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Abstract

It is studied how to aggregate the probabilistic predictions generated by different SPODE
(Super-Parent-One-Dependence Estimators) classifiers. It is shown that aggregating
such predictions via compression-based weights achieves a slight but consistent im-
provement of performance over previously existing aggregation methods, including
Bayesian Model Averaging and simple average (the approach adopted by the AODE
algorithm). Then, attention is given to the problem of choosing the prior probability
distribution over the models; this is an important issue in any Bayesian ensemble of
models. To robustly deal with the choice of the prior, the single prior over the models
is substituted by a set of priors over the models (credal set), thus obtaining a credal
ensemble of Bayesian classifiers. The credal ensemble recognizes the prior-dependent
instances, namely the instances whose most probable class varies when different prior
over the models are considered. When faced with prior-dependent instances, the credal
ensemble remains reliable by returning a set of classes rather than a single class. Two
credal ensembles of SPODEs are developed; the first generalizes the Bayesian Model
Averaging and the second the compression-based aggregation. Extensive experiments
show that the novel ensembles compare favorably to traditional methods for aggregat-
ing SPODEs and also to previous credal classifiers.

Keywords: classification, Bayesian model averaging, compression-based averaging,
AODE, credal classification, imprecise probability, credal ensemble

1. Introduction

Bayesian model averaging (BMA) (Hoeting et al., 1999) is a sound approach to
address the uncertainty which characterizes the identification of the supposedly best
model; given a set of alternative models, BMA weights the inferences produced by the
models using as weights the models’ posterior probabilities. BMA assumes one of the
models in the ensemble to be the true one. Under this assumption, BMA is expected to
achieve better predictive accuracy than the choice of any single model (Hoeting et al.,
1999). However, such assumption is mostly violated; as a consequence, BMA gener-
ally does not achieve high predictive performance in experiments. The problem is that

∗Corresponding author: giorgio@idsia.ch

Preprint submitted to Computational Statistics & Data Analysis November 9, 2012



BMA gets excessively concentrated around the single most probable model (Domin-
gos, 2000; Minka, 2002): especially on large data sets, “averaging using the posterior
probabilities to weight the models is almost the same as selecting the MAP model”
(Boullé, 2007, page 1672), where the MAP model is the most probable model a poste-
riori. To address this problem, the compression-based approach (Boullé, 2007) applies
a logarithmic smoothing to the models posterior probabilities, thus computing weights
that are more evenly-distributed. The compression-based weights can be justified from
an information-theoretic viewpoint and have been used to combine naive Bayes clas-
sifiers characterized by different feature sets, obtaining excellent results in prediction
contexts (Boullé, 2007).

The Averaged One-Dependence Estimators (AODE) (Webb et al., 2005) is an en-
semble of SPODE (SuperParent-One-Dependence Estimator) classifiers. Each SPODE
adopts a certain feature as a super-parent, namely it assumes all features to depend on
a common feature (the super-parent) in addition to the class. The AODE ensemble
simply averages the posterior probabilities computed by the different SPODEs; re-
markably, AODE is more effective than the majority of rival schemes for aggregating
SPODEs, including BMA (Yang et al., 2007).

As a preliminary step we develop BMA-AODE, namely BMA over SPODEs, with
some computational differences with respect to the previous frameworks of Yang et al.
(2007) and Cerquides and de Mántaras (2005); we confirm however that BMA over
SPODEs is outperformed by AODE. Then we develop the novel COMP-AODE classi-
fier, which weights the SPODEs using the compression-based coefficients and yields a
slight but consistent improvement in the classification performance over AODE. Con-
sidering the high performance of AODE, this result is noteworthy.

An important issue in any Bayesian ensemble of models is however the choice of
the prior over the models. Most commonly it is adopted a uniform prior or a prior which
favors simpler models over complex ones (Boullé, 2007). Although such choices are
reasonable, the specification of any single prior implies some arbitrariness and entails
the risk of drawing prior-dependent conclusions, especially on small data sets. In fact,
the specification of the prior over the models is a serious issue for Bayesian ensembles.

To overcome the problem, we take inspiration from the field of imprecise proba-
bility (IP) (Walley, 1991). IP approaches can be used to generalize Bayesian models,
describing prior uncertainty by a set of prior distributions instead of a single prior;
see Walley (1996) for a deep discussion of the reasons for preferring IP approaches
to the specification of a single prior. In particular, classifiers based on a set of priors
are called credal classifiers; they automatically detect the prior-dependent instances,
namely the instances whose most probable class varies under different priors. On the
prior-dependent instances, traditional classifiers are unreliable (Corani and Zaffalon,
2008b); on the same instances credal classifier remain instead reliable by returning a
set of classes. A survey of credal classifiers can be found in (Corani et al., 2012).

In this paper, we extend the idea of credal model averaging (CMA) (Corani and
Zaffalon, 2008a). Credal model averaging generalizes Bayesian model averaging; it
substitutes the single prior over the models by a set of priors (credal set). CMA is
therefore a credal classifier which can be seen as a credal ensemble of Bayesian classi-
fiers. In (Corani and Zaffalon, 2008a), the application of CMA was limited to the case
of naive Bayes.
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In this paper we develop BMA-AODE* and COMP-AODE*, namely the credal
ensembles which respectively generalize BMA-AODE and COMP-AODE, substitut-
ing the uniform prior over the models by a credal set. By extensive experiments we
show that both credal ensembles compare favorably to both their single-prior counter-
parts and to previously existing credal classifiers, including the CMA of (Corani and
Zaffalon, 2008a).

2. Methods

We consider a classification problem with k features; we denote by C the class
variable (taking values in C) and by A := (A1, . . . , Ak) the set of features, taking
values respectively in A1, . . . ,Ak. For a generic variable A, we denote as P (A) the
probability mass function over its values and as P (a) the probability that A = a. We
assume the data to be complete and the training data D to contain n instances. We
estimate the parameters of the SPODEs adopting the usual Bayesian approach for gen-
erative models (Heckerman, 1995), namely by setting Dirichlet priors and then taking
expectation from the parameter posterior distribution.

Under 0-1 loss a traditional probabilistic classifier returns, for a test instance whose
class in unknown, say ã := {ã1, . . . , ãk}, the most probable class c∗:

c∗ := argmax
c∈C

P (c|ã).

Credal classifiers change this paradigm, by occasionally returning more classes; this
happens in particular when the most probable class is prior-dependent. We discuss this
point more in detail later, when presenting credal classifiers.

2.1. From Naive Bayes to AODE

The Naive Bayes classifier assumes the stochastic independence of the features
given the class; it therefore factorizes the joint probability as follows:

P (c,a) := P (c) ·
k∏
j=1

P (aj |c), (1)

corresponding to the topology of Fig.1(a). Despite the biased estimate of probabilities
due to the above (so-called naive) assumption, naive Bayes performs well under 0-1
loss (Domingos and Pazzani, 1997); it thus constitutes a reasonable choice if the goal
is simple classification, without the need for accurate probability estimates (Friedman,
1997).

The naive independence assumption is relaxed for instance by the tree-augmented
naive classifier (TAN), which allows the subgraph involving only the features to be a
tree, allowing thus each feature to depend on the class and on another feature; an ex-
ample is shown in Fig.1(b). Generally, TAN outperforms naive Bayes in classification
(Friedman et al., 1997).

The AODE classifier (Webb et al., 2005) is an ensemble of k SPODE (SuperPar-
ent One Dependence Estimator) classifiers; each SPODE is characterized by a certain
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(a) Naive Bayes.
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(b) A possible TAN structure.

Figure 1: Naive Bayes vs TAN.

C
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Figure 2: SPODE with super-parent A1.

super-parent feature, so that the remaining features are children of both the class and
the super-parent, as shown in in Fig.2. In fact, each single SPODE is a TAN.

We denote the set of SPODEs as S := {s1, . . . , sk}, where sj indicates the SPODE
with super-parent Aj . SPODE sj factorizes the joint probability as:

P (c,a|sj) = P (c) · P (aj |c) ·
k∏

l=1,l 6=j

P (al|aj , c).

In order to classify the test instance ã, AODE averages the posterior probabilityP (c|ã, sj)
computed by each single SPODE:

P (c|a) ∝ P (c,a) := 1

k

k∑
j=1

P (c,a|sj).

In this paper we focus on more sophisticated approaches for aggregating the predictions
of the SPODEs.

2.2. Bayesian Model Averaging (BMA) with SPODEs
By ensembling the SPODEs via BMA we assume one of the SPODEs to be the

true model. We thus introduce a variable S over S, where P (S = sj) denotes the prior
probability of SPODE sj to be the true model. Each SPODE has the same number of
variables, the same number of arcs and the same in-degree (the maximum number of
parents per node). Thus, we adopt a uniform prior, assigning prior probability 1/k to
each SPODE. In fact, the uniform prior over the models is frequently adopted when
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implementing BMA. To classify the test instance ã, BMA computes the following
posterior mass function:

P (c|ã) :=
k∑
j=1

P (c|ã, sj) · P (sj |D) ∝
k∑
j=1

P (c|ã, sj) · P (D|sj) · P (sj),

where P (D|sj) =
∫
θj
P (D|sj ,θj)P (θj)dθj and θi denote respectively the marginal

likelihood and the parameters of sj . Under certain assumptions, the marginal likeli-
hood can be analytically computed (Heckerman, 1995); this is the approach adopted
by both (Cerquides and de Mántaras, 2005) and (Yang et al., 2007) to implement BMA
over SPODEs. Such papers report that BMA over SPODEs is outperformed by AODE.
This can be due, besides the already discussed excessive concentration of BMA on the
MAP model, to the adoption of the marginal likelihood to compute BMA. The marginal
likelihood measures how good the model is at representing the joint distribution; in-
stead, a classifier has to estimate the posterior probability of the classes conditionally
on the observed features. Therefore, a high marginal likelihood does not necessarily
imply a good classification performance (Cowell, 2001; Kontkanen et al., 1999). Fol-
lowing Boullé (2007), we thus substitute the marginal likelihood with the conditional
likelihood:

Lj :=

n∏
i=1

P (c(i)|a(i), sj) =
n∏
i=1

∫
θj

P (c(i)|a(i), sj ,θj)P (θj |D)dθj . (2)

We call BMA-AODE the classifier which estimates the posterior probabilities of
the class, given the test instance ã, as follows:

P (c|ã) ∝
k∑
j=1

P (c|ã, sj) · Lj · P (sj). (3)

Especially on large data sets, the difference between the likelihoods of the different
SPODEs might be of several order of magnitudes. We remove from the ensemble the
SPODEs whose conditional likelihood is smaller than Lmax/10

4, where Lmax is the
maximum conditional likelihood among all SPODEs. Discarding models with very low
posterior probability is in fact common when dealing with BMA and can be seen as a
belief revision (Dubois and Prade, 1997). Given the joint beliefs P (X,Y ), the revision
P ′(X,Y ) induced by a marginal P ′(Y ) is defined by P ′(x, y) := P (x|y) · P ′(y). In
other words, if P ′(y) is known to be a better model than P (y) for the marginal beliefs
about y, this information can be used in the above described way to redefine the joint.
Accordingly, in BMA-AODE, the marginal beliefs about S have been replaced by a
better candidate, inducing a revision in the corresponding joint model.

2.2.1. Exponentiation of the Log-Likelihoods
Regardless whether the marginal likelihood or the conditional likelihood is consid-

ered, it is common to compute the log-likelihood rather than the likelihood, in order
to avoid numerical problems due to the multiplication of many probabilities. How-
ever, the log-likelihoods can become very negative on large data sets; in this case, their
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exponentiation can incur into numerical problems. This issue has forced for instance
the usage of high numerical precision, causing a slowdown of the computation: “BMA
often lead to arithmetic overflow when calculating very large exponentials or factori-
als. One solution is to use the Java class BigDecimal which unfortunately can be very
slow.” (Yang et al., 2007, pag. 1660).

We instead adopt the procedure of Algorithm 1, communicated to us by Dr. Dash
who published several works on BMA (Dash and Cooper, 2004). The procedure ro-
bustly exponentiates the log-likelihoods using standard numerical precision.

Algorithm 1 Robust exponentiation of log-likelihoods.

Require: Array log liks of log-likelihoods, assumed of length k.

minVal=min(log liks)

for i = 1:k do
shifted logliks(i)=logliks(i)-minVal;
tmp liks(i)=exp(shifted logliks(i));

end for

total=sum(tmp liks)

for i = 1:k do
liks(i)=tmp liks(i)/total;

end for

return liks {Array of likelihoods exponentiated and normalized.}

2.3. BMA-AODE*: Extending BMA-AODE to Sets of Probabilities

By BMA-AODE* we extend BMA-AODE to imprecise probabilities (Walley, 1991),
substituting the single prior mass function P (S) over the models by a set of priors
(credal set). The credal set P(S), defined over S, lets the prior probability of each
SPODE vary within a range rather than being a fixed number. BMA-AODE* is a credal
ensemble of Bayesian classifiers, since the parameters of each SPODE are learned in
the standard Bayesian way. In principle we could let the prior probability of each
SPODE vary exactly between zero and one (vacuous model). Yet, this would generate
vacuous posterior inferences and prevent learning from data (Piatti et al., 2009). To
obtain non-vacuous posterior inferences, we introduce a lower bound ε for the prior
probability of each model. The credal set is defined by the following constraints:

P(S) :=
{
P (S)

∣∣∣∣ P (sj) ≥ ε ∀j = 1, . . . , k∑k
j=1 P (sj) = 1

}
. (4)

The prior probability of each SPODE varies thus between ε and 1− (k − 1)ε.
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The credal set in (4) represents ignorance about the prior probability of each SPODE
being the true model. Since P(S) is a set a prior mass functions, BMA-AODE* can
be regarded as a set of BMA-AODE classifiers, each corresponding to a different prior.
If the most probable class of an instance varies under different priors, the classification
is prior-dependent. When dealing with prior-dependent instances, credal classifiers
(Corani et al., 2012; Corani and Zaffalon, 2008b) become indeterminate, by returning
a set of classes instead of a single class.

Before discussing how this set of classes is identified, we need introducing the con-
cept of credal dominance (or, for short, dominance): class c′ dominates class c′′ if c′

is more probable than c′′ under each prior of the credal set. If no class dominates c′,
then c′ is non-dominated. Credal classifiers return in particular all the non-dominated
classes, which are identified by performing different pairwise dominance tests among
classes. This criterion is called maximality (Walley, 1991, Section 3.9.2) and is de-
scribed by Algorithm 2. If all classes are non-dominated, maximality requires per-
forming |C| ·(|C|−1) tests; this is the worst case in terms of computational complexity.
However, once a dominated classes is identified, it can be ignored in the following tests,
thus reducing the computational burden. While there exist different criteria for taking
decisions under imprecise probabilities (Troffaes, 2007), maximality is the criterion
commonly used by credal classifiers.

Algorithm 2 Identification of the non-dominated classes ND through maximality

ND := C

for c′ ∈ ND do
for c′′ ∈ ND (c′′ 6= c′) do

check whether c′ dominates c′′

if c′ dominates c′′ then
ND ← ND \ c′′

end if
end for

end for

return ND

Non-dominated classes are incomparable, which means that there is no available
information to rank them. Credal classifiers can be thus seen as dropping the dominated
classes and expressing indecision about the non-dominated ones.

Following (3), within BMA-AODE*, c′ dominates c′′ if the solution of the follow-
ing optimization problem is greater than zero:

minimize:
k∑
j=1

P (c′|ã, sj) · Lj · P (sj)−
k∑
j=1

P (c′′|ã, sj) · Lj · P (sj)

with respect to: P (s1), . . . , P (sk) (5)
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subject to: P (sj) ≥ ε ∀j = 1, . . . , k∑k
j=1 P (sj) = 1.

The constraints of problem (5) are constituted by the definition of credal set; the
problem is a linear programming task and as such it can be solved in polynomial time
(Karmakar, 1984). As already discussed for BMA-AODE, we include in the computa-
tion only the SPODEs whose conditional likelihood is at least Lmax/10

4. This can be
regarded as a belief revision process, involving the credal set. The marginal credal set
P ′(Y ) induces the following revision of the joint credal set P(X,Y ):

P ′(X,Y ) :=

{
P ′(X,Y )

∣∣∣∣ P ′(x, y) := P (x|y) · P ′(y)
P ′(Y ) ∈ P ′(Y )

}
.

The uniform prior belongs to the credal set of BMA-AODE*; therefore, the set of non-
dominated classes identified by BMA-AODE* includes by design the most probable
class returned by BMA-AODE; if in particular BMA-AODE* returns a single non-
dominated class, this coincides with the class returned by BMA-AODE.

2.4. Compression-Based Averaging

Compression-based averaging has been introduced in (Boullé, 2007) to mitigate the
excessive concentration of BMA around the MAP model; it replaces the posterior prob-
abilities P (sj |D) of the models by smoother compression weights, which we denote as
P ′(sj |D) for model sj . Note that adopting the compression coefficients in place of the
posterior probabilities can be seen as a belief revision; for this reason, we adopt again
the notation P ′.

To present the method, we need some further notation. In particular, we denote
by LLj the log of the conditional likelihood of model sj . We moreover introduce
the null classifier, which classifies instances by simply using the marginal probabil-
ities of the classes, without conditioning on the features. The null classifier will be
used for the computation of the compression coefficients. We denote the null classi-
fier as s0; therefore we associate a further state s0 to S, whose domain thus becomes
{s0, s1, . . . , sk}. We denote as LL0 the conditional log-likelihood of the null clas-
sifier and as H(C) := −

∑
c∈C P (c) logP (c) the sample estimate of the entropy of

the class variable. Assuming P (c) to be estimated by maximum likelihood (unlike
the parameters of the SPODEs, which are instead estimated in a Bayesian way), then
LL0 = −nH(C) (Boullé, 2007).

Since we are dealing with a traditional single-prior classifier, we set a single prior
mass function over the models, assigning uniform prior probability to the various
SPODEs and prior probability ε to the null model; assigning a prior probability to
the null model is necessary, since its posterior probability appears in the compression
coefficients. Thus, we define the prior over variable S as follows:

P (sj) =

{
ε j = 0,
1−ε
k j = 1, . . . , k.

(6)
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The compression coefficients are computed in two steps: computation of the raw com-
pression coefficients and normalization. The raw compression coefficient associated to
SPODE sj is:

πj := 1− logP (sj |D)
logP (s0|D)

= 1− LLj + logP (sj)

LL0 + logP (s0)
= 1−

LLj + log 1−ε
k

−nH(C) + log ε
. (7)

A negative πj means that sj is a worse predictor than the null model; a positive πj
means that sj is a better predictor than the null model, which is the general case in
practical situations. The upper limit of πj is one: in this case sj is a perfect predictor,
with likelihood 1, and thus log-likelihood 0. Following (Boullé, 2007), we keep in
the ensemble only the feasible models, namely those with πj > 0, and we discard the
models with πj ≤ 0; therefore, the null model is not part of the resulting ensemble.
The procedure corresponds to a belief revision induced by the removal from the en-
semble of the models whose posterior probability falls below a certain threshold. An
information-theoretic interpretation of the compression weights can be given recalling
that the principle of minimum description length (MDL) (Grünwald, 2005) prescribes
to minimize the overall description length of model and data given the model. The
description length correspond to the logarithm of the posterior probability, namely the
logarithm of the prior (interpreted as the code length of the model) plus the logarithm
of the likelihood (interpreted as the code length of the data given the model). Thus,
LLj + logP (sj) “represents the quantity of information required to encode the model
plus the class values given the model. The code length of the null model can be in-
terpreted as the quantity of information necessary to describe the classes, when no
explanatory data is used to induce the model. Each model can potentially exploit the
explanatory data to better compress the class conditional information. The ratio of the
code length of a model to that of the null model stands for a relative gain in compres-
sion efficiency.” (Boullé, 2007, pag. 1663).

With no loss of generality, assume the features to be ordered such thatA1, A2, . . . , Ak̃
yield a feasible model when used as super-parent; thus, SPODEs s1, s2, . . . , sk̃ are fea-
sible, while SPODEs sj with j > k̃ are removed from the ensemble. The normalized
compression coefficients P ′(sj |D) are obtained by normalizing the raw compression
coefficients of the feasible SPODEs:

P ′(sj |D) =

{ πj∑k̃

l=1
πl

if j = 1, . . . , k̃,

0 otherwise.
(8)

The posterior probabilities of the classes are estimated as:

P (c|ã) :=
k∑
j=1

P (c|ã, sj) · P ′(sj |D). (9)

We call this classifier COMP-AODE, where COMP stands for compression-based.

2.5. COMP-AODE*: Extending COMP-AODE to Sets of Probabilities
We extend COMP-AODE to imprecise probabilities by substituting the single prior

distribution P (S) over the models by the credal set Pc(S), the subscript ’c’ denoting
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compression. The credal set of COMP-AODE* differs from that of BMA-AODE* in
that it assigns prior probability ε to the null model:

Pc(S) :=

P (S)
∣∣∣∣∣∣
P (s0) = ε,
P (sj) ≥ ε ∀j = 1, . . . , k,∑k
j=0 P (sj) = 1

 . (10)

The raw compression weight of SPODE sj varies within the interval:

πj ∈
[
1− LLj + log ε

−nH(C) + log ε
, 1− LLj + log (1− kε)

−nH(C) + log ε

]
. (11)

Since the prior used by COMP-AODE (6) belongs to the credal set of COMP-AODE*,
the point estimate (7) of the compression coefficient adopted by COMP-AODE lies
within the interval (11). The weights πj cannot vary independently from each other;
they are instead linked by the normalization constraint in (10).

COMP-AODE* regards SPODE sj as non-feasible if the upper coefficient of com-
pression is non-positive: this approach thus preserves all the models which are feasible,
in the sense of Section 2.4, for at least a prior in the set Pc(S). COMP-AODE* is thus
more conservative than COMP-AODE, namely it discards a lower number of models.
However, generally neither COMP-AODE* nor COMP-AODE remove any SPODE
from the ensemble. Since the prior adopted by COMP-AODE is contained in the credal
set of COMP-AODE*, the most probable class identified by COMP-AODE is part of
the non-dominated classes identified by COMP-AODE*; exception to this statement
are possible only if the set of feasible SPODEs differs between COMP-AODE* and
COMP-AODE. However, this never happened in our experiments.

Like BMA-AODE*, COMP-AODE* identifies the non-dominated classes through
maximality (Algorithm 2). In the following, we explain how to compute the test of
dominance among two classes.

Testing dominance
Without loss of generality, we assume the features to have been re-ordered, so that

the first k̃ features yield a model with positive upper coefficient of compression when
used as super-parent. Thus, SPODEs {s1, . . . , sk̃} are the feasible ones. In this case
the dominance test corresponds to evaluate whether or not the solution of the following
optimization problem is greater than zero.

minimize:
∑k̃
j=1 P (c

′|ã, sj) · πj −
∑k̃
j=1 P (c

′′|ã, sj) · πj

with respect to: P (s0), P (s1), . . . , P (sk) (12)

subject to: P (s0) = ε

P (sj) ≥ ε ∀j = 1, . . . , k∑k
j=1 P (sj) = 1,
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where the normalization term
∑k̃
j=1 πj has been already simplified and the constraints

represent the credal set.
To express the dependence on the optimization variables of the objective function,

recall that P (s0) = ε and express πj through (7). The objective function rewrites as:

k̃∑
j=1

P (c′|a, sj)·
(
1− logP (sj) + LLj

log ε+ LL0

)
−

k̃∑
j=1

P (c′′|a, sj)·
(
1− logP (sj) + LLj

log ε+ LL0

)
,

which, removing the constant terms, becomes:

k̃∑
j=1

(P (c′′|a, sj)− P (c′|a, sj)) · logP (sj), (13)

The task is therefore a linearly constrained optimization of a non-linear objective func-
tion. However, the objective function is a sum of terms including only single optimiza-
tion variables and, by separing the negative from the positive terms, can be rewritten as
a difference of two convex functions. Thus, the problem reduces to a convex optimiza-
tion, which can be solved with polynomial complexity.

2.6. Computational Complexity of the Classifiers

We now analyze the computational complexity of the various classifiers. We distin-
guish between learning and classification complexity, the latter referring to the classi-
fication of a single instance. Both the space and the time required for computations are
evaluated. The orders of magnitude of these descriptors are reported as a function of
the dataset size n, the number of attributes/SPODEs k, the number of classes l := |C|,
and average number of states for the attributes v := k−1

∑k
i=1 |Ai|. A summary of

this analysis is in Table 1 and the discussion below.

Algorithm Space Time
learning/classification learning classification

AODE O(lk2v2) O(nk2) O(lk2)
BMA[COMP]-AODE O(lk2v2) O(n(l + k)k) O(lk2)
BMA[COMP]-AODE* O(lk2v2) O(n(l + k)k) O(l2 · poly(k))

Table 1: Complexity of classifiers.

Let us first evaluate the AODE. For a single SPODE sj , the tables P (C), P (Aj |C)
and P (Ai|C,Aj), with i = 1, . . . , k and i 6= j should be stored, this implying space
complexity O(lkv2) for learning each SPODE and O(lk2v2) for the AODE ensemble.
These tables should be available during learning and classification for both classifiers;
thus, space requirements of these two stages are the same.

Time complexity to scan the dataset and learn the probabilities is O(nk) for each
SPODE, and henceO(nk2) for the AODE. The time required to compute the posterior
probabilities is O(lk) for each SPODE, and hence O(lk2) for AODE.
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Learning BMA-AODE or COMP-AODE takes the same space as AODE, but higher
computational time, due to the evaluation of the conditional likelihood as in (2). The
additional computational time is O(nlk), thus requiring O(n(l + k)k) time overall.
For classification, time and space complexity during learning and classification are just
the same.

The credal classifiers BMA-AODE* and COMP-AODE* require the same space
complexity and the same time complexity in learning of their non-credal counterparts.
However, credal classifiers have higher time complexity in classification. The pairwise
dominance tests in Algorithm 2 requires the solution of a number of optimization prob-
lems for each test instance which is quadratic in the number of classes. The complexity
of the linear programming problem for BMA-AODE* is polynomial in the number
of variables (Borgwardt, 1987); the (convex) optimization problem required COMP-
AODE* has polynomial complexity too, as already discussed.

3. Experiments

We run experiments on 40 data sets, whose characteristics are given in the Ap-
pendix. On each data set we perform 10 runs of 5-fold cross-validation. In order to
have complete data, we replace missing values with the median and the mode for re-
spectively numerical and categorical features. We discretize numerical features by the
entropy-based method of Fayyad and Irani (1993). For the implementation of all credal
sets, we set ε = 0.01. For pairwise comparison of classifiers over the collection of data
sets we use the Wilcoxon signed-rank test, as recommended by Dems̆ar (2006) .

3.1. Determinate Classifiers
We call determinate the classifiers which always return a single class, namely

AODE, BMA-AODE and COMP-AODE. For determinate classifiers we measure two
indicators: the accuracy, namely the percentage of correct classifications, and the Brier
loss

1

nte

nte∑
i

(
1− P (c(i)|a(i))

)2
,

where nte denotes the number of instances in the test set, while P (c(i)|a(i)) is the
probability estimated by the classifier for the true class of the i-th instance.

A preliminary finding is that adopting conditional likelihood instead of marginal
likelihood is an effective refinement, which reduces of 6% on average the Brier loss of
BMA-AODE. Despite this refinement, however, BMA-AODE is outperformed (p<0.01)
by AODE regarding both accuracy and Brier loss. We present in Figure 3(a) the scatter
plot of accuracies and in Figure 4(a) the relative Brier losses, namely the Brier loss
of BMA-AODE divided, data set by data set, by the Brier loss of AODE. On aver-
age, BMA-AODE has 3% higher Brier loss than AODE. BMA-AODE computed with
marginal likelihood was already found to be outperformed by AODE (Yang et al., 2007;
Cerquides and de Mántaras, 2005).

As for the comparison of COMP-AODE with AODE: there is no significant dif-
ference on accuracy, as it can be inferred from Figure 3(b), but COMP-AODE outper-
forms AODE on the Brier loss (p-value < .01). Figure 4(b) shows the relative Brier
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losses, namely the Brier loss of COMP-AODE divided, data set by data set, by the
Brier loss of AODE. Averaging over data sets, COMP-AODE reduces the Brier loss of
about 3% compared to AODE. We see this result as noteworthy, since AODE is a high
performance classifier. These results broaden the scope of the experiments of (Boullé,
2007), in which the compression approach was applied to an ensemble of naive Bayes
classifiers.
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Figure 3: Scatter plots of accuracies; the solid line shows the bisector.
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Figure 4: Relative Brier losses; points lying below the horizontal line represent performance better than
AODE, and vice versa. Note the different y-scales of the two graphs.

3.2. Credal Classifiers

A credal classifier returns a set of classes if the instance is prior-dependent and a
single class if the instance is instead safe, i.e. non prior-dependent. Note however that
an instance can be judged as prior-dependent by a certain credal classifier and as safe
by a different credal classifier. To characterize the performance of a credal classifier,
the following four indicators are considered (Corani and Zaffalon, 2008b):

• determinacy: % of instances recognized as safe, namely classified with a single
class;
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• single-accuracy: the accuracy achieved over the instances recognized as safe;

• set-accuracy: the accuracy achieved, by returning a set of classes, over the prior-
dependent instances;

• indeterminate output size: the average number of classes returned on the prior-
dependent instances.

Averaging over data sets, BMA-AODE* has 94% determinacy; it is completely de-
terminate on 7 data sets. The determinacy fluctuates among data sets, being however
correlated with the sample size (ρ = 0.3). The choice of the prior is less important on
large data sets: bigger data sets tend to contain a lower percentage of prior-dependent
instances, thus increasing determinacy. BMA-AODE* performs well when indetermi-
nate: averaging over all data sets, it achieves 90% set-accuracy by returning 2.3 classes
(the average number of classes in the collection of data sets is 3.6). It is worth analyzing
the performance of BMA-AODE on the prior-dependent instances. In Figure 5(a) we
compare, data set by data set, the accuracy achieved by BMA-AODE on the instances
judged respectively as safe and as prior-dependent by BMA-AODE*; the plot shows a
sharp drop of accuracy on the prior-dependent instances, which is statistically signifi-
cant (p-value < .01). As a rough indication, averaging over data sets, the accuracy of
BMA-AODE is 83% on the safe instances but only 52% on the instances recognized
as prior-dependent by BMA-AODE*. Thus, on the prior-dependent instances, BMA-
AODE provides fragile classifications; on the same instances, BMA-AODE* returns a
small-sized but highly accurate set of classes.
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Figure 5: Accuracy of the determinate classifiers on the instances recognized as safe and as prior-dependent
by their credal counterparts. The accuracies of BMA-AODE [COMP-AODE] is thus separately measured on
the instances judged safe and prior-dependent by BMA-AODE* [COMP-AODE*]. The solid line shows the
bisector.

Let us now analyze the performance of COMP-AODE*; it has higher determinacy
than BMA-AODE*; averaging over data sets, its determinacy is 99%, with only minor
fluctuations across data sets; the classifier is moreover completely determinate on 18
data sets. The determinacy of COMP-AODE* is very high and stable across data sets.
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Therefore, under the compression-based approach only a small fraction of the instances
is prior-dependent; this robustness to the choice of the prior is likely to contribute to the
good performance of compression-based ensemble of classifiers and constitutes a desir-
able but previously unknown property of the compression-based approach. Numerical
inspection shows that the logarithmic smoothing of the models’ posterior probabili-
ties makes indeed the compression weights only little sensitive to the choice of the
prior. COMP-AODE* performs well when indeterminate: averaging over all data sets,
it achieves 95% set-accuracy by returning 2 classes (note that the indeterminate output
size cannot be less than two).

Again, it is worth checking the behavior of the corresponding determinate classi-
fier, namely COMP-AODE, on the instances that are prior-dependent for the COMP-
AODE*. In Figure 5(b) we compare, data set by data set, the accuracy achieved
by COMP-AODE on the instances judged respectively safe and prior-dependent by
COMP-AODE*; there is a large drop of accuracy on the prior-dependent instances,
and the drop is significant (p-value < .01). Averaging over data sets, the accuracy of
COMP-AODE drops from 82% on the safe instances to only 47% on the instances
judged as prior-dependent by COMP-AODE*. Thus even COMP-AODE, despite its
robustness and its high-performance, undergoes a severe loss of accuracy on the in-
stances recognized as prior-dependent by COMP-AODE*. On the very same instances,
COMP-AODE* returns a small sized but highly reliable set of classes, thus enhancing
the overall classification reliability. These results convincingly show the importance of
detecting the prior-dependent classifications.

3.3. Utility-based Measures

We have seen so far that the credal ensembles extend in a sensible way their deter-
minate counterparts, being able to recognize prior-dependent instances and to robustly
deal with them. Yet, it is not obvious how to compare credal and determinate clas-
sifiers by means of a synthetic indicator. In our view, the most principled answer to
this question is that of Zaffalon et al. (2012), which allows comparing the 0-1 loss of a
traditional classifier with a utility score defined for credal classifiers.

The starting point is the discounted accuracy, which rewards a prediction con-
taining m classes with 1/m if it contains the true class, and with 0 otherwise. The
discounted accuracy can be compared to the accuracy achieved by a determinate clas-
sifier. It has been shown (Zaffalon et al., 2012) that, within a betting framework
based on fairly general assumptions, discounted-accuracy is the only score which sat-
isfies some fundamental properties for assessing both determinate and indeterminate
classifications. Yet Zaffalon et al. (2012) also shows some severe shortcomings of
discounted-accuracy: consider two medical doctors, doctors random and doctor vac-
uous, who should diagnose whether a patient is healthy or diseased. Doctor random
issues uniformly random diagnosis; doctor vacuous instead always returns both cat-
egories, thus admitting its ignorance. Let us assume that the hospital profits a quan-
tity of money proportional to the discounted-accuracy achieved by its doctors at each
visit. Both doctors have the same expected discounted-accuracy for each visit, namely
1/2. For the hospital, both doctors provide the same expected profit on each visit, but
with a substantial difference: the profit of doctor vacuous is deterministic, while the
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profit of doctor random is affected by considerable variance. Any risk-averse hospi-
tal manager should thus prefer doctor vacuous over doctor random, since it yields the
same expected profit with less variance. In fact, under risk-aversion, the expected
utility increases with expectation of the rewards and decreases with their variance
(Levy and Markowitz, 1979). To model this fact, it is necessary applying a utility
function to the discounted-accuracy score assigned on each instance. Zaffalon et al.
(2012) design the utility function as follows: the utility of a correct and determi-
nate classification (discounted-accuracy 1) is 1; the utility of a wrong classification
(discounted-accuracy 0) is 0. Therefore, the utility of a traditional determinate clas-
sifier is its accuracy. The utility of an accurate but indeterminate classification con-
sisting of two classes (discounted-accuracy 0.5) is assumed to lie between 0.65 and
0.8. Two quadratic utility functions are then derived corresponding to these boundary
values, and passing respectively through {u(0) = 0, u(0.5) = 0.65, u(1) = 1} and
{u(0) = 0, u(0.5) = 0.8, u(1) = 1}, denoted as u65 and u80 respectively; the mathe-
matical expression of these utility functions are as follows: u65(x) = −1.2x2 + 2.2x,
u80(x) = −0.6x2+1.6x, where x is the value of discounted accuracy. Since u(1) = 1,
utility and accuracy coincide for determinate classifiers; therefore, utility of credal
classifiers and accuracy of determinate classifiers can be directly compared. In Del
Coz and Bahamonde (2009) classifiers which return indeterminate classifications are
scored through the F1-metric, originally designed for Information Retrieval tasks. The
F1 metric, when applied to indeterminate classifications, returns a score which is al-
ways comprised between u65 and u80, further confirming the reasonableness of both
utility functions. More details on the links between F1, u65 and u80 are given in Zaf-
falon et al. (2012). While in real case studies the utility function should be elicited by
discussing with the decision maker, u65 and u80 can be suitably used for data mining
experiments like those shown in the following.

We now analyze the utilities generated by the various classifiers, comparing each
credal classifier with its determinate counterpart; recall that for a traditional classifier,
utility and accuracy are the same. The utility of BMA-AODE* is significantly higher
(p-value < .01) than that of BMA-AODE under both u65 and u80. This confirms that
extending the model to imprecise probability is a sensible approach. In the first row
of Figure 6 we show the relative utility, namely the utility of BMA-AODE* divided,
data set by data set, by the utility (i.e., accuracy) of BMA-AODE; the two plots refer
respectively to u65 and u80. Averaging over data sets, the improvement of utility is
about 1% and 2% under u65 and u80; although the improvement might look small,
we recall that it is obtained by modifying the classifications of the prior-dependent
instances only, 6% of the total on average. If we focus on the prior-dependent instances
only, the increase of utility generally varies between +10% and +40% depending on the
data set and on the utility function. Clearly, the improvement is even larger under u80
which assigns higher utility than u65 to the indeterminate but accurate classifications.

The analysis is similar when comparing COMP-AODE* with COMP-AODE. In
the second row of Figure 6 we show the relative utility, namely the utility of COMP-
AODE* divided, data set by data set, by the utility (i.e., accuracy) of COMP-AODE.
The increase of utility is in this case generally under 1%, as a consequence of the higher
determinacy of COMP-AODE (99% on average), which allows less room for improv-
ing utility through indeterminate classifications. In fact, the robustness of COMP-
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Figure 6: Relative utilities of credal classifiers compared to their precise counterparts.

AODE to the choice of the prior reduces the portion of instances where it is necessary
making the classification indeterminate. Focusing however on the (rare) indeterminate
instances, the increase of utility deriving to the extension to imprecise probability lies
between 39% and 60%, depending on the data set and on the utility function. Eventu-
ally, COMP-AODE* has significantly (p-value< .01) higher utility than COMP-AODE
under both u65 and u80; also in this case the credal ensemble outperforms its traditional
counterpart.

The utilities of COMP-AODE* and BMA-AODE* are also compared; under u65
COMP-AODE* yields significantly (p-value < .05) higher utility than BMA-AODE*,
while under u80 the difference among the two classifiers is not significant, although
the utility generated by COMP-AODE* is generally slightly higher. The point is that
BMA-AODE* is more often indeterminate than COMP-AODE*; under u80 the inde-
terminate but accurate classifications are rewarded more than under u65, thus allowing
BMA-AODE* to almost close the gap with COMP-AODE*. We conclude however
that COMP-AODE* should be generally preferred over BMA-AODE*.

Eventually we point out that COMP-AODE* generates significantly (p-value <
.01) higher utility than AODE, under both u65 and u80. The extension to imprecise
probability has thus concretely improved the overall performance of the compression-
based ensemble: recall that the determinate COMP-AODE yields better probability
estimates but not better accuracy than AODE.
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3.4. Comparison with Previous Credal Classifiers

1 2 3

CDT

CMA

COMP-AODE*

Ranks under u65

1 2 3

CDT

CMA

COMP-AODE*

Ranks under u80

Figure 7: Comparison between credal classifiers by means of the Friedman test: the boldfaced points show
the average ranks; a lower rank implies better performance. The bars display the critical distance, computed
with 95% confidence: the performance of two classifiers are significantly different if their bars do not overlap.

In this section we compare COMP-AODE* with previous credal classifiers. A
well-known credal classifier is the naive credal classifier (NCC) (Corani and Zaffalon,
2008b), which is an extension of naive Bayes to imprecise probability. The comparison
of NCC and COMP-AODE* on the 40 data sets of Section 3 shows that COMP-AODE
yields significantly (p <0.01) higher utility than NCC under both u65 and u80.

However, over time algorithms more sophisticated than NCC have been developed,
such as:

• credal model averaging (CMA) (Corani and Zaffalon, 2008a), namely a gener-
alization of BMA (in the same spirit of BMA-AODE) for naive Bayes classifier;

• credal decision tree (CDT) (Abellán and Moral, 2005), namely an extension of
classification trees to imprecise probability.

We then compare CDT, CMA and COMP-AODE* via the Friedman test; this is the
approach recommended by (Dems̆ar, 2006) for comparing multiple classifiers on mul-
tiple data sets. First, the procedure ranks on each data set the classifiers according to the
utility they generate; then, it tests the null hypothesis of all classifiers having the same
average rank across the data sets. If the null hypothesis is rejected, a post-hoc test is
adopted to identify the significant differences among classifiers. Adopting a 95% con-
fidence, no significant difference is detected among classifiers; the result is the same
under both utilities. However, under both utilities COMP-AODE* has the best average
rank, as shown in Figure 3.4. Lowering the confidence to 90%, two significant dif-
ferences are found: a) COMP-AODE* produces significantly higher utility than CMA
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under u65 and b) COMP-AODE* produces significantly higher utility than CDT un-
der u80. These results, though not completely conclusive, suggest that COMP-AODE*
compares favorably to previous credal classifiers.

3.5. Some Comments on Credal Classification versus Reject Option
Determinate classifiers can be equipped with a reject option (Herbei and Wegkamp,

2006), thus refusing to classify an instance if the posterior probability of the most
probable class is less than a threshold. For the sake of simplicity we consider a case
with two classes only; to formally introduce the reject option, it is necessary setting a
cost d (0 < d < 1/2), which is incurred into when rejecting an instance. A cost 0, 1, d
is therefore incurred into when respectively correctly classifying, wrongly classifying
and rejecting an instance. Under 0-1 loss, the expected cost for classifying an instance
corresponds to the probability of misclassification; it is thus 1 − p∗, where p∗ denotes
the posterior probability of the most probable class. The optimal behavior is thus to
reject the classification whenever the expected classification cost is higher than the
rejection cost, namely when (1 − p∗) > d; this is equivalent to rejecting the instance
whenever p∗ < 1− d, where (1− d) constitutes the rejection threshold.

The behavior induced by the reject option is quite different from that of a credal
classifier, as we show in the following example. On an a very large data set the posterior
probability of the classes is little sensitive on the choice of the prior, because of the
wide amount of data available for learning; in this condition, instance are rarely prior-
dependent and therefore a credal classifier will mostly return a single class. On the
other hand, the determinate classifier with reject option (RO in the following) rejects
all the instances for which p∗ < 1−d; if d is small, there can be even a high number of
rejected instances. The difference between these behaviors is due to the credal classifier
being unaware of the cost d associated with rejecting an instance, which is instead
driving the behavior of RO. To rigorously compare RO against a credal classifier, it is
thus necessary making the credal classifier aware of the cost d. Recalling that the credal
classifier already returns both classes on the instances which are prior dependent, this
will change the behavior of the credal classifier only on the instances which are not
prior-dependent. In particular, the credal classifier should reject all the instances for
which p∗ < 1 − d, where p∗ is the lower probability of the most probable class; the
instances rejected by means of this criterion will be thus a superset of those rejected by
RO. Therefore, the credal classifier will reject the instances which are prior-dependent
and those for which p∗ < 1− d. Eventually, the cost generated by the credal classifier
should be compared with those generated by the RO. In the case with more than 2
classes the analysis might become slightly more complicated than what discussed here;
however, we leave the analysis of credal classifiers with reject option as a topic for
future research. Note also that this kind of experiment will require the computation of
upper and lower posterior probability of the classes, which is not always trivial with
credal classifiers.

4. Conclusions

This main contribution of this paper regards two novel credal ensembles of SPODE
classifiers. Both ensembles compare favorably to more traditional ensemble, showing
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the effectiveness of the IP approach to deal with the problem of specifying the prior
over the models. In particular, the credal ensembles automatically identify the prior-
dependent instances and cope reliably with them by returning a small-sized but highly
accurate set of classes. On the same instances, the traditional ensembles of classifiers
undergo instead a severe drop of accuracy. In particular, the credal ensemble based on
compression weights achieves very good performance; our findings thus broaden the
application scope of compression weights, originally introduced by Boullé (2007).

As a future work, it could be interesting developing a credal generalization of the
MAPLMG algorithm (Cerquides and de Mántaras, 2005) which is so far the highest-
performing approach (Yang et al., 2007) for aggregating SPODEs. Other interesting
developments might include applying the ideas of credal ensemble to domains other
than classification, such as regression. A credal ensemble of different regressor models
would then return predictions which are interval rather than points; the interval would
highlight the sensitivity of the prediction on the prior which is set over the competing
regression models.

In terms of computational speed, it would be possible making BMA-AODE* faster
by solving its credal-dominance test without running the linear programming proce-
dure, identifying instead the solution on the basis of the derivatives of the objective
functions; a similar approach has been for instance followed by (Corani and Zaffalon,
2008a).
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Appendix A. Data sets list

Table A.2: List of the 40 data sets used for experiments.

dataset n k classes dataset n k classes

labor 57 11 2 ecoli 336 6 8
white clover 63 6 4 liver disorders 345 1 2
postoperative 90 8 3 ionosphere 351 33 2

zoo 101 16 7 monks3 554 6 2
lymph 148 18 4 monks1 556 6 2

iris 150 4 3 monks2 601 6 2
tae 151 2 3 credit a 690 15 2

grub damage 155 6 4 breast w 699 9 2
hepatitis 155 16 2 diabetes 768 6 2

hayes roth 160 3 3 anneal 898 31 6
wine 178 13 3 credit g 1000 15 2
sonar 208 21 2 cmc 1473 9 3
glass 214 7 7 yeast 1484 7 10

heart h 294 9 2 segment 2310 18 7
heart c 303 11 2 kr vs kp 3196 36 2

haberman 306 2 2 hypothyroid 3772 25 4
solarflare C 323 10 3 waveform 5000 19 3
solarflare M 323 10 4 page blocks 5473 10 5
solarflare X 323 10 2 pendigits 10992 16 10

ecoli 336 6 8 nursery 12960 8 5
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