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ABSTRACT
In this work, we address the potential of probabilistic modelling
approaches for ensuring trustworthy AI in sensing subsystems
within drone-supported autonomous wheelchairs. The combina-
tion of drones and autonomous wheelchairs provides an innova-
tive solution for enhancing mobility and independence of motion-
impaired people. However, safety is a critical concern when deploy-
ing such systems in real-world scenarios. To address this challenge,
probabilistic models can be used to capture uncertainty and non-
stationarity in the environment and sensory system, enabling the
device to make informed decisions while ensuring safe autonomy.
The approach is being developed in the context of a recently started
European project named REXASI-PRO, which addresses the mod-
elling methodology, tools, reference architecture, design and imple-
mentation guidelines. In the project, relevant indoor and outdoor
navigation use cases are addressed to demonstrate the effectiveness
of the proposed approach in providing trustworthy autonomous
wheelchairs in real-world environments.

CCS CONCEPTS
• Computing methodologies→ Model verification and vali-
dation; Modeling methodologies; Uncertainty quantification.
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1 INTRODUCTION
In the last decades, autonomous systems have seen a growing de-
velopment in several areas, including automotive [6], navigation,
aerospace, industry [18], and military [11] applications. In many
cases, those systems are aimed at carrying out operations that are
impossible or critical to perform for human workers. Currently,
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autonomous systems are mostly applied in environments where un-
certain events and disturbances are either absent or largely limited,
and they are supervised to some extent by human operators.

Thanks to the recent technological achievements in AI and ro-
botics, autonomous systems have been improved to perform in-
creasingly complicated tasks such as driving vehicles in complex,
open and uncontrolled environments, even without human supervi-
sion. However, due to the possible criticality of those applications,
new vital requirements have been introduced to set next research
challenges. A new vocabulary has been recently introduced to ad-
dress all the necessary aspects in the design and evaluation of those
systems, not only from a technical perspective, but also in terms of
ethical and legal implications, including fairness and accountability.
The “Ethics Guidelines for Trustworthy Artificial Intelligence” [1],
presented by the High-Level Expert Group on AI set up by the
European Commission, states that trustworthy AI should be:

(i) lawful, to ensure that all laws and regulations are applied
and respected;

(ii) ethical, to adhere to moral principles and values;
(iii) robust, to avoid any unintended damage and safety issues.

Trustworthy AI is fundamental for the notion of Trustworthy
Autonomous Systems (TAS). TAS must be technically robust and
therefore they must be evaluated according to the attributes and
means of dependable, secure and resilient computing, as defined in
the seminal papers [3] and [16]. More recently, in reference [9], the
notions of dependability, resilience, and cyber-security have been
connected as core concepts within a comprehensive TAS taxonomy.

TAS must be robust to uncertainties in the surrounding environ-
ment, secure against threats coming from cyber-space, and capable
of safe human-machine interactions [12].

As addressed in reference [17], trustworthiness must be put in
relation not only to purely technical aspects, but also to the benefits
and wellness of people as a consequence of AS actions.

In general, better performance is achieved by increasing ma-
chine learning complexity at the expense of explainability (XAI) [2],
which refers to the possibility of explaining the internal behaviour
of intelligent systems. In fact, most deep learning models are con-
sidered as “black-boxes” compared to traditional control algorithms
and models. Therefore, it is very difficult to use traditional evalua-
tion techniques, rather novel and diverse methodologies should be
instead adopted [17].

All the aforementioned aspects are extremely important when ad-
dressing real-world adoption of novel technologies leveraging on AI
and machine learning, whose failure can have severe consequences
on human health. This is the case of Autonomous Wheelchairs (AWs)
that are meant to support motion-impaired persons in safe door-to-
door navigation.
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From the invention of the first powered wheelchairs in 1956,
there have been several efforts to improve their technology. Mod-
ern wheelchairs can be very complex and include sophisticated
components, such as navigation systems and vocal human-machine
interfaces. The realisation of AWs aims to accommodate several dis-
abilities by means of multi-modal interfaces. One aspect to be care-
fully addressed is the safety assessment and possible certification
of AWs. In fact, in presence of AI, together with specific regulations
such as “ISO 7176-14:2022 Wheelchairs”1, other requirements and
guidelines should be considered, such as the ones included in the
EU Artificial Intelligence Act2. In case AWs also monitor biomedical
parameters, further certifications might be required.

2 THE REXASI-PRO PROJECT
The recently started European project named Reliable and Explain-
able Swarm Intelligence for People with Reduced Mobility (REXASI-
PRO)3 set challenging objectives to implement trustworthy swarm
intelligence based on the cooperation of AWs and drones. A schematic
illustration of the system is depicted in Figure 1. The idea of the
project is to develop a novel framework in which security, safety,
ethics, and explainability are entangled to create a trustworthy
collaboration among AWs and flying robots to allow a seamless
door-to-door experience for people with reduced mobility. Among
project objectives, three main challenges are identified:

(i) the usage of AI techniques in different use-cases for AWs;
(ii) the development of autonomous flying drones that are able

to replace the need for human supervision within indoor
and outdoor environments;

(iii) the implementation of mixed collaborative environments,
where devices can communicate with each other to manage
emergencies.

AI is used to develop safety assistant, driving assistant, route
assistant, and social navigation modules to allow AWs to adapt to
unknown environments and situations. To overcome the limita-
tions of ground vehicles, drones can map the surroundings from
any perspectives that allows to see obstacles and elaborate their rep-
resentation in a 3D map. The generated map is then used to build a
simulation environment where the AW dynamics is recreated. This
allows to ensure trusted social navigation and collisions avoidance,
to preserve the safety and well-being of wheelchair-bound persons.

As for any complex systems, AWs are divided in simpler com-
ponents following a modular approach. Therefore, holistic safety
assessment can also be based on a modular approach, starting from
single components, such as the sensors, and moving up to subsys-
tems, such as the environmental sensing one, and considering the
interfaces between them. In the context of social robotic naviga-
tion, trustable environmental sensing is an essential aspect that
is crucial to guarantee robustness against uncertainties, internal
malfunctions, and external disturbances. Sensor systems include
smart sensors elaborating raw data coming from environmental
measurements and transforming it into useful information such as
event/threat detection.

1https://www.iso.org/standard/72408.html
2https://artificialintelligenceact.eu
3https://rexasi-pro.spindoxlabs.com

Figure 1: Safety-monitored wheelchair-drone system.

For the specific AW case-study, a smart-sensing subsystem is
used to provide trusted event detection by following a model-based
approach where trustworthiness is enforced during the whole sys-
tem life-cycle. Common causes of failures are mitigated by applying
the principle of “no single point of failure” together with strategies
that rely on technology diversity. To assess the trustworthiness of
the system, a model-based evaluation is used, in which verifica-
tion for the sensing subsystem is performed at both design-time
and run-time with the aim to fulfil requirements related to Safety
Integrity Levels (SIL).

3 PROBABILISTIC SAFETY MODELLING
In order to address the challenges related to quantitative safety as-
sessment, we propose a multi-agent, multi-modal and self-adaptive
sensing system to achieve trusted event detection, where sensors
outputs are combined to give a common result for the measured
variables.

In the case of event detection, a possible approach is based on
voting, where the output is based on the agreement of most de-
tectors. By analysing and tracking outputs of sensors and their
detection performance over time, it is possible to score their reputa-
tion, weight their contribution accordingly, and even exclude those
that are no more considered reputable, i.e., those that could then
negatively affect the outcome of the decisions. Through appropriate
reconfiguration, the sensing system can consider a subset of detec-
tors to keep the required safety level. In other words, the sensing
system is able to self-adapt when internal faults occur or when an
exogenous environmental condition affect detection performance.

The ability of self-adaptation is achieved by combining a “Man-
aged Subsystem”, which is the system under consideration (i.e., the
sensing one), with a “Managing Subsystem” based on the Monitor,
Analyse, Plan and Execute over a shared Knowledge (MAPE-K) feed-
back loop (see Figure 2). In AWs, the managing part implements
the autonomic safety logic over the monitored sensing subsystem
within the overall wheelchair-drone system. The managed subsys-
tem is monitored along with the environment, and related data
is stored in the knowledge base, which includes all relevant mod-
els representing the system from the safety perspective. Data is
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Figure 2: Self-adaptation through MAPE-K feedback loop for
safety monitoring of wheelchair-drone system.

continuously collected and analysed to check if pre-defined safety
conditions are met and no anomalies are detected. If needed, re-
configuration actions are planned at run-time to keep the system
operation safe enough, including exclusion of faulty sensors, issue
of alerts, application of speed limitations, switch to manual/remote
control, or even fail-safe system stop.
Considering the multi-agent structure of the system, sensors char-
acterised by different technologies are used, affected by different
types of internal or external faults. The assumption about the di-
versity of sensing technology/mechanism is essential to exclude
correlations between them and common-mode faults. Sensor diver-
sity can be also achieved through different algorithms, parameters
choice, and sensor displacement [8].

This multi-sensor and multi-modal approach implies enough
redundancy to evaluate the information we are interested in. It
allows to increase system robustness against the malfunction of
some of its components and, to some extent, to reduce the costs by
using cheaper components. Moreover, technology redundancy and
diversity is a necessary feature to improve resilience against envi-
ronmental disturbances. As highlighted in reference [16], “Diversity
should be taken advantage of in order to prevent vulnerabilities
to become single points of failure”. More recently, the importance
of diversity in machine learning systems has been highlighted to
comply with functional safety requirements [5].

TAS operating in real-world environments must cope with sev-
eral uncertainties such as unpredicted changes, disturbances, and
the so-called “unknown unknowns”. Properties such as self-adaptation
allow to deal with those uncertainties, however they also limit the
possibility of employing deterministic verification approaches. One
possibility to cope with uncertainties is to adopt probabilistic ap-
proaches possibly based on graphical models. Bayesian networks
(BNs) [15] can be used due to their suitability to represent complex
causal relationships between system components, and to visually
describe inter-dependencies in an easily interpretable way. The
assumption about diversity of sensing technology is essential to
exclude correlations between sensors and common-mode faults. BN
extensions such as Dynamic Bayesian Networks (DBNs) [19] and

Time-Varying Dynamic Bayesian Networks (TV-DBNs) [20] are also
useful to manage time-varying and dynamic aspects of the system
[10].

In the specific case-study of vehicle detection, the presence or ab-
sence of an automobile on a specific section of the road is detected
through sensors using different technologies, e.g. magnetometer
sensor, video image processor or radar sensors. Unforeseen ele-
ments could interfere with the analysed scene and, depending on
the their nature, induce errors on one or multiple sensors.

In the described context, let 𝑋 denote the actual, non-observable,
value to be measured, i.e. the random variable representing the
event “vehicle presence or absence”. As we assume the sensors to
be only partially trustable, the observation of 𝑋 as returned by a
sensor 𝑆𝑖 is described by a distinct, observable, variable 𝑂𝑆𝑖

𝑋
with

the same possible values of 𝑋 . Let us denote as 𝐸𝑖 the exogenous
factors possibly inducing a deterioration of sensor trustworthi-
ness. In the case of a video image processor, it could be caused by
weather condition that worsen visibility, as for instance fog or rain.
We model such a correlation by setting 𝑋 and 𝐸𝑖 as parents of the
observable variable 𝑂𝑆𝑖

𝑋
in the BN. The quantification of BN pa-

rameters requires the quantification of conditional probabilities in
𝑃 (𝑂𝑆𝑖

𝑋
|𝑋, 𝐸𝑖 ). This corresponds to a confusion matrix to be assessed

for each configuration of the exogenous factors in 𝐸𝑖 . Assuming no
other variables are involved in the measurement process, we have
𝑋 and 𝐸𝑖 representing root nodes of the BN graph (see an example
in Figure 3). Note that to complete the BN quantification, also the
unconditional probabilities of 𝑋 and 𝐸𝑖 should be assessed. Overall,
this defines a joint model of the form:

𝑃 (𝑋,𝑂𝑆1
𝑋
, . . . ,𝑂

𝑆𝑚
𝑋

|𝐸𝑖 , . . . , 𝐸𝑚) = 𝑃 (𝑋 )
𝑚∏
𝑖=1

𝑃 (𝑂𝑆𝑖
𝑋
|𝑋, 𝐸𝑖 ) , (1)

where the actual values of the exogenous factors are assumed to be
observed. If this is not the case, a weighted average over the differ-
ent exogenous configurations should be considered. Such a joint
probabilistic model allows to infer information about the variable
𝑋 in the form of the posterior probability 𝑃 (𝑋 |𝑂𝑆1

𝑋
,𝑂

𝑆2
𝑋
, . . . ,𝑂

𝑆𝑚
𝑋

).
Sensor diversity implies the conditional independence of the

different sensor measurements given the latent variable as well
as the unconditional independence between the exogenous fac-
tors affecting the reliability of the different sensors. For instance,
weather conditions are mostly irrelevant to radar sensors, which
are subject to multi-path propagation, separability, and sensitivity
of radar cross section to the aspect angle [13]. Those assumptions
allow to reduce the computation of the posterior probabilities to
an inference in a naive topology and hence derive a closed-form
expression. In practical applications, extensive testing for corre-
lation between components should be considered to evaluate the
impact on safety targets. If the above independence relations are
not satisfied, BN inference algorithms should be used to obtain
the posterior distributions. This appears as the necessary compu-
tational counterpart of a higher expressiveness in the modelling
phase. Similar considerations hold for the extension of the above
static setup to a dynamic one, where the Markovian assumption is
typically considered to reduce the modelling to two consecutive
time steps only.
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Figure 3: A BN modelling three sensors measuring 𝑋 .

The BN approach can be linked to the voting approach, as de-
scribed in references [8] and [10]. In the former, BNs are used to
evaluate the effect of a “k-out-of-m”, voting approach on the per-
formance of different sensor clusters chosen from a group of five
sensors with different technologies. Dependencies among technolo-
gies are also discussed, showing how they worsen the results. In
reference [10], the same concept is used for a self-adaptive sys-
tem. A case-study in the domain of vehicle detection is used to
demonstrate the approach, based on sensor detection performance
measured in a previous study.

Based on the described approaches, in REXASI-PRO we leverage
on the state-of-the-art in multi-modal sensing, and we employ
inherently explainable probabilistic methods based on BN models
to dynamically evaluate sensing trustworthiness at run-time. To
that aim, we keep alive design-time models, and explore paradigms
such as digital twins and autonomic computing, e.g., the MAPE-
K feedback loop. The final objective is to address safety integrity
requirements and to set up appropriate model templates for the
static and dynamic verification of critical subsystems within TAS.
The complexity of the threat detection use cases in cooperative
navigation scenarios that are included in REXASI-PRO allows to
set up appropriate proof-of-concepts to develop and benchmark
novel techniques for probabilistic SIL evaluation within TAS.

4 CONCLUSIONS
Assessing trustworthiness in AWs is essential to ensure their safety
in real-world applications. Most powerful AI techniques suffer from
opacity and explainability issues when employed in safety-critical
applications [9]. The use of probabilistic approaches can support
safety assessment by providing a quantitative evaluation of trust-
worthiness that is applicable to selected subsystems, such as the
sensorial one [10]. With such an approach, the pro-active safety
achievable with higher intelligence, adaptation and uncertainty
management capabilities can be combined with the potential of
run-time monitoring and probabilistic model checking enabled by
appropriate modeling formalisms, such as Bayesian Networks and
their extensions [14]. Together with other trustworthy AI tech-
niques, such as XAI and safety envelopes [4], we believe that this
approach can have a great potential in addressing real-world cer-
tification challenges of critical autonomous systems [7]. We are
currently developing and testing the approach in industrially rel-
evant use-cases within the recently started REXASI-PRO project,
where several cross-discipline aspects related to robust, ethical, and
legal AI are being investigated.
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