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Abstract. The naive credal classifier (NCC) extends naive Bayes clas-
sifier (NBC) to imprecise probabilities to robustly deal with the speci-
fication of the prior; NCC models a state of ignorance by using a set of
priors, which is formalized by Walley’s Imprecise Dirichlet Model (IDM).
NCC has been shown to return more robust classification than NBC.
However, there are particular situations (which we precisely characterize
in the paper) under which the extreme densities included by the IDM
force NCC to become very indeterminate, although NBC is able to is-
sue accurately classifications. In this paper, we propose two approaches
which overcome this issue, by restricting the set of priors of the IDM .
We analyze both approaches theoretically and experimentally.

1 Introduction

The naive Bayes classifier (NBC) is often accurate, despite the unrealistic as-
sumption of independence of the features given the class. However, especially on
small data sets, NBC can happen to issue prior-dependent classifications, i.e.,
the most probable class varies depending on the adopted prior. This is accept-
able if the prior can be carefully elicited to model domain knowledge; otherwise,
prior-dependent classifications can be fragile. Usually, NBC is learned using a
uniform prior, in the attempt of being non-informative. Yet, this solution is
hardly satisfactory because the uniform prior models indifference rather than
ignorance and anyway the choice of any single prior implies some arbitrariness.
The naive credal classifier (NCC) extends NBC to imprecise probabilities to
robustly deal with the specification of the prior density; NCC models a state
of ignorance by using a set of priors, which is formalized by Walley’s Imprecise
Dirichlet Model (IDM) (see [2] for a tutorial). IDM satisfies several properties
desirable to model prior ignorance, such as the representation invariance prin-
ciple (RIP) and the likelihood principle (LP) [2].
NCC turns the set of priors into a set of posteriors by element-wise application
of Bayes rule; eventually, it returns all the classes which are non-dominated1

within the set of posteriors. In fact, NCC returns a set of classes when faced
with instances whose classification is prior-dependent; it issues weaker but more
robust classifications than NBC. We call determinate the classifications made of
1 The definition of dominance is given in Section 2.



a single class, and indeterminate the others.
Yet, there are particular situations (which we precisely characterize in the paper)
under which the extreme densities included by the IDM force NCC to become
very indeterminate; as pointed out in [7, Sec. 6], this behavior is correct in princi-
ple, since it shows that the classifications issued by NBC are prior dependent. Yet
in such cases the large indeterminacy of NCC is questionable, as it is mostly due
to extreme (namely, very skewed) priors; in fact, NCC becomes more determi-
nate if such extreme priors are removed. Moreover, in such cases NBC (learned
with uniform prior) achieves good accuracy on the instances indeterminately
classified by NCC, which further shows an excessive indeterminacy of NCC. A
way to increase the determinacy of NCC in such cases is to remove these extreme
densities by restricting the IDM’s set of priors by a small amount (an ε), in order
to remove the boundary. In this paper we propose two approaches to cut off the
extreme densities in the IDM; in both cases, the amount of densities removed
from IDM is controlled by the parameter ε > 0. The value of ε determines a
trade-off between robustness and informativeness of the issued classifications:
increasing ε increases informativeness, at a cost of some robustness. The setting
ε = 0 corresponds to the IDM, which is maximally robust but, at least in such
particular cases, leads to a questionable high indeterminacy.

An alternative approach for restricting the credal set by modelling domain
knowledge is given in [1], where only those priors that guarantee an improve-
ment of the Mean Squared Error over the Maximum Likelihood Estimator are
included in the credal set. In [1] it is also shown that removing extreme densities
from the IDM is equivalent to express preferences among subregions of the pa-
rameter space; from this viewpoint, the two approaches proposed in this paper
are informative; thus, as we show in Sec.2.1, they cannot satisfy at the same
time both RIP and LP.

By experiments, we show under which conditions NCC, learned with Wal-
ley’s IDM, can become unnecessarily indeterminate; we compare its behavior
against that of an alternative credal classifier, CMA (credal model averaging)
[3]. Then, we show that NCC becomes more determinate without compromising
its reliability, when the two approaches for restricting the IDM are applied.

2 Naive credal classifier

NCC models prior near-ignorance by a set of priors; the set is formally defined
by using Walley’s Imprecise Dirichlet Model (IDM) [6]. NCC updates each prior
with the observed likelihood, via element-wise application of Bayes’ rule; in this
way, NCC turns the set of priors into a set of posteriors. Let us denote the
classification variable by C, taking values in the finite set C, where the possible
classes are denoted by lower-case letters. We have k features F1, . . . , Fk taking
generic values [f1, . . . , fk] = f from the sets F1, . . . ,Fk; the features are assumed
to be discrete. We denote by θc,f the real unknown probability (chance) that
(C,F1, . . . , Fk) equals (c, f), by θfi|c the chance that Fi = fi conditional on
c and by θf |c the chance of (f1, . . . , fk) conditional on c. Let N be the total



number of samples; let n(c) and n(fi |c ) be the observed frequencies of class
c and of (fi |c ). NCC, like NBC, (naively) assumes the independence of the
attributes given the class θf |c =

∏k
i=1 θfi|c . The likelihood function is:

L(n|θ) ∝
∏
c∈C

θn(c)
c

k∏
i=1

∏
fi∈Fi

θ
n(fi|c )
fi|c

 , (1)

where n denotes the vector of all the above frequencies. Observe that for all
c and i, the observations satisfy the structural constraints 0 ≤ n(fi |c ) ≤ n(c),∑
c n(c) = N and

∑
fi∈Fi

n(fi |c ) = n(c). The prior density is expressed similarly
to the likelihood function, except that frequencies n(·) are replaced everywhere
by st(·) − 1, i.e., the prior is a Dirichlet density with parameters α(·) = st(·).
The parameter s is a positive real number which can be regarded as the number
of hidden samples, in the common interpretation of conjugate Bayesian priors as
additional sample units (the number can be fractional, though); the parameters
t(·) can be regarded as the proportion of units of the given type; for instance, tc′ is
the proportion of hidden units having class c′ in the hidden samples. Theoretical
considerations suggest that s should lie between 1 and 2 [2], while the t(·) are
usually set according to the uniform prior: t(c) = 1

|C| and t(ai|c) = 1
|C||F| . By

multiplying the prior density and the likelihood function, we obtain a posterior
density of the same form as the likelihood, with n(·) replaced by st(·) + n(·) −
1. We estimate the posterior joint probability of class and features by taking
expectation over the posterior probability of θ, i.e., P (c, f |n, s, t) equal to:

P (c|n, s, t)
k∏
i=1

P (fi|c,n, s, t) =
n(c) + st(c)
N + s

k∏
i=1

n(fi |c ) + st(fi |c )
n(c) + st(c)

. (2)

Equation (2) is the posterior probability densities of class and features returned
by NBC. However, the specification of any single prior entails the risk of issuing
fragile prior-dependent classifications. Walley’s IDM overcomes this problem, by
letting the parameters t vary within intervals instead of being fixed to precise
values. In particular, t vary within the polytope T , defined by the following
constraints:

T :=

∑
c∈C

t(c) = 1,
∑
fi∈Fi

t(fi |c ) = t(c), 0 < t(fi |c ) < t(c) ∀(i, fi, c)

 . (3)

Thus, IDM takes into consideration all the priors densities which belong to the
simplex T . Notice that, the above constraints are necessary and sufficient con-
ditions to ensure that all the densities, obtained by letting t vary in T , are
proper. Walley’s IDM satisfies the representation invariance principle because
the uncertainty about any event does not depend on refinements or coarsening
of categories; the likelihood principle, because posterior inferences depend on the
data through the likelihood function only. The specific approach used by NCC
[7] to identify the non-dominated classes is called maximality [6]. Consider the



1 − 0 utility functions associated with the actions of choosing class c′ or c′′.
The family of posterior probabilities P (c, f |n, s, t) (obtained by letting t vary in
T ) are used to determine the lower expected utility of deciding between c′ or
c′′. Class c′ dominates c′′ if the expected utility w.r.t. P (c, f |n, s, t) of choosing
a class c′ over c′′ is strictly positive for each t ∈ T . In the case of NCC, c′

dominates c′′ if and only if [7]:

inf
t∈T

P (c′, f |n, t,s)
P (c′′, f |n, t, s)

= inf
t∈T

[
n(c′′) + st(c′′)
n(c′) + st(c′)

]k−1 k∏
i=1

n(fi |c′ ) + st(fi |c′ )
n(fi |c′′ ) + st(fi |c′′ )

> 1.

(4)
When faced with a prior-dependent instance, NCC identifies more non-dominated
classes and issues an indeterminate classification, thus preserving reliability.

2.1 Restricting IDM

As already observed, by considering all prior Dirichlet densities such that 0 <
t(c) < 1 and 0 < t(fi |c ) < t(c) for all i and c, IDM excludes the extremes of
the simplex T , which correspond to improper densities. This means that the
simplex T is obtained by restricting the set 0 ≤ t(c) ≤ 1 and 0 ≤ t(fi |c ) ≤ t(c)
by an arbitrary small ε. If n(fi |c ) > 0 and n(fi |c ) < n(c) for each feature i and
class c, the posterior densities corresponding to the extremes of the simplex T
are proper for any choice of ε. Thus, in this case, we can let ε go to zero. This
is proved in [7] for the optimization in (4). In particular, it is shown that the
infimum of (4) is obtained by letting t(fi |c′ ) → 0 and t(fi |c′′ ) → t(c′′), thus
using extreme densities (i.e., ε = 0). Then, problem (4) is solved by optimizing
on t(c′′) only. Since function (4) is convex with respect to t(c′′), the minimization
can be solved exactly and efficiently.

In some cases, the use of extreme densities in (4) generate what we call the
class problem and the feature problem. The class problem, already observed in
[7, Sec. 6], takes place when a class c′′ is never observed in the sample; in this
case, it is difficult for an alternative class c′ to dominate c′′: for any value fi
of any feature, there are no data for estimating P (fi|c′′), which therefore under
the IDM varies between 0 and 1 and is set to 1 during the minimization. As this
behavior repeats for each feature, P (fi|c′)� P (fi|c′′), thus often preventing an
alternative class c′ to dominate c′′. In fact, c′′ will be often identified as non-
dominated. The feature problem happens instead when there are no observations
of one or more values of a certain feature conditional on class c′. In this case, there
are no observations for estimating P (fi|c′), which goes to sharp to zero during
the solution of (4); this leads to sharp 0 also P (c′, f |n, t,s), because of Fi alone,
regardless the information coming from all the remaining features. When either
the class or the feature problem happen, NCC can get very indeterminate, while
at the same time NBC achieves good accuracy on the instances indeterminately
classified by NCC; this can be seen as disappointing behavior of NCC.

Note that if n(fi |c′ ) = 0 (feature problem), the choice of extreme prior
densities (t(fi |c′ ) = 0) leads to improper posteriors. Although, in this case,



IDM is still well-defined, we cannot let ε go sharp to zero in the optimization
in (4). Therefore, the set of posteriors and the set of non-dominated classes will
depend on the choice of ε. In this paper, we propose two approaches to remove
the extreme densities from T , in order to increase the NCC determinacy.

The first approach uses the following restricted set for t:

Tε =
{
t(c′), t(c′′) ≥ ε, t(c′) + t(c′′) = 1, ε ≤ t(fi|c′) ≤ t(c′), ε ≤ t(fi|c′′) ≤ t(c′′)

}
(5)

where ε ∈ (0, 0.5]; we call NCCε the resulting classifier. Such an approach is
appropriate to deal with the feature problem, as it guarantees t(fi|c′) ≥ ε and
therefore avoids sharp zeros in the computation of the numerator; however, it
should not be too effective against the class problem, as the conditional prob-
abilities at the denominator will nevertheless reach 1 − ε. Moreover, the credal
set of (5) satisfies the RIP, as it is not dependent on the number of categories.
However, this comes at a cost. In fact, Eq.(5) requires to adjust the boundary of
the credal set on every different pairwise comparison. For instance, when com-
paring c′ with c′′, t(c′) and t(c′′) are lower-bounded by ε while t(c) = 0 for all the
remaining classes; but when comparing c′ against c′′′, t(c′) and t(c′′′) are lower-
bounded by ε, while t(c′′) (and all the remaining t(c)) goes to 0 . Therefore, such
an approach does not respect the likelihood principle as the set of priors depends
on the couple of classes under exam. Moreover, it cannot be guaranteed that if
c′ dominates c′′ and c′′ dominates c′′′, then also c′ dominates c′′′ (transitivity),
because the pairwise comparisons are in fact performed on credal sets having
different boundaries. For this reason, this approach should be used with small
values of ε, so to enable addressing the feature problem while only minimally
perturbing the credal set of the IDM. Using a value of ε comprised between
0.01 and 0.1, transitivity has been however always satisfied in our experiments.
When the priors are restricted to be in Tε, the analytical optimization procedure
described in [7] remains valid, because the derivatives of function are unchanged
compared to [7].

The second approach is based on a ε-contamination of the uniform prior of
NBC with the set of priors in T , which results in the set:

Tc :=


∑
c∈C

t(c) = 1, t(c) ∈
[
ε0

1
|C|
, ε0

1
|C|

+ (1− ε0)
]
,

∑
fi∈Fi

t(fi |c ) = t(c), t(fi|c) ∈
[
εi
t(c)
|Fi|

, εi
t(c)
|Fi|

+ (1− εi)t(c)
]
, ∀(i, c)

(6)
where the ε0 refers to the class variable, while for each feature a different param-
eter εi ∈ (0, 1) can be specified. We call NCCc the resulting classifier, where c
stands for “contaminated”. This approach, unlike the previous one, satisfies LP
(no dependence of the set of priors on the data) but not RIP, since the priors
depend on the number of classes (through 1/|C|) and number of categories of
the features (through 1/|Fi|). The minimization problem, has to be numerically
approximated because the interval for t(fi |c ) depends on t(c) and function (4)



is not convex in t(c). When ε0 → 1 and εi → 1 ∀i, the set of priors collapses to
the uniform prior and thus the classifier coincides with the NBC. Instead, NCCε
never reduces to a single prior; with ε = 0.5 it uses a single prior to compare a
couple of classes, but this prior changes with the couple of classes.

3 Credal Model Averaging

Let us consider NBC again: given k features, there are 2k possible NBCs, each
characterized by a different subset of features; we denote by M the set of such
models and by m a generic model. By feature selection, one can identify a single
best feature set and then work with a single NBC. An alternative approach is
Bayesian Model Averaging (BMA), which instead averages over all the 2k differ-
ent NBCs, the weight assigned to each classifier being proportional to its poste-
rior probability. The joint probability P (c, f |n, s, t) is obtained by marginalizing
m out:

P (c, f |n, s, t) ∝
∑
m∈M

P (c, f |n, s, t,m)P (n|m, s, t)P (m), (7)

where P (c, f |n, s, t,m) is the posterior probability of c, f computed by m,
P (n|m, s, t) represents the likelihood of model m and P (m) the prior probability
of m. Dash and Cooper [5] provide an exact and efficient algorithm to compute
BMA over 2k NBCs. This algorithm has been extended to imprecise probabil-
ities in [3], giving rise to credal model averaging (CMA) . In particular, CMA
specifies a set of prior over the models instead of adopting a single P (m); in
fact, CMA imprecisely averages over the 2k NBCs. CMA is free from both the
feature problem and the class problem, as its base classifiers are NBCs.

4 Comparing credal classifiers

In order to completely describe the performance of a credal classifier, 4 indicators
are necessary: determinacy : i.e, the percentage of determinate classifications;
single accuracy : the accuracy of the classifier when determinate; set-accuracy :
the accuracy of the classifier when indeterminate; indeterminate output size:
the average number of classes returned by the classifier when indeterminate.
Instead, to compare credal classifiers we adopt two metrics which have been
introduced in [4]. We refer to a classifier as accurate on a certain instance if its
output includes the correct class, regardless how many classes it has returned;
we refer to a classifier as determinate if its output contains only a single class.
The discounted -accuracy is: d-acc = 1

n

∑n
i=1(accurate)i/|Zi|, where (accurate)i

is a 0-1 variable, showing whether the classifier is accurate or not on the i-th
instance; |Zi| is the number of classes returned on the i-th instance. Yet, there
is no reason for linearly discounting the accuracy on the number of returned
classes; an alternative non-parametric approach proposed in [4] removes this
arbitrariness, being based on a rank test. The rank test is more robust than
d-acc, as it does not encode any (arbitrary) functional form for discounting



accuracy on the basis of the output size; yet, it uses less pieces of information
than d-acc and can be therefore be less sensitive. Overall, a cross-check of both
metrics is recommended.

5 Results

We presents results on 45 classification data sets; they are publicly available from
the WEKA data sets page.2 Over each data set, we perform 10 runs of 10-folds
cross-validation, namely 100 training/test experiments. Numerical features have
been discretized via the entropy-based discretization; within each training-test
experiment, the bins are learned on the current training set and then applied
unchanged on the current testing set. The comparison of BMA and NBC shows
11 wins for NBC, 25 ties, 9 wins for BMA (over each data sets, the accuracies
measured during cross-validation have been compared with a t-test, with α =
5%). There is therefore a balance between the two classifiers. Instead, when
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Fig. 1. Scatter plot of determinacy and the discounted-accuracy of CMA and NCC.

considering credal classifiers, CMA clearly dominates NCC: according to the
rank test [or the discounted accuracy], there are 23 [26] wins for CMA, 17 [14]
ties and 5 [5] wins for NCC 3. In particular, CMA has much larger determinacy
than NCC (on average, 95% vs 76%) and also higher discounted accuracy (0.76 vs
0.70 on average). We must recall that CMA also includes an ε parameter, which
controls the determinacy of CMA. Yet, even adopting different values of ε, CMA
remains much more determinate than NCC. The scatter plots of determinacy
and discounted accuracy for the two classifiers are in Fig. 1.

We focus on three data sets which highlight the consequences of the class and
the feature problem; the characteristics of the data sets and the performance of
the classifiers are shown in Tab.1. NCC has very low determinacy on these three
data sets; this implies that many instances are classified in prior-dependent way
by NBC. Yet, the classifications issued by NBC using the uniform prior are

2 http://www.cs.waikato.ac.nz/~ml/weka/index_datasets.html
3 On each data set, the values discounted accuracy measured for NCC and CMA

during cross-validation have been compared via t-test, significance 5%.



quite accurate; in particular, they are much more accurate than simply return-
ing the majority class, as shown in Table 1. The model of prior-ignorance which
characterizes NCC is indeed theoretically sound, but in these cases its large inde-
terminacy appears questionable. On squash-stored, NCC suffers from the feature

Data set N Feats |C| Majority Accuracy
NBC BMA

primary-tumor 339 17 22 25% 46% 36%
audiology 226 69 24 25% 79% 73%

squash-stored 52 24 3 44% 66% 59%

Data set Determ. Disc-acc NBC accuracy when
NCC CMA NCC CMA NCC det. NCC ind.

primary-tumor 10% 88% 0.19 0.36 70% 43%
audiology 7% 95% 0.21 0.70 98% 78%

squash-stored 32% 84% 0.49 0.58 70% 63%

Table 1. Comparison of NCC and CMA on three data sets especially difficult for NCC.
Majority is the percentage of instances belonging to the most frequent class in the data
set.

problem: the feature fruit has 22 states and requires to estimate 66 parameters
for the conditional densities, from only 52 instances; removing this feature in-
creases the NCC determinacy from 31% to 60%. Instead, NCCε properly deals
with this feature: even using a small ε (0.01), determinacy increases from 32%
to 42% and discounted-accuracy from 0.48 to 0.57, approaching that of CMA.
Moreover single-accuracy (accuracy when determinate) also increases from 70%
to 79%, showing that the feature problem prevents NCC to extract useful infor-
mation from the remaining features. With NCCc, it is instead necessary to use
a larger ε (recall that NCCc lower-bounds the conditional probabilities in the
numerator of Eq.(4) by ε

|Fi||C| ); for instance, with ε=0.1, NCCc achieves deter-
minacy 36% with discounted-accuracy of 0.53. Moreover, NCCc too has higher
the single-accuracy than NCC. Note that for both NCCε and NCCc, adopting
increasing ε would steadily increase determinacy, as in fact it will reduce the
credal set and thus the probability of the instance being prior-dependent. In-
stead, it cannot be foreseen how the discounted accuracy will vary when ε is
increased, as this depends on the trade-off between determinacy and accuracy,
which cannot be predicted in advance.

The low determinacy of NCC on both audiology and primary-tumor is instead
due to the class problem, as several classes are never observed, or observed only
once or twice; in fact, removing these classes from the data set largely increases
the NCC determinacy. However, NCCε does not address the class problem, as
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Fig. 2. Sensitivity of NCCc to the value of ε. For ε=1, NCCc corresponds to NBC;
therefore, determinacy is 100% and set-accuracy is not measurable.

already pointed out; it is therefore more interesting analyse the behavior of
NCCc. In Fig.2, we show how the main indicators of performance of NCCc
vary with different values of ε; for ε=1, the classifier corresponds to NBC. This
plots highlight the trade-off between robustness and determinacy: increasing ε
implies higher determinacy, which however comes generally at a cost of some
accuracy, both on the instances determinately and indeterminately classified.
Domain knowledge can suggest which is a reasonable choice of ε. As a last
experiment, we have run NCCε and NCCc, setting for both ε = 0.01, on all the
data sets. Overall, both classifiers achieve determinacy and discounted-accuracy
which is significantly higher than that of NCC, although the impact is generally
much lighter than in the three extreme examples previously analyzed.

6 Conclusions

We have presented two approaches to restrict the set of priors of the IDM, in
order to overcome the large indeterminacy of NCC, when dealing with what we
have called the feature problem and the class problem, discussing advantages
and disadvantages of such approaches from a theoretical point of view. Then,
by experiments, we have shown that on the data sets where such two problems
heavily penalize the NCC determinacy, a small restriction of the simplex allows
to considerably increase the determinacy of the classifier without penalizing its
reliability. This is particularly important on real problems, where a trade-off
between informativeness and robustness is desirable. As future work, these two
approaches could constitute a starting point to design a new classifier, which
performs credal model averaging over NCCs characterized by different sets of



features. In this case, restricting the imprecision could be a key-issue to manage
the quantity of returned indeterminate classifications.
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