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Abstract—Nowadays, lithium-ion batteries play an 

important and crucial role in various applications, including 

electric transportation, electronic devices, medical devices, and 

supporting renewable energy sources. Unfortunately, they are 

subjected to different degradation mechanisms due to storage 

conditions (calendar aging) and operating conditions (cycle 

aging). The battery’s internal resistance can be used as an 

indicator of its state of health. Indeed, it usually increases with 

aging. Moreover, the internal resistance depends on 

temperature and state of charge (SOC) leading to a variation 

law of the internal resistance with temperature and SOC. On the 

other hand, this variation law can change with aging. Therefore, 

to accurately estimate the state of health, knowledge of this 

dependency is required. Recently, there has been a surge in 

popularity and growing interest in utilizing various machine 

learning (ML) techniques for these purposes. In light of the 

above, this paper proposes a straightforward ML approach that 

utilizes a modest dataset with restricted features, eliminating the 

need for computationally demanding tools. The approach was 

employed and validated to estimate how the relationship 

between the battery's internal resistance and temperature varies 

with cycle aging across different SOC levels. 

Keywords—machine learning, lithium-ion battery, battery 

model, battery’s internal resistance, battery aging 

I. INTRODUCTION 

Lithium-ion batteries (LiBs) are being increasingly 
employed in a wide range of applications, ranging from the 
smallest ones, such as electronic devices and medical devices 
to the largest ones, such as electric transportation and grid 
storage [1]. The energy and power exchange capabilities of 
LiBs depend on their internal parameters. Specifically, the 
battery capacity is associated with stored energy, while the 
battery’s internal resistance is linked to its power capability. 

Like other electrochemical devices, LiBs are susceptible 
to various degradation mechanisms caused by storage 
conditions (calendar aging) and operating conditions (cycle 
aging) [2], [3]. The former primarily depends on the state of 
charge (SOC) and temperature in relation to the duration of 
storage [4], [5]. The latter is predominantly influenced by 
SOC, temperature, and current rate in relation to the total 
charge exchanged with the battery [5], [6], [7]. The 
degradation affects the performance of LiBs, resulting in 
capacity fade (energy fade) or an increase in internal 

resistance (power fade). The latter will be the focus of the 
present work.  

The estimation of the battery’s internal resistance can be 
performed in either the time or frequency domains. Among 
all, the most commonly employed method is the dc current 
pulse, which requires injecting a current pulse into the battery 
under test and measuring the resulting voltage change over a 
specific time interval [8]. Moving to the frequency domain, 
electrochemical impedance spectroscopy (EIS) is one of the 
most widely employed methods, which consists of imposing 
a small sinusoidal current or voltage, at different frequencies, 
while measuring the corresponding (voltage or current) 
response [9]. This allows to evaluate the battery impedance 
in a wide frequency range. 

The battery’s internal resistance depends on the same 
factors that ages the battery itself. In the literature, it is 
possible to find many studies that evaluated the influence of 
SOC and temperature on the battery’s internal resistance. In 
[10], the authors examined the internal resistance at 50% of 
SOC across various temperatures, establishing a 
mathematical relationship between internal resistance and 
temperature. Moreover, in [11], the correlation between 
internal resistance and battery capacity at different SOC and 
aging levels was analyzed. In [12], the influence of SOC on 
internal resistance was investigated, while in [13], the authors 
investigated the effect of calendar aging on the battery's 
internal resistance. Other scientists focused their attention on 
the effect of the cycle aging [14]. Finally, how the 
dependencies of internal resistance on SOC and temperature 
change with the battery aging were studied in [15]. 

In all the aforementioned works, the modeling of batteries 
and estimation of their parameters were conducted using 
analytical expressions. However, in recent years, various 
machine learning (ML) techniques have gained popularity 
and became of great interest for these purposes [16], [17].  

In the present work, a simple ML approach was proposed 
to estimate the battery’s internal resistance under different 
conditions of SOC, temperature, and aging levels. By 
utilizing a small dataset with limited features, and without the 
need for computationally intensive tools, the proposed 
solution demonstrates satisfactory estimation results in the 
prediction of the resistance variation in an unknown state of 
charge and future aging. The outcome paves the way for 

389

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 M

et
ro

lo
gy

 fo
r e

Xt
en

de
d 

Re
al

ity
, A

rt
ifi

ci
al

 In
te

lli
ge

nc
e 

an
d 

N
eu

ra
l E

ng
in

ee
rin

g 
(M

et
ro

XR
AI

N
E)

 |
 9

79
-8

-3
50

3-
00

80
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
ET

RO
XR

AI
N

E5
85

69
.2

02
3.

10
40

57
49

Authorized licensed use limited to: Scuola Univ Professionale della Svizzera Italiana. Downloaded on February 06,2024 at 09:19:18 UTC from IEEE Xplore.  Restrictions apply. 



  

further investigation and development along the same ML 
direction. 

II. BATTERY MODEL 

In the literature, it is possible to find many different 
battery models that describe their electrical [18], thermal 
[19], or aging behavior [20]. To model the electrical behavior, 
the most common models are based on the circuital approach, 
which is particularly preferred especially in battery 
management systems due to their ability to provide accurate 
results with low computational effort [21]. 

Equivalent circuit models can be categorized based on 
their level of complexity and detail. The simplest one consists 
of a voltage source that models the open circuit voltage (VOC) 
of the battery and a series resistor that models the battery’s 
internal resistance. This model is very simple but does not 
allow for the investigation of the battery dynamics. One of 
the most comprehensive models is reported in Fig. 1. It 
consists of a voltage source representing the VOC and, in 
series, the battery impedance. The latter comprises four 
different terms connected in series. The first term is pure 
ohmic resistance, RS, which represents the electronic 
resistance of current collectors and electrodes, as well as the 
ionic resistance of electrolyte and separator. The second term 
is an RC parallel branch related to the solid electrolyte 
interface (SEI), which forms between the electrodes and 
electrolyte at the beginning of the battery life and continues 
to grow over its lifespan [22]. The third term is a parallel 
between the charge transfer resistance (Rct), which relates to 
charge transfer during chemical reactions [23], and the 
double-layer capacity (Cd), which models the double-layer 
capacitance effect [21]. The last term is an element called 
Warburg impedance (ZW) and models the diffusion processes 
into electrode/electrolyte [24].  

In this paper, we focused on estimating the pure ohmic 
resistance, RS. 

+
-

VOC

RS

Vb

Ib

RSEI

CSEI

Rct

Cd

ZW

 

Fig. 1. Battery equivalent circuit model 

The resistance RS can be experimentally measured using 
several techniques, which can be divided into time-domain 
and frequency-domain ones. The formers are generally 
performed by injecting a current pulse and measuring the 
initial voltage drop. The latter are generally performed 
through the galvanostatic EIS (GEIS) where a sinusoidal 
current is injected at different frequencies, and the resulting 
impedance spectrum is analyzed. From the spectrum, the 
ohmic resistance can be derived simply as the value of the 
real part of the impedance when the imaginary part is zero. 
Fig. 2 presents an impedance spectrum obtained 
experimentally using GEIS, with the highlighted value of RS. 

III. EXPERIMENTAL ACTIVITY 

For this analysis, the same dataset used in [15] was 
employed. The battery cell under test was a LiCoO2 cell, 
which parameters are summarized in Table I.  

 

Fig. 2. Experimental GEIS 

TABLE I.  CELL PARAMETERS 

Parameter Value [Units] 

Rated capacity  10 [Ah] 

Charge cut-off voltage  4.2 [V] 

Discharge cut-off voltage 2.75 [V] 

Maximum continuous discharge current 100 [A] 

Maximum discharge current 150 [A] 

Temperature range (-20, +60) [°C] 

Life cycles with 100% of Depth of 
Discharge 

>300 

The experimental setup is shown in Fig. 3 and consisted 
of a booster (VMP3B-100) connected to a potentiostat (SP-
150), both from Biologic Science Instruments, controlled by 
a PC with ECLAB software. To control the battery 
temperature, three Peltier cells connected in series were 
placed under the battery cell. The control of the Peltier cells 
was performed using a Texas Instrument microcontroller 
(F28069M) combined with an inverter (DRV8323RX). The 
block diagram of the test setup is reported in Fig. 4. 

Potentiostat 

SP-150

Booster 

VMP3B-100

Battery
PC with 

ECLAB 

Peltier 

cells 

Texas F28069M 

& inverter  

Fig. 3. Test setup 

Peltier cells 

Inverter
Texas 

F28069M

Potentiostat Booster Battery

 

Fig. 4. Scheme of the test setup 

The test procedure was divided into two steps: the internal 
resistance measurement phase and the cycle aging phase. The 
evaluation of the resistance was performed using GEIS at the 
beginning of the battery life and after each cycle aging phase.  

A. Resistance measurement phase 

The resistance of the LiB cell was measured at five 
different SOC levels (100%, 75%, 50%, 25%, and 0%) and 
eight different temperatures: 20 °C, 22.5 °C, 25 °C, 27.5 °C, 
30 °C, 33.5 °C, 38 °C, and 46 °C directly from the booster, 
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which has an accuracy class on the impedance measurement 
defined as 1% of the reading. 

The LiB cell was charged up to 100% of SOC using the 
constant current-constant voltage (CC-CV) protocol. This 
protocol involved charging the LiB cell at 10 A (1C) until the 
maximum cut-off voltage was reached. Then, a constant 
voltage of 4.2 V was applied until the current decayed to 100 
mA (0.01C). After completing the charging process, the LiB 
cell was left to rest for 1 hour, and a GEIS from 10 kHz to 
100 mHz was performed. After that, the LiB cell was 
discharged at 10 A (1C) until 75% of SOC was reached. After 
1 hour of rest, another GEIS was performed. The same 
procedure was repeated, decreasing the SOC level by 25% 
each time until reaching 0% of SOC. Then, the temperature 
was changed, and the LiB cell was recharged using the CC-
CV protocol to perform the same procedure at all the 
abovementioned temperatures.  

B. Cycle aging phase 

The cycle aging phase was performed at a constant 
temperature of 30 °C and consisted of a sequence of charging 
and discharging current steps. To speed up the cycle aging 
phase, these charging and discharging steps were performed 
at 50 A (5C) since, under constant temperature conditions, the 
current amplitude does not significantly affect battery aging 
[20]. After moving 10000 Ah, the charging and discharging 
steps were reduced to 40 A (4C) to avoid high frequency 
aging effects [25] caused by capacity fade. Nonetheless, the 
charging and discharging cycles were constrained by two 
boundaries: the voltage was limited between 3.45 V 
and 4.05 V, and the SOC was maintained between 
20% and 80%. It is worth noting that, if the voltage 
boundaries were reached before, the charge moved in a cycle 
would be less than 60% of the capacity. However, according 
to [6], the shape of the aging cycle does not influence the 
aging process. Each cycle aging phase moved about 5000 Ah. 

IV. MODEL DESCRIPTION  

Neural networks (NN) are universal approximators and 
can estimate any nonlinear function with the required 
accuracy [26]. Indeed, in recent years NNs have been shown 
to solve complex non-linear problems [27], and have been 
extensively used in many different fields, such as computer 
sciences, finance, engineering, etc. (see, e.g., [28] and 
references therein). Compared with other ML modeling 
approaches, NNs have advantages in predicting an output 
without the knowledge of the exact analytic information of 
the modeled system. Another major benefit of NNs is their 
computational efficiency [28]. For all these reasons this work 
specifically focuses on NNs, due to their potential to 
effectively tackle highly nonlinear complex problems, with 
limited computational cost. 

It is worth mentioning that other ML models (specifically, 
Support Vector Machines, LASSO/Ridge regression with 
polynomial features, Gradient Boosting Regressor, and 
Random Forests regressor) were tested and trained for the 
same task. However, preliminary results indicated that the 
NN approach outperformed the other models in both accuracy 
and computational time. 

This Section is organized as follows: Section IV-A 
describes the process of building, training, and evaluating a 
suitable network model for the task at hand; Section IV-B 
explores Ensemble Learning, an ML technique that enables 

the combination of multiple simple learning models, such as 
the one built in Section IV-A, into a more robust aggregate 
model. 

A. Neural Network Architecture 

The main challenge in creating an appropriate NN model 
for the task of interest was the small size of the dataset, both 
in terms of the number of samples (160 samples for training 
purposes, 40 for testing), and feature size (3 features only: T, 
SOC, and moved charge). 

A standard K-fold cross-validation approach was 
employed to train NN architectures, with K = 4 (i.e., the size 
of each fold equal to 40), with folds generated uniformly at 
random. Preliminary experiments were conducted using 
different feedforward networks with 2 or 3 hidden layers, 
each layer composed of 10 neurons at most. All these 
preliminary experiments, performed with different model 
configurations, showed a huge level of overfitting on the 
validation set, mostly due to the limited size of the overall 
dataset. 

The need to prevent overfitting led to the final design of a 
small and compact network architecture, better suited to the 
limited complexity of the dataset. The employed network 
architecture was composed of a single dense layer composed 
of 5 neurons, activated by the softmax function. All neurons 
of the hidden layer were connected to a single output unit 
with no activation function (indeed, activation functions in 
the output of a NN are not needed for regression tasks). 
Nevertheless, ReLU and LeakyReLU were tested as output 
activation functions, but they provided worse results 
compared to not having an activation function at all. Standard 
choices such as: i) Mean Squared Error (MSE) as cost 
function, ii) Adam as an optimizer, and iii) batches of size 32 
samples, were found to perform well and were selected for 
the final configuration. Finally, after some tuning, an initial 
learning rate of 5⸱10-3 was chosen. The network architecture 
was trained for 2500 epochs in each experiment, and the 
weight configuration that achieved the best performance on 
the validation set was stored as the final model. The NN 
model employed in the experiments is summarized in 
TABLE II. 

TABLE II.  NN ARCHITECTURE 

Number of layers 2 

Number of units in the hidden layer 5 

Number of units in the output layer 1 

Activation function of the hidden units softmax 

Activation function of the output unit  None 

Loss function MSE 

Optimizer Adam 

Initial learning rate 5∙10-3 

Batch size 32 

 

B. Ensembles 

The compact NN model described in the previous section 
can be efficiently used as a building block of a more complex 
architecture. Based on this idea, it was decided to further 
enhance and refine the predictions of the network model 
through an Ensemble Learning technique, specifically by 
performing bagging (short for bootstrap aggregating) [29]. 

Bagging, in simple terms, is an ML method where the 
prediction output of an ML task is obtained by aggregating 
the predictions of multiple independent ML models. More 
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specifically, according to the bagging procedure, the original 
training set is sampled with replacement N times, N > 1, to 
obtain N training sets from the original one, sufficiently 
different from each other. Each training set is then used to 
train an ML model. During the prediction step, the output 
predictions of each one of the N independent ML models are 
aggregated with the predictions of all the other models, thus 
generating a single final result.  

For a regression task, as the one presented in this work, 
aggregating the outputs of N ML models translates into 
averaging the output prediction of each model. Bagging is 
nowadays an established ML technique that reduces variance 

and mitigates overfitting, thus increasing prediction stability 
and accuracy [30]. 

Due to the limited size of the dataset and the compactness 
of the networks described in the previous section, it was 
decided to perform bagging with a large number of 
predictors, specifically N = 100 NNs. For each NN, a 
different training set was generated by sampling 160 samples 
with replacement from the original 160 samples. Statistically, 
this procedure implies that approximately 37% of instances 
are not sampled for each predictor, leaving them available as 
validation sets. The overall bagging procedure is illustrated 
in Fig. 5. 

 

 

Fig. 5. Bagging architecture 

 

Fig. 6. Measured resistance (blu continuous lines) vs estimated value (red dashed lines) 

V. MODEL PERFORMANCES 

All the experiments were run on the CPU of an AMD 
EPYC 7742 server, with a base processor speed of 2.25 GHz, 
256 MB L3 cache, and no GPUs. Python was used as a 
programming language, with the Tensorflow library for the 
ML procedures. 

The dataset used to train the model was composed of the 
experimental results obtained at all SOC levels and all aging 
levels, except the last one at 20 kAh. This model was then 
used to predict the resistance trend as a function of 
temperature when the moved charge is 20 kAh. Then, the 
results were compared with the experimental data obtained 
from the GEIS, as explained in Section III. The comparison 
of the two trends is depicted in Fig. 6. As can be seen from 
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the figures, the predicted resistance closely matches the 
measured value, especially at lower SOC levels.  

The model performances can be evaluated by employing 
the relative error for a given temperature and SOC. Therefore, 
it is defined as: 

 ( ) ( ) ( )
( )

, ,

,

SOC,T SOC,T
SOC,T

SOC,T

S e S m

S m

R R

R
ε

−
=   (1) 

where RS,e is the estimated resistance value from the NN, 
while RS,m is the actual measured one. Once having computed 
the relative error, its statistical behavior can be evaluated. In 
particular, its average value is equal to -0.05%, while the 95th 
percentile value is between -4.5% and +2.5%. This is a 
remarkable performance, considering the limited value of the 
resistance that has to be measured and the class of the 
impedance measurement device which is equal to 1%.  

The accuracy of predicting the battery resistance against 
temperature, RS(T), for each SOC, can be evaluated using the 
normalized root mean square error (NRMSE), which is 
defined as: 

 ( )
( ) ( )( )

( )( )

2

, ,

2

,

NRMSE SOC
S m S e

T

S e

T

R T R T

R T

−
=



  (2) 

The results are shown in Fig. 7. 

 

Fig. 7. NRMSE of RS(T) prediction when Q=20 Ah  

The trend confirms the remarkable performance of the 
prediction for low SOC levels: when the SOC equals 0%, its 
value is reduced to 1.5%, while the model seems to behave 
worse at 100% of SOC, where the NRMSE doubles. This is 
mostly given by the inaccurate prediction of the resistance at 
low temperatures, specifically at T = 20 °C. The reason 
behind this lies in the different derivatives of the resistance in 
that region. Increasing the number of observations will easily 
reduce the prediction error. By neglecting that point, the 
NRMSE lowers to less than 2% and the 95th percentile of the 
relative error is reduced to about ±2%. 

After evaluating the prediction of the resistance trend for 
a given aging condition, the model was trained to determine 
the value of RS(T) for each aging at a specified SOC. This 
means that the NN is able to reconstruct RS(T) correctly in 
each aging condition, even in an unknown SOC. To achieve 
this, the NN was trained using the entire dataset except for 
the experimental data at SOC = 0%. It was then asked with 

predicting the behavior of Rs(T) at that specified SOC. As an 
example, the results of predicting the behavior when 
SOC = 0% are reported in Fig. 8.  

 

Fig. 8. Measured resistance (continuous lines) vs estimated value (dotted 
lines) 

Also in this case, the NN performs quite well in 
estimating the Rs(T) curves for the unknown SOC, with a 
relative error between -4% and +5% for the 95th percentile of 
observations, and a mean value of 1.4%. Additionally, the 
NRMSE value varies from 1.5% (for the blue curve of Fig. 8, 
namely Q=5 kAh) to 3.5% (when the battery is new). The 
results of NRMSE are reported in Fig. 9. 

 

Fig. 9. NRMSE of RS(T) prediction when SOC=0%. 

VI. CONCLUSION 

Nowadays, the use of LiBs is spreading for manyfold 
applications, ranging from electronic devices to power grid-
based applications. Despite their widespread adoption, their 
behavior is not yet fully understood to their inherent physical 
complexity. One of the key points of the research activity is 
the estimation of battery degradation and end of life. This 
work proposes a machine learning method applied to LiBs for 
estimating the behavior of internal resistance as a function of 
temperature, state of charge, and total moved charge, which 
can be a useful indicator for the state of health prediction.  

The results show a good agreement between the predicted 
and experimental data, both for predicting the last aging level 
at each SOC and for predicting resistances at 0% of SOC for 
all aging levels. In both cases, the NN was trained using all 
the available complementary data. The 95th percentile of the 
relative error is below 5% and the NRMSE is below 3.5% for 
both cases. These results are noteworthy, especially 
considering the limited range of resistance to be measured 
and the class of the impedance measurement device set at 1%. 
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Moreover, the results can be further improved by expanding 
the size of the training dataset. 
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