & Border, 2007, Th.5.103), and (·)1 ⊆ (·)2
if and only if (·)•2 ⊆ (·)•1 (Aliprantis & Border, 2007, Lem.5.102(1)). In particular, whenever (·)1 and (·)2 are closed
convex cones, (·)1 ( (·)2 if and only if (·)•2 ( (·)•1.

Based on those facts, it is thus possible to verify that the dual of a coherent set of desirable gambles can actually
be completely described in terms of a (closed convex) set of states (probability charges). In this aim, we start by the
following observations.

Proposition 1. It holds that

1. (L )• = {0} and L = ({0})•;

2. (L +)• = M+ and L + = (M+)•;

Proof. Since (·)•• = (·), whenever (·) is a closed convex cone, in both cases it is enough to verify only one of the
claims. For the first item, the second claim is immediate. For the second item, we verify the first claim. The inclusion
from right to left being clear, for the other direction observe that: (i) g = I{B} (with IB being the indicator function on
B ∈A ), is a nonnegative gamble and, therefore, is in L +; (ii) if µ is negative in B ∈A , i.e., then

∫
IBdµ is negative

too and, thus, µ cannot be in (L +)•.

Proposition 2. Let K be a closed convex cone. The following claims are equivalent

1. K is coherent;

2. K ⊇L + and K 6= L ;

3. (K )• ⊆M+ and (K )• 6= {0}.

Proof. (2)⇔ (3): From Proposition 1, (K )• = {0} if and only if K =L , and K ⊇L + if and only if (K )• ⊆M+.
(1)⇒ (2): Assume K is coherent. By A.1 K ⊇L + and by A.2 there is g ∈L such that supg < 0 and g /∈K .
(2) ⇒ (1): Let L + ⊆K ( L . First of all, notice that, by Proposition 1, (K )• ⊆ (L +)• = M+. Now, assume
that K is not coherent. This means A.2 fails, i.e. there is g ∈L such that supg < 0 and g ∈K . Hence, consider
µ ∈M+ and pick g ∈K such that supg < 0. It holds that 〈g,µ〉 ≥ 0 if and only if µ = 0, meaning that (K )• = {0}
and therefore, by Proposition 1 again, K = L , a contradiction.

Hence, the following theorem holds.

Theorem 2. The map
K 7→P := K •∩S

establishes a bijection between coherent sets of desirable gambles and closed convex sets of states.
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Proof. The proof is analogous to that by Benavoli et al. (2017b, Th.4). Let K be a coherent set of desirable gambles.
By Proposition 2, we get that K • is a closed convex cone included in M+ that does not reduce to the origin. Thus,
after normalisation, P is nonempty. Preservation of closedness and convexity by finite intersections yields that P is
closed and convex. Furthermore R+P = K •, and therefore K = (R+P)•, where R+P := {λ µ : λ ≥ 0,µ ∈P},
meaning that the map is an injection. We finally verify that the map is also a surjection. To do this, let P be a non
empty closed convex set of probability charges. It holds that R+P is a closed convex cone included in M+ different
from {0}. Again by Proposition 2, we conclude that the dual (R+P)• of R+P is a coherent set of desirable gambles
and P = R+P ∩S= (R+P)••∩S.

We therefore identify the dual of K with

P =

{
µ ∈M+ :

∫
gdµ ≥ 0,

∫
dµ = 1, ∀g ∈K

}
, (3)

which is a closed convex-set of probability charges.

3.1. Unbounded gambles
In this paper, we will also consider unbounded real-valued functions in Rn and, therefore, we need to introduce

another definition of measurability. Let M denote the space of finite signed Borel measures on Rn, whose positive
cone M+ is the space of finite Borel measures µ on Rn. Let L be the set of real-valued functions on Rn that are
integrable with respect to every measure µ ∈M+ and L + be the cone of non-negative integrable functions. With an
abuse of terminology, we call these functions gambles.4 Also in this case, we can define a cone of desirable gambles
in L satisfying the properties A.1–A.5. By defining the set of states as S := {µ ∈M :

∫
dµ = 1}, we can prove the

following.

Theorem 3. The map
K 7→P := K •∩S

establishes a bijection between coherent sets of desirable gambles and closed convex sets of states.

The proof is identical to that for Theorem 2. Here, P is the set of all probability measures on Rn. In the sequel,
we will refer to this duality when we will consider unbounded gambles.

4. Finite assessments

The goal of this and next sections is to define a practical notion of desirability. To this end, we first assume that
the set of gambles that Alice finds desirable is finitely generated. By this, we mean that there is a finite set of gambles
G = {g1, . . . ,g|G|} such that K = posi(G∪L +), where the posi of a set A⊂L is defined as

posi(A) :=

{
|A|

∑
j=1

λ jg j : g j ∈ A,λ j ≥ 0

}
, (4)

and where by |A| we denote the cardinality of the set A. By using this definition, it is clear that whenever K is finitely
generated, it includes all nonnegative gambles and satisfies A.3, A.4 and A.5. Once Alice has defined G and so K
via posi, ADG assumes that she is able to perform the following operations: to check that K avoids sure loss (A.2 is
also satisfied); to determine the implication of desirability. It is easy to show that all above operations in ADG imply
the assessment of the nonnegativity of a gamble.

Proposition 3. Given a finite set G ⊂L of desirable gambles, the set posi(G∪L +) includes the gamble f if and
only if there exist λ j ≥ 0 for j = 1, . . . , |G| such that

f −
|G|

∑
j=1

λ jg j ≥ 0. (5)

4For a more general extension of the theory of desirable gambles to unbounded gambles see Troffaes & de Cooman (2003).
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There are two subcases of (5) that are particularly interesting. The first is when f = h−λ0 for some λ0 ∈ R. That
allows us to define the concept of lower prevision (Walley, 1991; Miranda, 2008).

Definition 2. Assume that K = posi(G∪L +) is an ADG, then the solution of the following problem

sup
λ0∈R,λ j≥0

λ0, s.t. h−λ0−
|G|
∑
j=1

λ jg j ≥ 0, (6)

is called the lower prevision of h and denoted as E[h].

From a behavioural point of view, we can reinterpret this by saying that Alice is willing to buy gamble h at price
λ0, since she is giving away λ0 utiles while gaining h. The lower prevision is the supremum buying price for h. We
can equivalently define the upper prevision of h as E[h] =−E[−h]. From Section 3, it can be easily shown that E[h]
is the lower expectation of h computed w.r.t. the probability charges (or measures if we consider the case in Section
3.1) in P . As a matter of fact, the dual of (6) is the moment problem:

inf
µ∈M+

∫
hdµ s.t.

∫
dµ = 1,

∫
g jdµ ≥ 0 for j = 1, . . . , |G|. (7)

Example 1 (Markov’s inequality). Consider the nonnegative function x on Ω = [0,xmax] with xmax ∈ R+ and assume
that Alice finds the gambles g = x−m and −g =−x+m to be desirable for some m ∈Ω, i.e.,

G = {g,−g}.

Consider the event x ≥ u for some u ∈ R+. Our goal is to determine Alice’s upper prevision (infimum selling price)
for this event, equivalently for the gamble I{[u,∞)}. We need to apply (6) which in this case can be written as:

E(I{[u,∞)}) = inf
λ1 j≤0,λ0∈R

λ0

s.t.
λ0 +λ11(x−m)−λ12(x−m)≥ I{[u,∞)}(x), ∀x ∈Ω.

(8)

By defining λ1 = λ11−λ12, which now spans R, we can rewrite (8) as:

E(I{[u,∞)}) = inf
λ j∈R

λ0

s.t.
λ0 +λ1(x−m)≥ 1, ∀x ∈Ω : x≥ u,
λ0 +λ1(x−m)≥ 0, ∀x ∈Ω : x < u.

(9)

It can be seen that E(I{[u,∞)}) = 1 whenever u ≤ 0 and E(I{[u,∞)}) = 0 whenever u ≥ xmax. In the other cases, the
above problem must satisfy:

E(I{[u,∞)})≤ inf
λi∈R

λ0

s.t.
λ0 +λ1(u−m)≥ 1,
λ0 +λ1(−m)≥ 0,

(10)

where we have considered the worst cases for the inequalities. If m < u, the infimum is obtained when the inequalities
in (10) are equalities and is equal to m

u . When m ≥ u, the infimum is obtained for λ0 = 1, λ1 = 0. We have therefore
derived Markov’s inequality:

P(x≥ u)≤min
(

1,
m
u

)
= min

(
1,

E[x]
u

)
.

The last equality follows from the fact that (8) is equivalent to (see (7)):

sup
µ∈M+

∫
I{[u,∞)}dµ s.t.

∫
dµ = 1,

∫
xdµ = m, (11)

and so m is just the expectation of x, i.e., m = E[x] =
∫

xdµ .
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The second subcase allows us to formulate sure loss as nonnegativity of a gamble (Walley et al., 2004, Alg. 2).

Proposition 4. Let us consider K = posi(G∪L +) and the following problem:

sup
0≤λ0≤1, λ j≥0

λ0, s.t. −λ0−
|G|
∑
j=1

λ jg j ≥ 0. (12)

K incurs a sure loss iff the above problem has solution λ ∗0 = 1 and avoids sure loss iff λ ∗0 = 0.

Proof. We briefly sketch the proof (see Walley et al. 2004). Assume that K incurs a sure loss, then there exist λ j ≥ 0
for j = 1, . . . , |G| such that ∑

|G|
j=1 λ jg j < 0 and, thus, −∑

|G|
j=1 λ jg j > 0. Then we can increase λ0 as much as we want.

Similarly, we can prove the inverse implication.

Example 2 (Markov’s inequality cont.). Consider again the previous example, i.e.,

G = {x−m,−x+m}.

We want to show when/if K incurs a sure loss. Consider (12) and assume m /∈Ω.

sup
0≤λ0≤1, λ1∈R

λ0, s.t. −λ0−λ1(x−m)≥ 0 x ∈Ω. (13)

Note that if m < 0 then x−m > 0 in Ω and so −λ1(x−m)≥ 0 provided that λ1 ≤ 0. Hence, the solution of the above
optimisation problem is λ0 = 1 (sure loss). Similarly, if m > xmax then −λ1(x−m) ≥ 0 provided that λ1 ≥ 0 and so
the optimum is λ0 = 1. Assume now that m ∈ Ω, then the best solution is obtained for λ1 = 0 and so the optimum
is λ0 = 0 and, therefore, K avoids sure loss. We can conclude that, to avoid a sure loss, Alice should accept the
gambles x−m,−x+m only when

inf
x∈Ω

x = 0 ≤ m ≤ sup
x∈Ω

x = xmax.

In the previous example we saw that m = E[x] =
∫

xdµ , hence the above inequalities mean that

inf
x∈Ω

x ≤ E[x] ≤ sup
x∈Ω

x.

4.1. Complexity of inferences

When Ω is finite (e.g., coin toss), then a gamble g can also be seen as a vector in R|Ω| (where |Ω|= 2 for the coin).
Then (5) can be expressed as a linear programming problem, thus its complexity is polynomial: Alice can determine
the implication of her assessments of desirability in polynomial time. In case Ω = Rn, f : Rn→ R, solving (5) means
to check the existence of real parameters λ j ≥ 0 ( j = 1, . . . , |G|) such that the function

F := f −
|G|

∑
j=1

λ jg j (14)

is nonnegative in Rn. In order to study the problem from a computational viewpoint, and avoid undecidability results,
it is clear that we must impose further restrictions on the class of functions F . At the same time we would like to keep
the problem general enough, in order not to lose expressiveness of the model. A good compromise can be achieved
by considering the case of multivariate polynomials. The decidability of F ≥ 0 for multivariate polynomials can be
proven by means of the Tarski-Seidenberg quantifier elimination theory (Tarski, 1951; Seidenberg, 1954).

Let d ∈ N. By R2d [x1] we denote the set of all polynomials up to degree 2d in the indeterminate variable x1 ∈ R
with real-valued coefficients. With the usual definitions of addition and scalar multiplication, R2d [x1] becomes a
vector space over the field R of real numbers. We can introduce a basis for R2d [x1] that we denote as v2d(x1) where
v j(x1) = [1,x1,x2

1, . . . ,x
j
1]
>. We denote the dimension of v j(x1) as s1( j) for j = 0,1,2, . . . , e.g., s1(2d) = 2d+1. Any

polynomial in R2d [x1] can then be written as p(x1) = b> v2d(x1) being b ∈ Rs1(2d) the vector of coefficients. One
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can actually provide a square matrix representation of a polynomial, as for any polynomial in R2d [x1] there is a (non-
unique) matrix Q ∈ Rs1(d)×s1(d)

s such that p(x1) = v>d (x1)Qvd(x1), where Rs1(d)×s1(d)
s is the space of s1(d)× s1(d)

real-symmetric matrices. In virtue of these observations we may therefore also be interested in some subsets of
R2d [x1] that are:
(1) the subset of nonnegative polynomials, denoted as R+

2d [x1];
(2) the subset of polynomials

Σ2d [x1] =
{

p(x1) ∈ R2d [x1]
∣∣∣ p(x1) = v>d (x1)Qvd(x1) with Q ∈ Rs1(d)×s1(d)

s , Q≥ 0
}
. (15)

The polynomials in Σ2d [x1] are also called SOS polynomials. This is because any polynomial in R2d [x1] that is a sum
of squares of polynomials belongs to Σ2d [x1] and vice versa (Lasserre, 2009, Prop. 2.1). Clearly any polynomial in
Σ2d [x1] is necessarily nonnegative. It is therefore natural to ask whether the two sets, R+

2d [x1] and Σ2d [x1], coincide,
and therefore whether Equation (15) provides a representation theorem for nonnegative univariate polynomial. The
answer to this question is affirmative (Lasserre, 2009, Prop. 2.3).

The previous framework can be extended to multivariate polynomials R2d [x1, . . . ,xn]. Indeed, polynomials in
R2d [x1, . . . ,xn] can be written as p(x1, . . . ,xn) = b> v2d(x1, . . . ,xn) with

v j(x1, . . . ,xn) = [1,x1, . . . ,xn,x2
1,x1x2, . . . ,xn−1xn,x2

n, . . . ,x
2d
1 , . . . ,x j

n]
>, (16)

b ∈ Rsn(2d) with sn( j) =
(n+ j

j

)
for j = 0,1,2, . . . . Moreover, one can always find a real-symmetric matrix Q such that

p(x1, . . . ,xn) = v>d (x1, . . . ,xn)Qvd(x1, . . . ,xn). Similarly to the univariate case, we can thence define the nonnegative
polynomials R+

2d [x1, . . . ,xn] and the SOS polynomials Σ2d [x1, . . . ,xn].In the multivariate case, however positive semi-
definite real-symmetric matrices do not necessarily characterise being nonnegative. i.e., it is in general not true that
every nonnegative polynomial is SOS. For instance g(x1,x2) = x2

1x2
2(x

2
1 +x2

2−1)+1 is a nonnegative polynomial that
does not have a SOS representation (Lasserre, 2009, Sec.2.4). Hilbert (1888) showed the following.

Proposition 5. R+
2d [x1, . . . ,xn] = Σ2d [x1, . . . ,xn] holds iff either n = 1 or d = 1 or (n,d) = (2,2).

The problem of testing global nonnegativity of a polynomial function is in general NP-hard. If Alice wants to
avoid the complexity associated with this problem, an alternative option is to consider a subset of polynomials for
which a nonnegativity test is not NP-hard. The problem of testing if a given polynomial is SOS has polynomial
complexity (we only need to check if the matrix of coefficients Q in (15) is positive semi-definite), see Lasserre
(2009).

Example 3. Let us consider the polynomial f = 1
4 −x(1−x), we want to show that f is SOS. Let us attempt to rewrite

it as
f = 1

4 − x(1− x) = σ0(x),

for σ0(x) ∈ Σ2d and, therefore, σ0(x) = [1,x]Q[1,x]T with Q being a 2×2 positive semi-definite matrix. By equating
the coefficients of the polynomials in 1

4 − x(1− x) = [1,x]Q[1,x]T , we find the matrix

Q =

[ 1
4 − 1

2
− 1

2 1

]
.

The matrix is positive semi-definite and, thus, the polynomial f is SOS.

5. Bounded rationality

In the bounded rationality theory we are going to present we will work with Ω = Rn and make two important
assumptions. We assume that L is the set of multivariate polynomials of n variables and of degree less than or equal
to 2d, with d ∈N. We denote L as L2d and the nonnegative polynomials as L +

2d . Note that L2d is a vector space and
A.1–A.5 are well-defined in L2d . This restriction is useful to define the computational complexity of our bounded
rationality theory as a function of n and d. We now define our bounded rationality criteria, and point out the two
assumptions.
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Definition 3. We say that C ⊂L2d is a bounded-rationality coherent set of almost desirable gambles (BADG) when
it satisfies A.3–A.5 (i.e. it is a closed convex cone) and:

bA.1 If g ∈ Σ2d then g ∈ C (Bounded Accepting Partial Gain),

bA.2 If g ∈ Σ
−
2d then g /∈ C (Bounded Avoiding Sure Loss);

where Σ2d ⊂L +
2d is the set of SOS of degree less than or equal to 2d and Σ

−
2d := {g ∈L2d | supg < 0,−g ∈ Σ2d} is

the set of negative SOS polynomials of degree less than or equal to 2d (or stated otherwise, it is the interior of −Σ2d).

We have seen that A.1 implies that a coherent set of gambles must include all nonnegative gambles (and, therefore,
L +

2d that is the set of all nonnegative polynomials) and that, additionally, A.2 means that it should not include negative
gambles. Here, we restrict A.1 and A.2 imposing bounded-rationality that implies that the set must only include SOS
polynomials and avoid negative SOS polynomials, up to degree 2d. In BADG theory, we ask Alice only to always
accept gambles for which she can efficiently determine the nonnegativity (SOS polynomials) and to never accept
gambles for which she can efficiently determine the negativity (negative SOS polynomials). Using the terminology
from (de Cooman & Quaeghebeur, 2012, Definition 1)5, the set C is said to be coherent relative to the pair constituted
by the vector subspace of quadratic forms v2d(x1, . . . ,xn)

T Qv2d(x1, . . . ,xn) defined by the symmetric real matrices Q
and the closed6 convex cone of SOS polynomials (or equivalently the closed convex cone of polynomials defined by
a positive semi-definite real-symmetric matrix).

In the multivariate case, we have seen that there are nonnegative polynomials that do not have a SOS represen-
tation. These polynomials should be in principle desirable for Alice in the ADG framework, but in BADG we do
not enforce Alice to accept them. A similar reasoning holds for the difference between A.2 and bA.2: in the cho-
sen framework, we cannot say that Alice is irrational if she chooses a negative gamble for which she cannot verify
computationally the negativity. Despite the fact that in principle they should never be accepted by Alice in the ADG
framework, in a BADG we thus do not enforce this property and we only ask Alice to avoid gambles in Σ

−
2d . For these

reasons, BADG is a theory of bounded rationality.
Alice may not be able to prove that her set of desirable gambles satisfies A.2. However, by exploiting the fact that

Σ2d ⊆L +
2d ⊂L +,

a BADG set C that satisfies A.2 but not A.1 can (theoretically) be turned to:

1. an ADG in L2d by considering its extension posi(C ∪L +
2d), and also to

2. an ADG in L by considering its extension posi(C ∪L +).

The other way round is also true. Namely:

Proposition 6. Let G ⊆L2d be a finite set of assessments, and assume K = posi(G∪L +
2d) (resp. K = posi(G∪

L +)) is ADG. Then C = posi(G∪Σ
+
2d) is BADG.

Proof. We just verify the claim with L +
2d , the other, mutatis mutandis, being verified the same way. Since by as-

sumption K is ADG, K is a closed convex cone containing L + and disjoint from the set of negative gambles. In
particular K is BADG. Therefore C = posi(G∪Σ

+
2d) ⊆ K and it is a closed convex cone, meaning it is BADG

too.

These remarks are important because, as it will be shown in the next sections, they will allow us to use BADG as
a computable approximation of ADG.

In BADG theory, Proposition 3 is reformulated as follows.

5Notice that the authors use a different notion of coherence: they do not assume the closure condition (A.5), and they would require that both
the zero gamble and gambles in −Σ2d are not desirable.

6Closedness of the convex cone of SOS was proved by Robinson (1969).
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Theorem 4. Given a finite set G⊂L2d of desirable gambles, the set posi(G∪Σ2d) includes the gamble f if and only
if there exist λ j ≥ 0 for j = 1, . . . , |G| such that

f −
|G|

∑
j=1

λ jg j ∈ Σ2d . (17)

Proof. Assume that f ∈ posi(G∪Σ2d) then there exist σi ∈ Σ2d and γi ≥ 0 for i = 1, . . . ,m such that f = ∑
|G|
j=1 λ jg j +

∑
m
j=1 γiσi. This implies that f −∑

|G|
j=1 λ jg j is SOS, proving one implication. The other implication can be proven

similarly.

If we compare Proposition 3 and Theorem 4, then we see the difference between ADG and BADG:

ADG: f −
|G|

∑
j=1

λ jg j ∈L +, BADG: f −
|G|

∑
j=1

λ jg j ∈ Σ2d ,

that consists in the definition of nonnegativity or, equivalently, nonnegative gambles, i.e., the gambles that Alice shall
always accept.

Also for BADG we can consider the gamble f = h−λ0 for some λ0 ∈R and define the concept of lower prevision.

Definition 4. Let G ⊂L2d be a finite set, and let C = posi(G∪Σ2d). Assume that C is BADG, then the solution of
the following problem

sup
λ0∈R,λ j≥0

λ0, s.t. h−λ0−
|G|
∑
j=1

λ jg j ∈ Σ2d , (18)

is called the lower prevision of h and denoted as E∗[h].

We can prove that C = posi(G∪Σ2d) satisfies bounded avoiding sure loss exploiting the following result.

Proposition 7. Let us consider C = posi(G∪Σ2d) and the following problem:

sup
0≤λ0≤1, λ j≥0

λ0, s.t. −λ0−
|G|
∑
j=1

λ jg j ∈ Σ2d . (19)

C does not satisfy b.A.2, and thus incurs in a sure loss iff the above problem has solution λ ∗0 = 1, and it avoids
bounded sure loss (b.A.2 is satisfied) iff λ ∗0 = 0.

Proof. Assume that C b.A.2 is false, and thus incurs in a sure loss. This means there exists λ j ≥ 0 for j = 1, . . . , |G|
such that f := ∑

|G|
j=1 λ jg j ∈ Σ

−
2d . Hence,− f is SOS (belongs to Σ2d) and strictly positive, yielding that we can increase

λ0 as much as we want, because we can find σ ∈ Σ2d such that − f = σ + λ0 is true (given − f > 0). In practice,
we are exploiting the fact that for any positive scaling constant ρ the following equality still holds − f ρ = ρσ +ρλ0

and so λ0 = 1. Now assume that there is no λ j ≥ 0 for j = 1, . . . , |G| such that ∑
|G|
j=1 λ jg j ∈ Σ

−
2d . The only way for

−λ0−
|G|
∑
j=1

λ jg j being SOS is that λ0 = 0.

5.1. Duality for BADG
We can also define the dual of a BADG. In this case, the gambles g are polynomials, the nonnegative gambles that

Alice accepts are SOS, and the negative gambles that she does not accept are the negative polynomials g such that −g
is SOS. Since we are dealing with a vector space, we can consider its dual space L •

2d of all linear maps L : L2d → R
(linear functionals) and thus define the dual of C ⊂L2d as the set

{
L ∈L •

2d : L(g)≥ 0, ∀g ∈ C
}

. Since L2d has a
basis, i.e., the monomials, if we introduce the scalars

yα1α2...αn := L(xα1
1 xα2

2 · · ·x
αn
n ) ∈ R, (20)
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where αi ∈ N, we can rewrite L(g) for any polynomial g as a function of the vector of variables y ∈ Rsn(2d), whose
components are the real variables yα1α2...αn defined above. This means that the dual space L •

2d is isomorphic to
Rsn(2d), and we can thence define the dual maps (·)• between L2d and Rsn(2d) as follows.

Definition 5. Let C be a subset of L2d . Its dual is defined as

C • =
{

y ∈ Rsn(2d) : L(g)≥ 0, ∀g ∈ C
}
, (21)

where L(g) is completely determined by y via the definition (20). Similarly, given a subset R of Rsn(2d), its dual is
defined as

R• = {g ∈L2d : L(g)≥ 0, ∀y ∈R} , (22)

As before, (·)• is an anti-monotonic operation and its image is always a closed convex cone. Furthermore, one has
that (·)•1• = (·)1, and (·)1 ( (·)2 if and only if (·)•2 ( (·)•1, whenever (·)1 and (·)2 are closed convex cones.

In what follows, we verify that, analogously to Section 3, the dual C • is completely characterised by a closed
convex set of states. But before doing that, we have to clarify what is a state in this context. In the previous section,
we defined a nonnegative linear functional (operator) as a map that assigns nonnegative real numbers to gambles that
are sure gains, that is to gambles satisfying the condition for rationality axiom A.1. In the actual bounded rationality
theory, we have replaced sure gains with bounded sure gains. Hence, to define what is a state we cannot refer to
nonnegative gambles but to gambles that are SOS. This means that, consistently with axiom bA.1, from the adopted
bounded perspective on rationality, states are linear operators that assign nonnegative real numbers to SOS, and that
additionally preserve the unit gamble. This latter condition is equivalent to:

y0 = L(1) = 1.

In the aim of reducing the dual of a BADG to sets of states, we thus first provide a characterisation of nonnegative lin-
ear operators. In doing so, we define the matrix Mn,d(y) := L(vd(x1, . . . ,xn)vd(x1, . . . ,xn)

>), where the linear operator
is applied component-wise. For instance, in the case n = 1 and d = 2, we have that

M1,2(y) = L(v2(x1)v2(x1)
>) = L

 1 x1 x2
1

x1 x2
1 x3

1
x2

1 x3
1 x4

1

=

y0 y1 y2
y1 y2 y3
y2 y3 y4

 .
In discussing properties of the dual space, we need the following well-known result from linear algebra:

Lemma 1. For any M ∈ Rn×n and v ∈ Rn, it holds that

Tr(M(vv>)) = Tr((vv>)M) = v>Mv. (23)

Proposition 8. Let g∈R2d [x1, . . . ,xn] and Q a real symmetric-matrix such that g(x1, . . . ,xn)= v>d (x1, . . . ,xn)Qvd(x1, . . . ,xn).
Then for every y ∈ Rsn(2d), it holds that L(g) = Tr(QMn,d(y)), where Mn,d(y) = L(vd(x1, . . . ,xn)vd(x1, . . . ,xn)

>) and
L(g) is completely determined by y via the definition (20).

Proof. By Lemma 1 and linearity of L and trace, we obtain that

L(g) = L(vd(x1, . . . ,xn)
>Qvd(x1, . . . ,xn))

= L(Tr(Qvd(x1, . . . ,xn)vd(x1, . . . ,xn)
>))

= Tr(QL(vd(x1, . . . ,xn)vd(x1, . . . ,xn)
>))

= Tr(QMn,d(y)),

where Mn,d(y) = L(vd(x1, . . . ,xn)vd(x1, . . . ,xn)
>).

We then verify that
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Proposition 9. Let C = Σ2d . Then its dual is

C • =
{

y ∈ Rsn(2d) : Mn,d(y)≥ 0
}
, (24)

Proof. Recall that, by definition, Mn,d(y) = L(vd(x1, . . . ,xn)vd(x1, . . . ,xn)
>), and that, by Equation (15), any g ∈ Σ2d

can be written as vd(x1, . . . ,xn)
>Qvd(x1, . . . ,xn), with Q ≥ 0. Fejér’s trace theorem (Boyd & Vandenberghe, 2004,

Ex.2.24) states that a matrix M ∈ Rs1(d)×s1(d)
s is M ≥ 0 if and only if Tr(QM) ≥ 0, for any Q ≥ 0. Hence Equation

(24) is an immediate consequence of the following equivalences:

Mn,d(y)≥ 0
⇐⇒ Tr(QMn,d(y)),∀Q≥ 0 (Fejér’s trace theorem)
⇐⇒ L(g)≥ 0,∀g ∈ Σ2d (Proposition 8)

Hence a linear operator L is nonnegative if and only if Mn,d(y) ≥ 0. Obviously, if y = 0, then L(g) ≥ 0, for
each g ∈ Σ2d , and thus {0}• = L2d . From this observation, Proposition 9 and the properties of (·)• we therefore
immediately get:

Proposition 10. It holds that

1. (L2d)
• = {0} and L2d = ({0})•;

2. (Σ2d)
• = Y + and Σ2d = (Y +)•,

where Y + :=
{

y ∈ Rsn(2d) : Mn,d(y)≥ 0
}

Everything is therefore ready to provide an analogous characterisation of coherence as done with Proposition 2
but for BADG.

Proposition 11. Let C ⊆L2d be a closed convex cone. The following claims are equivalent

1. C is coherent;

2. C ⊇ Σ2d and C 6= L2d;

3. (C )• ⊆ Y + and (C )• 6= {0}.

Proof. (2)⇔ (3): From Proposition 10, (C )• = {0} if and only if C = L2d , and C ⊇ Σ2d if and only if (C )• ⊆ Y +.
(1)⇒ (2): Assume C is coherent. By bA.1 C ⊇ Σ2d , and by bA.2 there is −g ∈ Σ2d such that supg < 0 and g /∈ C .
(2)⇒ (1): Let Σ2d ⊆ C (L2d . First of all, notice that, by Proposition 10, (C )• ⊆ (Σ2d)

• = Y +. Now, assume that
C is not coherent. This means bA.2 fails. Hence we can pick −g ∈ Σ2d such that supg < 0 and g ∈ C . Consider
y ∈ Y +. It holds that L(g)≥ 0 if and only if y = 0, meaning that (C )• = {0} and therefore, by Proposition 10 again,
C = L2d , a contradiction.

As before, we denote by S the set of states (here seen as a subset of y ∈Rsn(2d)). By Proposition 11 and reasoning
exactly as for Theorem 3, we then have the following result (see for instance Lasserre 2009).

Theorem 5. The map
C 7→P := C •∩S

is a bijection between BADGs and closed convex subsets of S. We can therefore identify the dual of a BADG C with

C • =
{

y ∈ Rsn(2d) : L(g)≥ 0, L(1) = 1, Mn,d(y)≥ 0, ∀g ∈ C
}
, (25)

where L(g) is completely determined by y via the definition (20).
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Proof. Let C be a coherent BADG. By Proposition 11, we get that C • is a closed convex cone included in Y + that
does not reduced to the origin. Thus P is nonempty. Preservation of closedness and convexity by finite intersections
yields that P is closed and convex. Furthermore R+P = (C )•, and therefore C = (R+P)•, where R+P := {λy :
λ ≥ 0,y ∈P}, meaning that the map is an injection. We finally verify that the map is also a surjection. To do
this, let P ⊆ S be a non empty closed convex set of states. It holds that R+P is a closed convex cone included
in Y + different from {0}. Again by Proposition 11, we conclude that the dual (R+P)• is a coherent BADG and
P = R+P ∩S= (R+P)••∩S.

In Section 3.1, by considering the space of all measurable gambles and identifying gambles representing sure gain
with nonnegative gambles, states coincide with probability measures. Henceforth we have shown that the dual of an
ADG is a closed convex set of probability measures. In (25) there is no reference to probability, and thus there is no
guaranty that in the bounded rationality case states correspond indeed to probabilities. However, by considering the
Borel sigma-algebra on Rn, we can define the integral

∫
xα1

1 xα2
2 , . . . ,xαn

n dµ with respect to the finite signed measure µ .
In this context, we can interpret yα1α2...αn as the expectation of xα1

1 xα2
2 , . . . ,xαn

n w.r.t. the signed measure µ .
Note that y0 = L(1) = 1 implies that

∫
1dµ = 1 under this interpretation (normalization). Therefore, we can

interpret Mn,d(y) as a truncated moment matrix. However, since C does not include all nonnegative gambles, we
cannot conclude that the signed measures are nonnegative or, in other words, that µ is a probability measure. The
constraint Mn,d(y)≥ 0 is not strong enough to guarantee nonnegativity of µ (it is only a necessary condition).

In the standard theory, negative probabilities are considered a manifestation of incoherence. Here, they are a
consequence of the assumption of bounded rationality. Finally, the dual of the lower prevision problem (18) is then
given by the convex SemiDefinite Programming (SDP) problem:

inf
y∈Rsn(2d)

L(h), s.t. L(g)≥ 0, L(1) = 1, Mn,d(y)≥ 0. (26)

5.2. Non-SOS positive polynomials
What does it mean for our theory of bounded rationality that there are positive polynomials that are not SOS?

First, notice that, by Proposition 11, g ∈ Σ2d if and only if for every y ∈ Y +, it holds that L(g) ≥ 0 (where L is
completely determined by y via equation (20)). This means that if g is positive but not SOS, then there is y ∈ Y +

such that L(g)< 0. Another, equivalent, way to see this goes as follows. Let us assume that the polynomial g ∈L2d
is positive but not SOS, its lower prevision is:

sup
λ0∈R

λ0 s.t. g−λ0 ∈ Σ2d .

The solution of the above problem is λ0 < 0. Note in fact that, since g(x) = vT (x)Qv(x) is not SOS, this implies that
the matrix Q is indefinite (it is not a PSD matrix). Hence, the only way to satisfy g−λ0 ∈ Σ2d is for λ0 < 0.
By duality, we can then prove that the problem

inf
y∈Rsn(2d)

L(g) s.t. L(1) = 1, Mn,d(y)≥ 0,

has a negative solution, i.e. L(g)< 0.

Example 4. Let us consider the positive non-SOS polynomial f (x) = 1+ x4
1x2

2 + x2
1x4

2− x2
1x2

2 in R6[x1,x2], the basis
v3(x) = [1,x1,x2,x2

1,x1x2,x2
2,x

3
1,x

2
1x2,x1x2

2,x
3
2]

T and the following PSD matrix M2,3(y) = L(v3(x)v3(x)T ):
1 y10 y01 y20 y11 y02 y30 y21 y12 y03

y10 y20 y11 y30 y21 y12 y40 y31 y22 y13
y01 y11 y02 y21 y12 y03 y31 y22 y13 y04
y20 y30 y21 y40 y31 y22 y50 y41 y32 y23
y11 y21 y12 y31 y22 y13 y41 y32 y23 y14
y02 y12 y03 y22 y13 y04 y32 y23 y14 y05
y30 y40 y31 y50 y41 y32 y60 y51 y42 y33
y21 y31 y22 y41 y32 y23 y51 y42 y33 y24
y12 y22 y13 y32 y23 y14 y42 y33 y24 y15
y03 y13 y04 y23 y14 y05 y33 y24 y15 y06

=


1 0 0 353 0 353 0 0 0 0
0 353 0 0 0 0 249572 0 66 0
0 0 353 0 0 0 0 66 0 249572

353 0 0 249572 0 66 0 0 0 0
0 0 0 0 66 0 0 0 0 0

353 0 0 66 0 249572 0 0 0 0
0 249572 0 0 0 0 706955894 0 17 0
0 0 66 0 0 0 0 17 0 17
0 66 0 0 0 0 17 0 17 0
0 0 249572 0 0 0 0 17 0 706955894

 (27)

Since L( f ) = 1+y42+y24−y22 and y22 = 66,y24 = y42 = 17 in (27), we have that L( f ) =−31 < 0. The above matrix
is PSD but it is not the truncated moment matrix of any probability measure (if it would be then L(g)≮ 0).
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How is it possible?
The cone Y + =

{
y ∈ Rsn(2d) : Mn,d(y)≥ 0

}
includes the evaluation functionals of the polynomials.7 Evaluation

functionals coincide with the rank one matrices M that give the evaluation of g at a point x̃ as Tr(QM) = g(x̃), for any
decomposition of g(x) = vT

d (x)Qvd(x). Such matrices have the form M = vd(x̃)vd(x̃)T . However, contrary to what
happens in the standard theory of desirable gambles as described in Sections 2 and 3, these matrices do not exhaust
all extremes of the closed convex set Y +.

Said in another way, since in the space of Borel measures the evaluation functionals are the atomic measures and
since v(x̃)v(x̃)T =

∫
vd(x)vd(x)T δ{x̃}dx, there does not exist a mixture of atomic measures ∑

m
i=1 wiδ{x̃(i)} such that

∫
v3(x)v3(x)T

(
m

∑
i=1

wiδ{x̃(i)}

)
dx =

m

∑
i=1

wiv3(x̃(i))v3(x̃(i))T = M2,3(y).

In (27), the only way to satisfy the above equality is that some of weights wi are negative.
Similarly, since−L(−g) = L(g), we can also conclude that, for a negative gamble g whose inverse−g is not SOS,

we have L(g) > 0. Alice may accept a negative gamble not belonging to Σ
−
2d! In BADG, this is allowed because

evaluating the negativity of a non SOS gamble not in Σ
−
2d may be computationally intractable. In the next section, we

will show that/when we can use BADG as a computable approximating theory for ADG.

6. BADG as an approximating theory for ADG

We are going to show that we can use BADG as a computable approximating theory for ADG. Since we are
dealing with unbounded gambles, we will refer to the ADG formulation in Section 3.1. So let us consider the BADG
set C = posi(G∪ Σ2d) and the corresponding ADG set K = posi(G∪L +) (same G), where L + is the set of
measurable non-negative gambles. We have the following result.

Theorem 6. Assume that K avoids sure loss (i.e. satisfies A.2) and let f ∈ L2d , then BADG is a conservative
approximation of ADG theory in the sense that E∗( f ) ≤ E( f ), where E( f ) is the coherent lower prevision of f
computed with respect to the set of probabiltiy measures compatible with Alice’s assessments of desirability G.

Proof. Notice that since K satisfies A.2, C also satisfies A.2, and hence bA.2. Now let λ ∗0 be the supremum value
of λ0 such that f − λ0−∑

|G|
j λ jg j ∈ Σ2d and λ ∗∗0 the supremum value such that f − λ0−∑

|G|
j λ jg j ≥ 0. Since the

constraint f −λ0−∑
|G|
j λ jg j ∈ Σ2d is more demanding than f −λ0−∑

|G|
j λ jg j ≥ 0, it follows that λ ∗0 ≤ λ ∗∗0 .

The fact that E[ f ] is equal to the minimum of f when G is empty, i.e., Alice is in a state of full ignorance, is one
of the reasons why SOS polynomials are used in optimisation. In fact, E∗[ f ] provides a lower bound for the minimum
of f (Lasserre, 2009).

Example 5 (Covariance inequality). Let us consider the case n = 2,d = 1, the matrix M2,1(y) is in this case

M2,1(y) = L

 1 x1 x2
x1 x2

1 x1x2
x2 x1x2 x2

2

=

 1 y10 y01
y10 y20 y11
y01 y11 y02

 .
Let us assume that Alice finds the following 8 polynomials to be desirable:

G = {±(x1−m1),±(x2−m2),±(x2
1−m2

1− s2
1),±(x2

2−m2
2− s2

2)}.

Since L(±(x1−m1)) =±(y10−m1), L(±(x2−m2)) =±(y01−m2), L(±(x2
1−m2

1−s2
1)) =±(y20−m2

1−s2
1), L(±(x2

2−
m2

2− s2
2)) =±(y02−m2

2− s2
2) and given that y = [y10,y01,y20,y11,y02]

>, we have that the dual of the BADG C is:

C • =
{

y> ∈ R5 : y10 = m1,y01 = m2, y20 = m2
1 + s2

1, y02 = m2
2 + s2

2, M2,1(y)≥ 0
}
. (28)

7An evaluation functional over L is a linear functional that evaluates each gamble g at a point x̃.
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Hence, it follows that

M2,1(y) =

 1 y10 y01
y10 y20 y11
y01 y11 y02

=

 1 m1 m2
m1 m2

1 + s2
1 y11

m2 y11 m2
2 + s2

2

 .
Assume that we aim at computing E∗[(x1−m1)(x2−m2)], E∗[(x1−m1)(x2−m2)], i.e., the lower/upper prevision of
the gamble (x1−m1)(x2−m2). Note that L((x1−m1)(x2−m2)) = y11−m1m2. From M2,1(y)≥ 0 we can derive that

−s1s2 ≤ y11−m1m2 ≤ s1s2.

These inequalities follow by det(M2,1(y)) ≥ 0. From (26), we thus have that E∗[(x1−m1)(x2−m2)] = −s1s2 and
E∗[(x1−m1)(x2−m2)] = s1s2. By interpreting m1,m2,s2

1,s
2
2 as the means and variances of x1,x2 and observing that

the above two inequalities can be written as

(y11−m1m2)
2 ≤ s2

1s2
2,

from Theorem 6 (this theorem holds because C satisfies A.2) we can derive that

E[(x1−m1)(x2−m2)]
2 ≤Var(x1)

2 Var(x2)
2. (29)

This is the well-known covariance inequality in probability theory. Observe that there exists a probability measure in
BADG for which the above inequality is tight: 1

2 δ(m1−s1
m2−s2

)(x)+ 1
2 δ(m1+s1

m2+s2

)(x), here δ(a) denotes an atomic measure

(Dirac’s delta) at a. It can in fact be verifed that this probability measure satisfies all the moment constraints:

E[x1] = m1, E[x2] = m2, E[x1x2] = m1m2 + s2
1s2

2, E[x2
1] = m2

1 + s2
1,E[x

2
2] = m2

2 + s2
2.

Hence, Theorem 6 is tight in this case. However, there are also signed measures that are compatible with Alice’s
assessments:

δm1−
s1√

2
m2−

s2√
2

(x)−δ(m1
m2 )

(x)+δm1+
s1√

2
m2+

s1√
2

(x),

and that achieve the equality in (29) but that are not probabilities.

Example 6. Consider the case n = 1,d = 2 and assume that

G = {±(x1−1),±(x2
1−1)}.

Therefore, we have that

M1,2(y) = L

 1 x1 x2
1

x1 x2
1 x3

1
x2

1 x3
1 x4

1

=

y0 y1 y2
y1 y2 y3
y2 y3 y4

=

1 1 1
1 1 y3
1 y3 y4

 .
Assume we are interested in computing the upper prevision E∗[x4

1]. From (26), we have that this upper prevision is
equal to

sup
y3,y4∈R2

y4 s.t. M1,2(y)≥ 0. (30)

Note that the supremum is unbounded, since all matrices of the form

M1,2(y) =

1 1 1
1 1 1
1 1 y4


are positive semi-definite for every y4 ≥ 1. M1,2(y) is positive semi-definite, but it is not the truncated moment matrix
of any probability measure. Note in fact that E[x1] = E[x2

1] = 1 would imply the probability measure to be atomic on
x1 = 1 and so E[x4

1] = 1 and, therefore, it cannot be that E[x4
1]> 1. But (for instance for y4 = 2) we can find an atomic

signed measure 1.014δ1.043 +1.182δ3.952 +0.004δ−1.654−0.920δ3.938−0.281δ3.920 that has those moments, but it is
not a probability measure (negative weights).

In the next section, we restrict Ω to avoid unbounded previsions.
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Figure 2: Cones of nonnegative gambles

7. BADG on semi-algebraic sets

Let us assume that Ω is a semi-algebraic set, i.e., a set described by polynomial inequalities

Ω =
{

x = [x1, . . . ,xn]
> ∈ Rn : c0(x) = 1≥ 0, c j(x)≥ 0, j = 1, . . . , |C|

}
, (31)

where C = {c1, . . . ,c|C|} with c j(x) ∈ R2nc j
[x] or c j(x) ∈ R2nc j−1[x] (depending if the polynomial has an even or odd

degree). That means that Alice knows that x belongs to the set Ω⊆ Rn. Note that when C = /0, we have Ω = Rn. We
have introduced the redundant constraint c0(x) = 1≥ 0 for convenience in the proofs to follow.

In ADG, the knowledge that x belongs to Ω⊂Rn changes the cone of nonnegative gambles inRn from all gambles
g such that g≥ 0 to all gambles g such that gIΩ ≥ 0. In other words, the cone of nonnegative gambles is in this case:

L +
Ω

= {g : Rn→ R : gIΩ ≥ 0}. (32)

Actually in ADG we do not need to change A.1 to take into account the information x ∈Ω, because we can define the
cone of nonnegative gambles directly in Ω

L + = {g : Ω→ R : g≥ 0}. (33)

To explain that, let us go back for a moment to the coin toss example but considering the possibility space {Head,Tail,Side}.
A gamble g in this case has three components g(Head) = g1, g(Tail) = g2 and g(Side) = g3. If Alice is in a
state of complete ignorance, according to A.1 she shall only accept gambles such that gi ≥ 0 for i = 1,2,3. Her
set of desirable gambles is depicted in Figure 2 (left), that is the set of all nonnegative gambles in R3. Assume
she knows that the possibility space is actually Ω = {Head,Tail} (Side is impossible), according to A.1 she shall
then accept all gambles {g = [g1,g2] ∈ R2 : [g1,g2] ≥ 0} (this is the meaning of (33)), which are all the nonneg-
ative gambles in R2. Equivalently, according to (32), we can see this last cone as the 2D projection of the cone
{g = [g1,g2,g3] ∈ R3 : gIΩ = [g1,g2,0] ≥ 0}, which is showed in Figure 2 (right). Hence, in R3, the knowledge
Ω = {Head,Tail} may be translated in a new definition of the cone of nonnegative gambles (Figure 2 (right)), al-
though this is not necessary in ADG.

In BADG, to express the knowledge x ∈ Ω, we cannot use (32) because indicator functions are not polynomials.
Similarly, we cannot use (33). The reason is that SOS are the computable nonnegative polynomials in Rn and if we
restrict the domain to Ω, then (in general) we do not know an equivalent class of computable nonnegative polynomials
in Ω. Hence, we need to find another way to model x ∈Ω.
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Let us consider (32) and notice that, for every nonnegative gamble g : Rn → R+, the gamble gc j is in L +
Ω

for
every c j. Similarly, we have that gci c j ∈L +

Ω
, gci c j ck ∈L +

Ω
and so on. The set of gambles generated in this way

forms a convex cone,

L̃ +
Ω

:=

{
h : h = ∑

J⊆{1,...,|C|}
gcJ , g ∈L +

}
,

with cJ = ∏ j∈J c j, that is included in L +
Ω

.
Since ci are polynomials, so are σ ci and σ ci c j and so on for any SOS σ . Moreover, since σ is SOS and so

nonnegative, we also know that σ ci , σ ci c j, σ ci c j ck, etc., are nonnegative in Ω. This set forms a convex sub-cone
of L̃ +

Ω
,

˜̃L +
Ω

:=

{
h : h = ∑

J⊆{1,...,|C|}
σJcJ , σJ ∈ Σ2d

}
,

and the nonnegativity of its elements can be efficiently evaluated (it reduces to verify that σJ is SOS) (Schmüdgen,
1991).

It is then natural in our theory of bounded rationality to translate the constraint x ∈Ω in a computable sub-cone of
the previous form.

We therefore give the following more general definition of BADG.

Definition 6. We say that C ⊂L2d is a bounded-rationality coherent set of almost desirable gambles (BADG) on
the semi-algebraic set Ω in (31), when d ≥max j nc j and C satisfies A.3–A.5 (i.e. it is a closed convex cone) and:

bA.1 If g ∈ Ξ2d then g ∈ C (bounded accepting partial gain);

bA.2 If g ∈ Ξ
−
2d then g /∈ C (bounded avoiding sure loss);

where Ξ2d is defined as

Ξ2d =

{
σ0c0 +

|C|

∑
j=1

σ jc j : σ j ∈ Σ2d−2nc j

}

=

{
σ0 +

|C|

∑
j=1

σ jc j : σ0 ∈ Σ2d , σ j ∈ Σ2d−2nc j

}
.

and Ξ
−
2d is the interior of −Ξ2d .

Some remarks:

1. This is our bounded rationality approximation of L +
Ω

. It can be noticed that the set Ξ2d does not include the
terms σ ci c j ck that are also nonnegative in Ω. The number of these terms is exponential in the number of
polynomials that define the set Ω and, therefore, in general not suitable for computational complexity reasons.

2. In Sections 7.2, we will show that, under certain assumptions on Ω, this definition of BADG is not conservative
(Putinar, 1993).

3. Definition 6 reduces to Definition 3 when C = /0 (so that Ξ2d = Σ2d).

4. Results and Definitions in Section 6 can be generalised accordingly by simply taking into account that the new
set of nonnegative gambles is now Ξ2d (before it was Σ2d).

From now on we will use Definition 6 as definition of BADG. It means that Alice shall accept all polynomials of the
form σ0 +∑

|C|
j=1 σ jc j because they are nonnegative in Ω. Again this is only a sufficient condition, since in general

there exist nonnegative polynomials in Ω that cannot be expressed as σ0 +∑
|C|
j=1 σ jc j.
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Example 7. Let us consider the set
Ω = {x ∈ R : 1− x≥ 0, x≥ 0} , (34)

and let us assume that Alice is in a state of full ignorance. According to Definition 6, she shall only accept gambles f
such that

f = σ0 +
|C|

∑
j=1

σ jc j,

for σ0 ∈ Σ2d , σ j ∈ Σ2d−2nc j
. Assume f = 2x+ x2 and d = 1, to prove that f is always desirable in Ω we must show

that
f = 2x+ x2 = [1,x]Q0[1,x]T +q1x+q2(1− x),

with Q0,qi ≥ 0 (Q0 is a matrix, qi are scalars). By equating the coefficients of the polynomials we find the solution
q1 = 2, q2 = 0 and

Q0 =

[
0 0
0 1

]
.

Since Q0 ≥ 0 is positive semi-definite and q1,q2 ≥ 0, this shows that f is nonnegative in Ω. Instead, the polynomial
f = 1

8 −x(1−x) cannot be written as [1,x]Q0[1,x]T +q1x+q2(1−x) with Q0,qi ≥ 0. This polynomial is negative for
x = 1/2.

Example 8 (Markov’s inequality again). In Example 1 we have shown how to derive Markov’s inequality from ADG:

E(I{[u,∞)}) = inf
λi∈R

λ0

s.t.
λ0 +λ1(x−m)≥ I{[u,∞)}(x), ∀x ∈Ω.

(35)

Note the presence of the indicator function that is not a polynomial. However, the indicator is a piecewise polynomial
and, therefore, the above problem can be rewritten as

E(I{[u,∞)}) = inf
λi∈R

λ0

s.t.
λ0 +λ1(x−m)−1≥ 0, ∀x ∈ [u,xmax],
λ0 +λ1(x−m)≥ 0, ∀x ∈ [0,u).

(36)

Assume that u ∈ [0,xmax], we can exploit the results of this section and rewrite the BADG formulation of the above
problem as

inf
λi∈R,σ j

λ0

s.t.

λ0 +(x−m)λ1−1 = σ0(x)+σ1(x)(x−u)+σ2(x)(xmax− x), ∀x ∈ R,
λ0 +(x−m)λ1 = σ3(x)+σ4(x)x+σ5(x)(u− x), ∀x ∈ R,

where σi(x) ∈ Σ2(d−1) for i = 1,2,4,5 and σi(x) ∈ Σ2d for i = 0,3. It can be verified numerically that for d ≥ 2 and
m < u, the solution of the above problem is equal to m/u and, therefore, it coincides with that of ADG. For m ≥ u
(λ0 = 1,λ1 = 0,σ j = 0), the infimum is 1 same as ADG.

7.1. Duality
We now extend the duality established in Section 5.1 to the case of BADG defined on semi-algebraic sets. As

before, the first crucial step consists in establishing the following result.

Proposition 12. Let C = Ξ2d . Then its dual is

C • =
{

y ∈ Rsn(2d) : Mn,d(y)≥ 0, Mn,d−nc j
(c j y)≥ 0,∀c j ∈C

}
, (37)

where Mn,r(cy) := L(c(x1, . . . ,xn)vr(x1, . . . ,xn)vr(x1, . . . ,xn)
>).
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Proof. The proof is structurally the same as the one for Proposition 9. The inclusion from right to left being easy, for
the other inclusion we reason as follows. First of all, notice that elements of Ξ2d are combinations of polynomials of
the form σ j(x1, . . . ,xn)c j(x1, . . . ,xn) with σ j ∈Σ2(d−nc j )

, Any σ j ∈Σ2(d−nc j )
can be written as vd−nc j

(x1, . . . ,xn)
>Qvd−nc j

(x1, . . . ,xn)

(see Eq. (15)). From Equation (23), c j(x1, . . . ,xn)vd−nc j
(x1, . . . ,xn)

>Qvd−nc j
(x1, . . . ,xn) is equal to Tr(Qc(x1, . . . ,xn)vd−nc j

(x1, . . . ,xn)vd−nc j
(x1, . . . ,xn)

>)

with Q≥ 0. Because of linearity of L and trace

L(Tr(Qc(x1, . . . ,xn)vd−nc j
(x1, . . . ,xn)vd−nc j

(x1, . . . ,xn)
>))

= Tr(QL(c(x1, . . . ,xn)vd−nc j
(x1, . . . ,xn)vd−nc j

(x1, . . . ,xn)
>))

= Tr(QMn,d−nc j
(c j y)),

where Mn,d−nc j
(c j y) = L(c(x1, . . . ,xn)vd(x1, . . . ,xn)vd(x1, . . . ,xn)

>). This means that Tr(QMn,d−nc j
(c j y))≥ 0 ∀Q≥

0, and therefore Mn,d−nc j
(c j y)≥ 0 for every c j. We conclude by considering that c0(x) = 1.

The matrix Mn,r(cy) is called localizing matrix by Lasserre (2009).
As an immediate consequence of Proposition 12 and the properties of (·)•, it is then possible to verify an analogous

of Proposition 10. Since Proposition 11 also holds for BADG defined on semi-algebraic sets, by reasoning exactly as
in Theorem 5, we therefore can prove the following.

Theorem 7. The map
C 7→ C •∩S

is a bijection between BADGs in the semi-algebraic set Ω and closed convex subsets of S. We can therefore identify
the dual of a BADG C in the semi-algebraic set Ω with

C • =
{

y ∈ Rsn(2d) : L(g)≥ 0, L(1) = 1, Mn,d−nc j
(c j y)≥ 0,∀c j ∈C, Mn,d(y)≥ 0, ∀g ∈ C

}
, (38)

where L(g) is completely determined by y via the definition (20).

To understand the above dual set, let us consider again the following example.

Example 9. Let us consider the set
Ω = {x ∈ R : 1− x≥ 0, x≥ 0} . (39)

Assume that Alice is in a state of complete ignorance and that d = 1. Then the dual (38) is

C • =
{

y0,y1,y2,y3 : (40)

y0 = 1, M1,1(y) =
[

y0 y1
y1 y2

]
≥ 0, M1,0(c1y) = y1 ≥ 0, , M1,0(c2y) = 1− y1 ≥ 0

}
. (41)

By interpreting M1,0(c1y),M1,0(c2y) as truncated moment matrices, we can see

M1,0(c1y) = L(x) =
∫

xdµ ≥ 0, M1,0(c2y) = L(1− x) =
∫
(1− x)dµ ≥ 0.

Hence, the assessment x ∈Ω = [0,1] has been relaxed in BADG to E[x] ∈ [0,1].

7.2. Convergence of BADG to ADG
If we consider Theorem 4 then we can notice that, for fixed G, the set posi(G∪Σ2d) depends on the degree d of

the SOS polynomials Σ2d . By increasing d we add more nonnegative gambles and, therefore, enlarge the cone C . We
can then ask: what happens if we increase d→ ∞?

Let us assume that the semi-algebraic set Ω in (31) is compact. The compactness implies that polynomial gambles
defined on Ω are now bounded.
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Proposition 13 (Schmüdgen 1991). Let Ω be as in (31) and compact. If f is strictly positive on Ω then there exist
σ j ∈ Σ[x1, . . . ,xn] such that

f = ∑
J⊆{1,...,|C|}

σJ cJ , (42)

where cJ = ∏ j∈J c j.

Since σJ is SOS and so nonnegative, we know that σJ ci , σJ ci c j, σJ ci c j ck etc. are nonnegative in Ω. This set
is the convex sub-cone of L̃ +

Ω
we introduced previously in Section 7. Schmüdgen (1991) proved that any strictly

non-negative polynomial f on Ω can be written as ∑
J⊆{1,...,|C|}

σJ cJ for some SOS σJ . The problem with this result is

that the sum on the right hand side has an exponential number of terms. By imposing a further assumption on Ω, we
can make a major simplification.

We first define the following convex cone generated by the family of polynomials c j(x) (Lasserre, 2009, Sec 2.5):

Ξ =

{
σ0 +

|C|

∑
j=1

σ jc j : σ j ∈ Σ[x1, . . . ,xn]

}
,

where this time we are not restricting the degree of the SOS polynomials.

Proposition 14 (Putinar 1993). Assume that there exists a polynomial u ∈ Ξ such that the level set {x :Rn : u(x)≥ 0}
is compact. Let Ω be as in (31). If f is a strictly positive polynomial in Ω then f ∈ Ξ, i.e., there exist σ j ∈ Σ[x1, . . . ,xn]
such that

f = σ0 +
|C|

∑
j=1

σ jc j. (43)

This is a very general and powerful proposition and shows that our Definition 6 of BADG in Ω is not restrictive:
for any strictly positive polynomial f on Ω there exist SOS polynomials such that f = σ0+∑

|C|
j=1 σ jc j. Note that, since

Ω is compact, if we know a scalar d > 0 such that Ω ⊂ {x : Rn : ||x|| ≤ d} then we can add the constraint ||x|| ≤ d
to Ω without changing Ω. With this new representation, Ξ satisfies the assumption in Proposition 14 (Lasserre, 2009,
Sec 2.5).

Proposition 15. Given the set G of gambles Alice finds desirable, a semi-algebraic set Ω satisfying the assumption in
Proposition 14. Assume that K avoids sure loss. Then for every polynomial f , BADG converges to ADG for d→ ∞

in the sense that when E∗( f ) is finite then E∗( f )→ E( f ) (from below) (Lasserre, 2009, Th. 4.1).

However, we have already shown, for instance in the Covariance Inequality example, that it often happens that
E∗( f ) = E( f ) even for finite d (Lasserre, 2009, Sec. 4.1).

8. Updating

We assume that Alice considers an event “indicated” by a certain polynomial h(x)≥ 0, meaning that Alice knows
that x belongs to the set A = {x ∈ Rn : h(x) ≥ 0}. In ADG we will use this information to update (condition) her
set of desirable gambles based on A ⊆ Ω (Walley, 1991; Couso & Moral, 2011). Let G ⊆ L be finite, and K =
posi(G∪L +). Then K|A = {g ∈L : gIA ∈K }, where IA is the indicator function on A. From (6), it then follows
that the conditional lower prevision of a gamble f is

supλ j≥0,λ0
λ0

s.t.

( f −λ0)IA−
|G|
∑
j=1

λ jg j(x)≥ 0, ∀x ∈Ω,
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which is equivalent to
supλ j≥0,λ0

λ0

s.t.

f −λ0−
|G|
∑
j=1

λ jg j(x)≥ 0, ∀x ∈ A,

−
|G|
∑
j=1

λ jg j(x)≥ 0, ∀x /∈ A.

(44)

By writing ¬A := Ω\A, the dual of K|A coincides with

inf
µ1∈M (A)+,µ2∈M (¬A)+

∫
A

f dµ1

s.t.∫
A

dµ1 = 1∫
A

g jdµ1 +
∫
¬A

g jdµ2 ≥ 0, ∀ j = 1, . . . , |G|.

(45)

Proposition 16. Assume that E(IA)> 0 then the above optimisation problem is equivalent to

sup
ν∈R

ν : inf
µ∈M (Ω)+

∫
( f −ν)IAdµ ≥ 0

s.t.∫
dµ = 1∫
g jdµ ≥ 0, ∀ j = 1, . . . , |G|.

(46)

This is also called regular extension (Walley, 1991, Appendix J).
How do we do that in the BADG framework? In BADG we cannot completely use this information because again

Σ2d does not include indicator functions. However, we can still exploit the information in A in a weaker way as shown
in the previous section. In fact, if we know that h(x)≥ 0, then we also know:

σ1(x)h(x)≥ 0 ∀x ∈ A,

−σ2(x)h(x)≥ 0 ∀x ∈ ¬A,

for σi ∈ Σ2(d−nh), where the degree of h(x) is 2nh if even or 2nh−1 if odd (so that the degree of σi(x)h(x) is less than
2d). Hence, a possible way to define updating in BADG is as follows.

Definition 7. Let G be a finite subset of L2d , and C = posi(G∪Ξ2d) be a set of BADG in Ω. Given the event
A = {x ∈ Ω : h(x) ≥ 0} for some polynomial h(x), of degree 2nh if even or 2nh− 1 if odd, then, the set C|A that
includes all the gambles f ∈ L2d such that there exist λi ≥ 0, with i = 1, . . . , |G|, and σi0 ∈ Σ2d , σi j ∈ Σ2(d−nc j )

,
σa,σb ∈ Σ2(d−nh):

f −
|G|

∑
i=1

λigi = σ10 +
|C|

∑
j=1

σ1 jc j +σah and −
|G|

∑
i=1

λigi = σ20 +
|C|

∑
j=1

σ2 jc j−σbh (47)

is called the updated set of desirable gambles based on A.

The above Definition is consistent with that in (44), since the condition f −∑
|G|
i=1 λigi = σ10 +∑

|C|
j=1 σ1 jc j +σah is

sufficient for

f −
|G|

∑
i=1

λigi ≥ 0, ∀ x ∈ A⊆Ω.

In fact, given that σ10+∑
|C|
j=1 σ1 jc j +σah is nonnegative in A⊆Ω, if we can write f −∑

|G|
i=1 λigi as σ10+∑

|C|
j=1 σ1 jc j +

σah then this implies that f −∑
|G|
i=1 λigi is also nonnegative in A ⊆ Ω. Similarly, the condition −∑

|G|
i=1 λigi = σ20 +
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∑
|C|
j=1 σ2 jc j−σbh is sufficient for

−
|G|

∑
i=1

λigi ≥ 0, ∀ x ∈ ¬A.

Observe that, in the state of full ignorance, since G is empty, there is only one constraint f = σ0 +∑
|C|
j=1 σ1 jc j +σah.

Theorem 8. Assume that C|A is BADG in Ω. Then it holds that

C •|A =
{

y ∈ Rsn(d) : ∃z ∈ Rsn(d) such that

Mn,d(y),Mn,d−nc j
(c jy),Mn,d(z),Mn,d−nc j

(c jz)≥ 0 ∀c j,

Mn,d−nh(hy),Mn,d−nh(−hz)≥ 0, Ly(1) = 1,

Ly(g)+Lz(g)≥ 0, ∀g = 1, . . . , |G|
}
.

Proof. The argument of the proof is similar to that of Proposition 12. Note in fact that to define the dual of f −
∑
|G|
i=1 λigi = σ10 +∑

|C|
j=1 σ1 jc j + σah we can exploit Proposition 12 and account for the presence of the additional

constraint h ≥ 0. The variable z is introduced to define the dual of −∑
|G|
i=1 λigi = σ20 + ∑

|C|
j=1 σ2 jc j − σbh. The

constraint Ly(g)+ Lz(g) ≥ 0 connects the two duals and arises due to the presence of the term −∑
|G|
i=1 λigi in both

equalities (47).

To understand the above dual set, we can compare it with (45). The vector y has the same role of µ1 and z that
of µ2. The constraints Mn,d(y),Mn,d(z) are the bounded rationality analogous of µ1,µ2 ∈M+(Rn). The constraints
Mn,d−nc j

(c jy),Mn,d−nc j
(c jz) ≥ 0 are the bounded rationality analogous of the support constraints µ1 ∈M+(Ω) and

µ2 ∈M+(Ω). The constraints Mn,d−nh(hy),Mn,d−nh(−hz)≥ 0 are the bounded rationality representation of the con-
straints µ1 ∈M+(A) and µ2 ∈M+(¬A). Finally, Ly(g)+Lz(g)≥ 0 is equivalent to

∫
A g jdµ1 +

∫
¬A g jdµ2 ≥ 0.

Theorem 9. Let G be a finite subset of L2d , and A = {x ∈ Ω : h(x) ≥ 0}. Assume that K = posi(G∪L +) avoids
sure loss and let f ∈L2d . Then we have that EC|A

( f )≤ EK|A
( f ) where C = posi(G∪Ξ2d).

Proof. From the definition of conditioning for ADG we aim to find the supremum λ0 such that ( f−λ0)IA−∑
|G|
j=1 λ jg j(x)≥

0 ∀x ∈ Rn. It can be rewritten as the two constraints on the left and relaxed to the constraints on the right:

−
|G|

∑
j=1

λ jg j(x)≥ 0 ∀x ∈ ¬A, −
|G|

∑
j=1

λ jg j(x) = σ20 +
|C|

∑
j=1

σ2 jc j−σbh,

f −λ0−
|G|

∑
j=1

λ jg j(x)≥ 0 ∀x ∈ A, f −λ0−
|G|

∑
j=1

λ jg j(x) = σ10 +
|C|

∑
j=1

σ1 jc j +σah.

where the equalities on the right must hold ∀x ∈ Rn.

In case the set A is defined by several polynomial constraints
A = {h1(x) ≥ 0, . . . ,h|A|(x) ≥ 0}, we cannot use (47) because in general we cannot write ¬A as a single polynomial
constraint. However, we can relax (47) to:

f −
|G|

∑
i=1

λigi = σ10 +
|C|

∑
j=1

σ1 jc j +
|A|

∑
i=1

σaihi and −
|G|

∑
i=1

λigi = σ20 +
|C|

∑
j=1

σ2 jc j, (48)

which is a conservative approximation. It can actually be proven that the complement of a semi-algebraic set is the
union of semi-algebraic sets (Tarski, 1951; Seidenberg, 1954). Hence, the exact way to consider the constraints ¬A is
to translate them in a bunch of SDP problems.
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ask 53.8 49.5 45.2 41.1 29.3 25.7 22.3 19.1 16.2 13.6 11.3 9.2 7.5 6.1 4.9 3.9 3.2 2.15 1.55 1.15 0.90 0.3
bid 53.3 49 44.8 40.6 28.9 25.3 21.9 18.7 15.9 13.3 11 8.9 7.2 5.8 4.6 3.7 3 2 1.40 1 0.75 0.2
strike 2490 2495 2500 2505 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2590 2600 2610 2620 2675

Table 1: Ask and bid price for a call option on the S&P500 index: maturity 30days, quote day 2017-10-03.

9. Case study: European Options

As an example of application of BADG, we consider a problem from finance. An European call option on an
underlying security with strike k and maturity T gives the holder the option of buying the underlying security at price
k at time T . If the price ST is more than k, then the holder will exercise the option and make a profit of ST − k.
Conversely, if it is less than k, the holder will not exercise and does not make a profit. Thus, the payoff of this option
is max(ST − k,0). Since options are traded, a key problem in financial economics is to determine the belief of the
market about the future value of ST from the ask and bid8 prices of these options. Table 1 shows the ask and bid price
for 22 call options on the S&P500 index. What does the first column of the table mean? It means that “the market”
believes that the gambles max(ST − 2490,0)− 53.3 and 53.8−max(ST − 2490,0) are desirable, since there exists
someone that is willing to sell the option max(ST −2490,0) at price 53.8 and to buy it at price 53.3. As inference, we
aim to compute the market’s selling and buying price for the gamble f = I{[c,∞)}(ST ) for some c ∈ R.
In this case, the set of desirable gambles includes 44 gambles:

G = {max(ST −2490,0)−53.3,53.8−max(ST −2490,0), . . . ,
max(ST −2675,0)−0.2,0.3−max(ST −2675,0)}.

Note that, for simplicity, we have assumed that the discount factor is one.9 Moreover, observe that the gambles in
G and f are piecewise polynomials. We aim to apply BADG to solve this problem by exploiting the same trick
used in Example 8. Consider for instance the case G only includes max(ST − 2490,0)− 53.3,53.8−max(ST −
2490,0),max(ST −2495,0)−49,49.5−max(ST −2495,0) and c = 2490, then the lower prevision of f can be com-
puted in BADG as:

sup
λ0∈R,λ j≥0

λ0

s.t.
f −λ0−53.8λ1 +53.3λ2−49.5λ3 +49λ4 = σ0(ST )+(2490−ST )σ3(ST ),

f −λ0 +(ST −2490)λ1− (ST −2490)λ2−53.8λ1 +53.3λ2−49.5λ3 +49λ4
= σ1(ST )+(ST −2490)σ4(ST )+(2495−ST )σ5(ST ),

f −λ0 +(ST −2490)λ1− (ST −2490)λ2 +(ST −2495)λ3− (ST −2495)λ4
−53.8λ1 +53.3λ2−49.5λ3 +49λ4 = σ2(ST )+(ST −2495)σ6(ST ),

(49)

which, exploiting the definition of f , is equal to

sup
λ0∈R,λ j≥0

λ0

s.t.
−λ0−53.8λ1 +53.3λ2−49.5λ3 +49λ4 = σ0(ST )+(2490−ST )σ3(ST ),

1−λ0 +(ST −2490)λ1− (ST −2490)λ2−53.8λ1 +53.3λ2−49.5λ3 +49λ4
= σ1(ST )+(ST −2490)σ4(ST )+(2495−ST )σ5(ST ),

1−λ0 +(ST −2490)λ1− (ST −2490)λ2 +(ST −2495)λ3− (ST −2495)λ4
−53.8λ1 +53.3λ2−49.5λ3 +49λ4 = σ2(ST )+(ST −2495)σ6(ST ),

(50)

8The bid price is the max price that a buyer is willing to pay for a security. The ask price is the min price that a seller is willing to receive.
9The discount factor is the factor by which a future cash flow must be multiplied in order to obtain the present value.

23



with σi(ST ) ∈ Σ0 for i = 3,4,5,6 and σi(ST ) ∈ Σ2 for i = 0,1,2. This approach can be generalised to all 44 gambles
and allows us to deal with piecewise polynomials.
The application of SOS polynomials to European option pricing was first proposed by Lasserre et al. (2006). The
authors consider the problem of pricing an option given information (moments) on the probability density function of
ST . Here, we are considering the inverse problem and we are interested in studying it from a desirable gambles point
of view and, in particular, to investigate the effect of the updating in the inference.
In particular, for this example, the BADG lower and upper previsions of f are shown in Figure 3. It is worth noticing
that they coincide with those computed using ADG – we have verified it numerically by discretising ST and solving a
linear programming problem. Note that the discretisation approach can only be used when the number of variables is
small and, in any case, provides only an inner approximation of the lower and upper previsions. However, since in this
case BADG and ADG coincide, we can refer to these lower and upper previsions as the lower and upper probabilities
of the event ST > c.
Assume that we aim to update our inference given the information “ST ≥ 2540 is true”, meaning that Alice knows that
x belongs to the set A = {ST ∈ R : ST −2540 ≥ 0}. We can apply the approach discussed in Section 8 and compute
an updated set of desirable gambles. The corresponding lower and upper probabilities for the event ST > c are shown
in Figure 4 (right, blue) together with the previous lower and upper probability for comparison.
Options’ data includes other information apart from bid and ask prices, such as trading volume for the day. We can
use such information for updating, for example by using the trading volume to build a weighting function across the
strikes. An example of weighting function W (ST ) is shown in Figure 4 (left). We can then compute an updated BADG
by replacing f (ST )−λ0 in (49) with ( f (ST )−λ0)W (ST ). This is another way of defining an updating rule in BADG
that is similar to updating with probability density functions in standard probability. The updated lower probability is
shown in Figure 4 (right, green).
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Figure 3: Lower and upper probability that ST > c for BADG.

Acknowledgement

We thank the anonymous reviewers for their careful reading of the manuscript. Their insightful comments and
suggestions have greatly helped improve and clarify this work.

This work was partially supported by the Swiss NRP 75 Big Data grant no. 407540-167199.
Aliprantis, C., & Border, K. (2007). Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer.
Benavoli, A., Facchini, A., Piga, D., & Zaffalon, M. (2017a). Sos for bounded rationality. In Proc. ISIPTA’17 Int. Symposium on Imprecise

Probability: Theories and Applications, (pp. 1–12). PJMLR.
Benavoli, A., Facchini, A., Zaffalon, M., & Vicente-Prez, J. (2017b). A polarity theory for sets of desirable gambles. In A. Antonucci, G. Corani,

I. Couso, & S. Destercke (Eds.), Proceedings of the Tenth International Symposium on Imprecise Probability: Theories and Applications (pp.
37–48). PMLR volume 62 of Proceedings of Machine Learning Research.

Benavoli, A., & Piga, D. (2016). A probabilistic interpretation of set-membership filtering: Application to polynomial systems through polytopic
bounding. Automatica, 70, 158 – 172.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
de Cooman, G., & Quaeghebeur, E. (2012). Exchangeability and sets of desirable gambles. International Journal of Approximate Reasoning, 53,

363–395.
Couso, I., & Moral, S. (2011). Sets of desirable gambles: Conditioning, representation, and precise probabilities. International Journal of

Approximate Reasoning, 52, 1034–1055.

24



2500 2525 2550 2575 2600 2625 2650 2675
Strikes

0

100

200

300

400

500

600

Vo
lu

m
e

(a) Weighting function

2500 2525 2550 2575 2600 2625 2650 2675
c

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

Lower
Lower Weighting Updating
Lower Updating
Upper
Upper Weighting Updating
Upper Updating

(b) Lower/Upper and updated lower/upper probabilities that ST >
c for BADG.

Figure 4: Updating
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