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Abstract. We propose the COMP-AODE classifier, which adopts
the compression-based approach [1] to average the posterior prob-
abilities computed by different non-naive classifiers (SPODEs).
COMP-AODE improves classification performance over the well-
known AODE [10] model. COMP-AODE assumes a uniform prior
over the SPODEs; we then develop the credal classifier COMP-
AODE*, substituting the uniform prior by a set of priors. COMP-
AODE* returns more classes when the classification is prior-
dependent, namely if the most probable class varies with the prior
adopted over the SPODEs. COMP-AODE* achieves higher classifi-
cation utility than both COMP-AODE and AODE.

1 Introduction
Bayesian Model Averaging (BMA) weights the inferences produced
by different candidate models, using as weights the posterior proba-
bilities of the models themselves. This strategy is optimal if the set
of candidate models includes the true one, as it is assumed by BMA;
yet, this is not true in general and in fact BMA does not achieve good
results in classification: see [2] and the references therein. The main
problem is that BMA gets excessively concentrated around the sin-
gle most probable model, as explained in [1]: “averaging using the
posterior probabilities to weight the models is almost the same as se-
lecting the MAP model”, thus canceling the advantage of combining
different models. The compression-based approach [1] overcomes
this problem, making the weights less concentrated around a single
model through a logarithmic smoothing of the models posterior prob-
abilities. The compression-based weights can be justified from an
information-theoretic viewpoint. In [1], the compression-based ap-
proach has been used to average over different naive Bayes classi-
fiers, characterized by different feature sets, obtaining excellent rank
in international competitions on classification.

Another ensemble of Bayesian networks classifiers known for its
good performance is AODE [10], which is instead based on a set
of SPODE (SuperParent-One-Dependence Estimator) models. Each
SPODE adopts a certain feature as a super-parent, namely it mod-
els all the remaining features as depending on both the class and the
super-parent. The posterior probabilities computed for the classes by
the different SPODEs are then simply averaged. In [11] more so-
phisticated methods have been tested for aggregating SPODEs; yet,
“AODE, which simply linearly combines every SPODE without any
selection or weighting, is actually more effective than the majority
of rival schemes”. In particular, AODE outperforms BMA applied
over SPODEs [11]; this is not surprising in the light of the previous
discussion.
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The first contribution of this paper is the COMP-AODE classi-
fier, which averages over the SPODEs using the compression-based
coefficients. We present its algorithms and show, through extensive
experiments, that it yields an improvement in classification perfor-
mances over the standard AODE. However COMP-AODE, like most
Bayesian ensembles of classifiers, adopts a uniform prior over the
models in the attempt of being non-informative. Yet, the uniform
prior represents a condition of prior indifference between the differ-
ent models, while instead we generally are in a condition of prior ig-
norance. To effectively model prior ignorance we adopt the paradigm
of credal classification (see [3] and the references therein), substitut-
ing the single uniform prior over the models by a (so-called credal)
set of priors over the models, which represents prior ignorance by
letting vary the prior probability of each model over a wide inter-
val, instead of keeping it fixed to a specific number. We call COMP-
AODE* the resulting classifier.

If the most probable class of an instance varies under different
priors over the models, the classification is prior-dependent. Credal
classifiers remains reliable on prior-dependent instances by returning
a set of classes instead of a single class; the classification is in these
cases indeterminate, namely more classes are returned. In Section
3 we show that on the prior-dependent instances, COMP-AODE*
achieves high accuracy by returning a small set of classes. On the
same instances, instead, COMP-AODE undergoes a severe drop of
accuracy. Moreover, COMP-AODE* shows better empirical perfor-
mances than previous credal classifiers.

2 Methods
We consider a classification problem with k features; we denote by
C the class variable (taking values in C) and by A := (A1, . . . , Ak)
the set of features, taking values respectively in A1, . . . ,Ak. For a
generic variable A, we denote as P (A) the probability mass func-
tion over its values and as P (a) the probability P (A = a). We as-
sume the data to be complete and the training data D to contain n
instances. To learn the parameters of the SPODEs from the training
data we adopt Bayesian estimation, using Dirichlet priors and setting
the equivalent sample size to one. Under 0-1 loss, probabilistic clas-
sifiers return the single most probable class for each instance. Classi-
fiers based on imprecise-probabilities (credal classifiers) change this
paradigm, by instead returning more classes on the prior-dependent
instances. We discuss this point more in detail in Section 2.3.

2.1 AODE
The AODE classifier [10] is based on a set S := {s1, . . . , sk} of
k SPODEs (SuperParent-One-Dependence Estimator); in particular,
SPODE sj has Aj as super-parent, namely it models all the remain-
ing features as depending on both Aj and on the class C, as shown
in Figure 1.
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Figure 1. SPODE s1 with super-parent A1.

Such a topology induces in the joint probabilities of the SPODE
sj the following factorization:

P (c,a|sj) = P (c) · P (aj |c) ·
∏

l=1,...,k,l6=j

P (al|aj , c). (1)

To classify a test instance ã, AODE simply averages the posterior
probability P (c|ã) computed by each SPODE. In this paper we study
alternative approaches to aggregate the predictions of the SPODEs.

2.2 COMP-AODE: compression-based AODE
Compression-based averaging [1] overcomes the problem of BMA
getting excessively concentrated around the single most probable
model by replacing the posterior probabilities of the models with
smoother, compressed, weights. We denote by η(sj |D) the weight
assigned to model sj .

We introduce a null classifier, denoted by s0, as a Bayesian net-
work with no arcs, which models the class as independent from the
features and whose probabilistic classifications correspond to the
marginal probabilities of the classes. The null classifier is necessary
to compute the compression coefficients.

Considering that all the SPODEs have the same number of vari-
ables, the same number of arcs and the same maximum in-degree4,
we assign the same prior probability to each SPODE. We instead as-
sign prior probability ε=0.01 to the null model.Thus, we can consider
a variable S with values in S ∪ {s0}, and define the following prior
mass function:

P (sj) =

{
ε j = 0,
1−ε
k

j = 1, . . . , k.
(2)

We compute the conditional log-likelihood of SPODE sj as in [1]:

LLj :=
n∑
i=1

log(P (c(i)|a(i), sj , θ̂j)), (3)

where θj is a variable over the set of parameters for the model, and
θ̂j is the value of its Bayesian estimation. It could be also possi-
ble to evaluate the probability of the data given SPODE sj by the
marginal likelihood, i.e., P (D|sj) =

∫
P (D|sj , θj)P (θj |sj)dθj .

Yet, the marginal likelihood measures how good the model is at rep-
resenting the joint distribution, while a classifier has instead to esti-
mate the posterior probability of the classes by conditioning on the
value of the features. Therefore, a model can poorly perform in clas-
sification despite a high marginal likelihood [4]; the conditional like-
lihood is a more appropriate score for classifiers.

4 The in-degree is the number of parents of a node, and its maximum value is
two for any SPODE.

If LL0 is the conditional log-likelihood of the null model, then
LL0 := −nH(C), where H(C) := −

∑
c∈C P (c) logP (c) is the

entropy of the class5 [1]. The compression coefficients are computed
in two steps: computation of the raw coefficients and normalization.
For j 6= 0, the raw compression coefficient of SPODE sj is defined
as:

η̃j := 1− logP (sj |D)
logP (s0|D)

= 1−
LLj + log 1−ε

k

−nH(C) + log ε
. (4)

If η̃j is negative, sj is a worse predictor than the null model; if it
is positive, as it normally happens, sj performs better than the null
model. The upper limit of η̃j is 1, in which case sj is a perfect pre-
dictor. Following [1], we keep in the ensemble the feasible models
with η̃j > 0, and we remove from the ensemble the remaining ones.
This corresponds to removing from the ensemble the models whose
posterior probability falls below a certain threshold, which is some-
times done also when computing BMA. Since by definition η̃0 = 0,
the null model is not part of the resulting ensemble.

Using the compression coefficients can be justified as follows [1]:
LLj + logP (sj) “represents the quantity of information required to
encode the model plus the class values given the model. The code
length of the null model can be interpreted as the quantity of infor-
mation necessary to describe the classes, when no explanatory data
is used to induce the model. Each model can potentially exploit the
explanatory data to better compress the class conditional informa-
tion. The ratio of the code length of a model to that of the null model
stands for a relative gain in compression efficiency.”

Without loss of generality, we assume the features to be ordered,
so that features {A1, A2, . . . , Ak̃} yield a feasible model when
used as super-parent; i.e., SPODEs {s1, s2, . . . , sk̃} are the feasi-
ble ones. The normalized compression coefficients, which we denote
as η(sj |D), are obtained by normalizing the raw compression coef-
ficients of the feasible SPODEs:

η(sj |D) =

{
η̃j∑k̃
l=1

η̃l
if j = 1, . . . , k̃,

0 otherwise.
(5)

The posterior probabilities computed by COMP-AODE for instance
ã ares:

P (c|ã) =
k∑
j=1

P (c|ã, sj) · η(sj |D). (6)

2.3 Introducing a Set of Priors: COMP-AODE*
We extend COMP-AODE to imprecise probabilities [9], by allowing
multiple specifications of the prior mass function P (S); we denote
by K(S) the so-called credal set of prior mass functions. A uni-
form mass function represents prior indifference between the differ-
ent SPODEs; instead, a credal set provides a more cautious model of
prior ignorance about which SPODE might have produced the data.

In principle we could let the prior probabilities of each SPODE
vary exactly between zero and one by considering any possible prior
(vacuous model). Yet, this prevents learning from data, generating
vacuous posterior inferences. To obtain non-vacuous posterior infer-
ences, we introduce a non-zero lower bounds in the credal set K(S),
which is defined as follows:

K(S) :=

P (S)

∣∣∣∣∣∣
P (s0) = ε
P (sj) ≥ ε j = 1, . . . , k∑k
j=0 P (sj) = 1

 (7)

5 For this equivalence to hold, we compute the entropy using the natural log-
arithm, instead of the log in basis 2.
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The set in (7) is convex; its k extreme distributions are those assign-
ing mass ε to all the models apart from a single SPODE, which get
mass 1 − kε. When P (S) varies in K(S), the raw coefficients of
compression, defined as in (4), span the following range:

ηj ∈
[
1− LLj + log ε

−nH(C) + log ε
, 1− LLj + log (1− kε)

−nH(C) + log ε

]
. (8)

However, the different ηj cannot vary in the intervals of Eq.(8) inde-
pendently from each other, because of the normalization constraint
of Eq. (7). Note moreover that since the prior of Eq.(2) is contained
in the credal set, the point estimate of the compression coefficient
used by COMP-AODE belongs to the interval.

We regard SPODE sj as non-feasible if the upper bound of the
interval (8) is non-positive; this approach is particularly conservative
as it preserves the models which are feasible (in the sense of Section
2.2) for at least a prior in the setK(X). COMP-AODE* is thus more
conservative than COMP-AODE, namely it removes from the ensem-
ble a lower number of models. However, in practice, no SPODE is
generally removed from the ensemble neither by COMP-AODE*,
nor by COMP-AODE.

Considering that K(S) is a set a prior mass functions, COMP-
AODE* can be interpreted as a set of COMP-AODE classifiers, each
induced in correspondence of a different prior. An instance is prior-
dependent if the most probable class varies under the different priors
of the credal set. COMP-AODE* remains reliable on prior-dependent
instances, by returning a set of classes instead of a single one. Re-
turning a set of classes on the prior-dependent instances and a single
class on the remaining safe instances is in fact the typical behavior of
credal classifiers [3]. Note that prior-dependence is not a characteris-
tic of the instance alone: a credal-classifier might judge an instance as
prior-dependent, and an alternative credal classifier might judge it as
safe. Thus, prior-dependence is a characteristic of a certain instance,
when analyzed by a specific credal classifier.

2.3.1 Credal Dominance

Without loss of generality we assume the features reordered, so that
the first k̃ features yield a feasible model, i.e., SPODEs {s1, . . . , sk̃}
are the feasible ones. Given an unsupervised test instance a whose
class is unknown, class c′ ∈ C dominates c′′ ∈ C if c′ is more prob-
able than c′′ under any prior of the credal set, i.e. if:

min
P (S)∈K(S)

P (c′|a)
P (c′′|a) =

∑k̃
j=1 P (c′|a, sj)η̃(sj |D)∑k̃
i=1 P (c′′|a, si)η̃(si|D)

> 1, (9)

where, as we noted before, the sum over the feasible models corre-
sponds to that over the first k̃ models and where we have substituted
the standardized compression coefficients by the raw ones, having
considered that

∑k̃
j=1 η̃(sj |D) is positive by definition. The func-

tion to be minimized in (9) then becomes:∑k̃
j=1 P (c′|a, sj) (log ε− nH(C)− LLj − logP (sj))∑k̃
i=1 P (c′′|a, si) (log ε− nH(C)− LLi − logP (si))

.

By setting, for each j = 1, . . . , k̃, xj := logP (sj), αj :=
P (c′|a, sj), βj := P (c′′|a, sj), and

[
δ
γ

]
:= −

k̃∑
j=1

[
P (c′|a, sj)
P (c′′|a, sj)

]
(log ε− nH(C)− LLj) .

(10)

the optimization problem to check whether c′ dominates c′′ becomes:

min
x1,...,xk̃

∑k̃
j=1 αjxj + δ∑k̃
j=1 βjxj + γ

,

subject to
xj ≥ log ε j = 1, . . . , k̃,∑k̃
j=1 e

xj = 1− ε− (k − k̃)ε.

The last constraint is related to the normalization constraint in the
definition (7) of the credal set, and imposes the sum of the prior prob-
ability of the feasible SPODEs to be one minus the prior probabilities
of the k − k̃ non-feasible SPODEs and the null model, whose prior
probability is set to ε. We then substitute yj := exj to avoid numeri-
cal problems in the optimization, thus getting a non-linear optimiza-
tion problem with linear constraints.

A class is non-dominated if no alternative class dominates it ac-
cording to the test of Eq.(9). COMP-AODE* identifies the set of
non-dominated classes through the maximality approach [9], which
is commonly adopted for decision making with imprecise probabili-
ties; for each instance it requires running the dominance test on each
pair of classes, as formalized by Algorithm 1.

Since the credal set (7) includes the prior adopted by COMP-
AODE, the non-dominated classes returned by COMP-AODE* in-
clude by design the most probable class identified by COMP-AODE;
thus, when COMP-AODE* returns a single class, it is the same class
returned by COMP-AODE.

Algorithm 1 Identification of the non-dominated classes ND
through maximality
ND := C
for c′ ∈ C do

for c′′ ∈ C (c′ 6= c′′) do
compute the dominance test of Eq.(9)
if c′ dominates c′′ then

remove c′′ fromND
end if

end for
end for
return ND

2.4 Complexity
To analyze the computational complexity of the classifiers, we dis-
tinguish between the learning and the classification complexity, the
latter referring to the classification of a single instance. We analyze
both the space and the time required for computations. The orders of
magnitude are reported as a function of the dataset size n, the number
of attributes/SPODEs k, the number of classes l := |C|, and average
number of states for the attributes v := k−1∑k

i=1 |Ai|. A summary
of this analysis is given in Table 1.

A single SPODE sj requires storing the tables P (C), P (Aj |C)
and P (Ai|C,Aj), with i = 1, . . . , k and i 6= j, implying space
complexityO(lkv2) for learning each SPODE andO(lk2v2) for the
AODE ensemble. For each classifier, the same tables should be avail-
able during learning and classification; thus, space requirements of
these two stages are the same. Time complexity to scan the dataset
and learn the probabilities is O(nk) for each SPODE, and hence
O(nk2) for the AODE. The time required to compute the poste-
rior probabilities as in Eq.(1) is O(lk) for each SPODE, and hence
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Algorithm Space Time
learning/classification learning classification

AODE O(lk2v2) O(nk2) O(lk2)
COMP-AODE O(lk2v2) O(n(l + k)k) O(lk2)
COMP-AODE* O(lk2v2) O(n(l + k)k) O(l2k3)

Table 1. Complexity of classifiers.

O(lk2) for AODE. Learning COMP-AODE takes roughly the same
space as AODE, but higher computational time, due to the evaluation
of the conditional likelihood of Eq.(3). The additional computational
time is O(nlk), thus requiring O(n(l + k)k) time overall. For clas-
sification, time and space complexity is equivalent to that of AODE.

COMP-AODE* has the same space complexity of COMP-AODE
and the same time complexity in learning, but higher time complex-
ity in classification. The pairwise dominance tests in Algorithm 1
require solving a number of optimization problems for each test in-
stance which is quadratic in the number of classes. Each optimiza-
tion has time complexity which is roughly cubic in the number of
constraints/variables, which is in turn O(k).

Compared to AODE, the new classifiers require higher training
time, while the higher cautiousness characterizing COMP-AODE*
increases by one the exponents of the number of classes and attributes
in the complexity of the classification time.

3 Experiments
We run experiments on 40 UCI data sets, taken from the UCI reposi-
tory; the sample size ranges between 57 (labor) and 12960 (nursery);
the number of classes between 2 and 10 (pendigits). On each data
set we perform 10 runs of 5-folds cross-validation. Missing data are
replaced by the median/mode for numerical/categorical features, so
that all data sets are complete. We discretize numerical features by
the MDL-based discretization [6]. For AODE, we set to 1 the fre-
quency limit; namely, features with a frequency in the training set
below this value are not used as parents; this is also the default value
in WEKA.

In order to compare two classifiers over the collection of data sets
we use the non-parametric Wilcoxon signed-rank test.6 This test is
indeed recommended for comparing two classifiers on multiple data
sets [5]: being non-parametric it both avoids strong assumptions and
deals robustly with outliers.

3.1 AODE vs. COMP-AODE
We consider two indicators: the accuracy, namely the
percentage of correct classifications, and the Brier loss:
1
nte

∑nte
i

(
1− P (c(i)|a(i))

)2
where nte denotes the number

of instances in the test set and P (c(i)|a(i)) is the probability
estimated by the classifier for the true class of the i-th instance of
the test set. In Figure 2(a) we show the relative accuracies, namely
the accuracy of COMP-AODE divided, separately for each data set,
by the accuracy of AODE. Thus, better performance relatively to
AODE is achieved when the relative accuracy is>1. The accuracy of
the two models is identical (relative accuracy = 1) in 15/40 cases ; in
14/40 data sets relative accuracy is >1 (COMP-AODE wins) while

6 We use the test as follows: for a given indicator we build two paired vectors,
one for each classifier: the same position refers, in both vectors, to the same
data set. The two vectors are then used as input for the test.

in 11/40 data sets relative accuracy is <1 (AODE wins). Overall,
the performance of COMP-AODE and AODE on this collection
of data sets is not significantly different. In Fig.2(b), we show
the relative Brier losses, namely the Brier loss of COMP-AODE
divided, data set by data set, by the Brier loss of AODE; thus, better
performance relatively to AODE is achieved when the relative Brier
loss is <1. The Brier loss is more sensitive than accuracy, and
thus magnifies the differences among classifiers, as can be seen by
comparing the scales of relative accuracies and relative Brier losses.
Under Brier loss, COMP-AODE performs significantly better than
AODE (p-value<0.01). The Brier loss of the two models is identical
(relative loss = 1) in 12/40 cases ; in 23/40 data sets relative loss is
<1 (COMP-AODE wins) while only in 5/40 data sets relative loss is
>1 (AODE wins). This is noteworthy given the high performance of
AODE and the fact the standard AODE often outperforms alternative
weighting methods over SPODEs [11]. Our findings thus extend
the results of [1] in which the compression-based approach was
successfully applied over an ensemble of naive Bayes classifiers.
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Figure 2. Relative accuracies and relative Brier losses: for accuracy,
performance better than AODE corresponds to points lying above the

horizontal line; for Brier loss, performance better than AODE corresponds to
points lying below the horizontal line. Note the different scale of the two

graphs, reflecting the higher sensitivity of Brier loss.

3.2 Evaluation of COMP-AODE*
A credal classifier separates in fact the instances into two groups:
the safe ones, for which a single class is returned, and the prior-
dependent ones, for which instead different non-dominated classes
are returned. To fully characterize the performance of an impre-
cise classifier, four indicators can be considered: determinacy: the
proportion of instances recognized as safe and thus classified with
a single class; single-accuracy: the accuracy achieved over the in-
stances recognized as safe; set-accuracy: the accuracy achieved over
the prior-dependent instances, by returning a set of classes; indeter-
minate output size: the average number of classes returned on the
prior-dependent instances.

COMP-AODE* is generally very determinate: its average deter-
minacy is 99%; this means that on average it recognizes only 1% of
the instances as prior-dependent. This is probably a consequence of
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the logarithmic smoothing induced by the compression coefficients,
which makes the weights of the models little sensitive on the chosen
prior. We see this robustness to the choice of the prior as a desir-
able and previously unknown property of the compression-based ap-
proach; in fact, it is easy investigating this point only once developed
the credal classifier. The robustness to the choice of the prior might
well constitute a further reason for the good empirical performance
of the compression-based approach. COMP-AODE* performs well
when indeterminate: averaging over all data sets, it achieves 95%
set-accuracy by returning 2 classes. In Fig.3, we compare the ac-
curacy achieved by COMP-AODE on the instances judged respec-
tively safe and prior-dependent by COMP-AODE*. Each point refers
to a different data set; for that data set, it represents the accuracy
achieved by COMP-AODE on the safe instances (y -coordinate) and
on the instances judged as prior-dependent by COMP-AODE* (x -
coordinate). On almost every data set, the accuracy of COMP-AODE
is much higher on the safe instances than on the prior-dependent
instances (y � x) ; the drop of accuracy between the safe and
the prior-dependent instances is indeed significant (p-value < 0.01).
As a rough indication, averaging over data sets, the accuracy of
COMP-AODE is 82% on the safe instances but only 47% on the
prior-dependent instances. Thus, while COMP-AODE provides frag-
ile classifications on the prior-dependent instances, COMP-AODE*
remains reliable by returning a small-sized but highly reliable set of
classes. Thus even COMP-AODE, despite its robustness to the spec-
ification of the prior, undergoes a severe loss of accuracy on the in-
stances recognized as prior-dependent by COMP-AODE*; on these
instances, as already discussed, COMP-AODE* preserves its relia-
bility thanks to indeterminate classifications.
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Figure 3. Accuracy of COMP-AODE on the instances recognized as safe
and as prior-dependent by COMP-AODE*; the straight line is the bisectrix.

3.3 Utility-based Measures
We have seen that COMP-AODE* extends in a sensible way COMP-
AODE, being able to recognize prior-dependent instances and to
robustly deal with them. To further compare COMP-AODE and
COMP-AODE*, we adopt the utility-based measures of [12]. In fact,
how to compare determinate and indeterminate predictions is far
from obvious. The discounted accuracy rewards a prediction made
of m classes with 1/m if it contains the actual class, and 0 oth-
erwise; the discounted accuracy of a credal classifier can be then
compared to the accuracy of a determinate classifier. However [12]
points out some severe limits of discounted-accuracy, which we il-
lustrate by means of an example. We consider two medical doc-
tors, random and doctor vacuous, whose task is to classify each pa-
tient in one of the two categories {healthy, diseased}. Doctor ran-
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Figure 4. Relative utilities; a better performance of COMP-AODE* over
COMP-AODE is represented by points lying above the horizontal line.

dom generates random diagnoses, drawing its judgment from a uni-
form probability mass function. Doctor vacuous instead always re-
turns both categories, admitting to be ignorant. Let us assume that
the hospital receives a quantity of money which is proportional to
the discounted-accuracy generated by its doctors when visiting pa-
tients. Both doctors provide the same expected discounted-accuracy
(1/2) and thus the same expected profit; yet, the profit generated by
doctor vacuous is deterministic, while the profit generated by doctor
random is affected by considerable variance. Under any risk-averse
utility function, doctor vacuous generates a higher utility than doctor
random, yielding the same expected reward but with less variance:
under risk-aversion, the expected utility increases with expectation
of the rewards and decreases with their variance (see the references
in [8]). In [12] it is thus proposed to compare credal and determi-
nate classifiers measuring the utility of the reward constituted by
discounted-accuracy: the stronger the risk aversion, the higher the
value of indeterminate but accurate (containing the true class in the
set of non-dominated classes) predictions. In [12] the utility of a cor-
rect and determinate classification (discounted-accuracy 1) is set to
1; the utility of a wrong classification (discounted-accuracy 0) to 0;
the utility of an accurate but indeterminate classification consisting
of two classes (discounted-accuracy 0.5) is assumed to lie between
0.65 and 0.8, depending on the degree of aversion. In correspondence
of these two values, two quadratic utility functions are derived: u65

passes through {u(0) = 0, u(0.5) = 0.65, u(1) = 1}, while u80

passes through {u(0) = 0, u(0.5) = 0.8, u(1) = 1}. In real appli-
cations the utility function should be elicited by discussion with the
decision maker; in this paper we use u65 and u80 to model two rea-
sonable but different degrees of risk-aversion. Since u(1) = 1, the
utility and the accuracy of a traditional classifier coincide; therefore
the utility values of credal classifiers can be directly compared with
the predictive accuracy of the traditional classifiers. In [7] classifiers
which return indeterminate classifications are scored through the F1-
metric, originally designed for Information Retrieval tasks. The F1

metric, when applied to indeterminate classifications, returns a score
which is always comprised between u65 and u80, further confirming
the reasonableness of these utility functions.

Figures 4(a) and 4(b) show the the utility of COMP-AODE* di-
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vided, data set by data set, by the accuracy of COMP-AODE. The
two plots refer respectively to u65 and u80. Some points are ex-
actly 1, since in some data sets COMP-AODE is completely determi-
nate. However, the points tend to be generally higher than 1; COMP-
AODE* generates significantly higher utility (p-value < 0.01) than
COMP-AODE under both u65 and u80. The numerical improvement
is generally small, being close to 1%; however this is reasonable if we
consider that COMP-AODE* has 99% determinacy on average. The
improvement of COMP-AODE* over COMP-AODE is more evident
under u80, due to the higher utility associated in this case to classi-
fications which are accurate but indeterminate. Moreover, COMP-
AODE* generates significantly (p-value < .01) higher utility than
AODE, under both u65 and u80. The extension to imprecise proba-
bility has thus improved performance of the compression-based en-
semble: recall that the determinate COMP-AODE yields better prob-
ability estimates but not better accuracy than AODE.

3.4 Comparison with Other Credal Classifiers

Previous credal classifiers, which return more classes on the in-
stances identified as prior-dependent, include for instance the naive
credal classifier (NCC), namely an extension of naive Bayes to im-
precise probability and the credal model averaging (CMA), a gen-
eralization of BMA over naive Bayes classifiers, in the same spirit
of Section 2.3 but without compression. We point the reader to [3]
for more insights and references on previous credal classifiers. Here
we compare the performances of NCC, CMA and COMP-AODE*
by means of the utility measures u65 and u80, adopting the same
experimental setup detailed at the begin of Section 3. We compare
these classifiers over the collection of 40 data sets by the Friedman
test coupled with the Nemenji post-hoc, as recommended in [5]. Un-
der both u65 and u80 we thus eventually rank the credal classifiers
according to the utility they generate. Figure 5 reports the results
of this comparison for both u65 and u80. The post-hoc analysis, un-
der u65, ranks COMP-AODE* as significantly better than both CMA
and NCC. Under u80 no significant difference is found among clas-
sifiers; the point is that both CMA and NCC are much more indeter-
minate than COMP-AODE*, and benefit at a much larger extent than
COMP-AODE* from the increase utility assigned by u80 to indeter-
minate but accurate classifications; in this way, they close the gap
with COMP-AODE*. However, also under u80 COMP-AODE* has
the highest average rank, and we conclude that COMP-AODE* pro-
vides a generally higher classification performance than both CMA
and NCC.

4 Conclusions

COMP-AODE is a new classifier based on compression-based av-
eraging of SPODEs; it slightly but significantly improves classifica-
tion performance over AODE. COMP-AODE* extends it to impre-
cise probability, by replacing the single uniform prior over SPODEs
with a credal set of priors. COMP-AODE* returns more classes on
the instances recognized as prior-dependent and achieves higher pre-
diction utility than both COMP-AODE and AODE.
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Figure 5. Comparison between credal classifiers. The points denote the
average ranks, while the bars display the critical distance. The average ranks

of two classifiers are significantly different if they differ by more than the
critical distance, namely if their bars do not overlap.
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