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Abstract

We discuss the problem of bounding partially iden-

tifiable queries, such as counterfactuals, in Pearl-

ian structural causal models. A recently proposed

iterated EM scheme yields an inner approxim-

ation of those bounds by sampling the initial-

isation parameters. Such a method requires mul-

tiple (Bayesian network) queries over models shar-

ing the same structural equations and topology,

but different exogenous probabilities. This setup

makes a compilation of the underlying model to

an arithmetic circuit advantageous, thus inducing

a sizeable inferential speed-up. We show how a

single symbolic knowledge compilation allows us

to obtain the circuit structure with symbolic para-

meters to be replaced by their actual values when

computing the different queries. We also discuss

parallelisation techniques to further speed up the

bound computation. Experiments against standard

Bayesian network inference show clear compu-

tational advantages with up to an order of mag-

nitude of speed-up.

1 INTRODUCTION

Causal inference is an important direction for modern AI.

Following Pearl’s ladder of causation [Bareinboim et al.,

2022], observational data are sufficient to compute correl-

ational queries, while answering interventional queries re-

quires an additional structure such as the causal graph and

dedicated computational schemes such as the popular do

calculus [Pearl, 2009]. Moving further into counterfactual

inference requires the full specification of the underlying

causal model, including the structural equations and the

exogenous parameters. While the equations might be avail-

able (or sampled), the exogenous parameters are typically

latent and unavailable. Most counterfactuals are therefore

partially identifiable and only bounds are obtained for the

corresponding queries [Shpitser and Pearl, 2007].

Despite the hardness of the task [Zaffalon et al., 2021], ap-

proximate bounding schemes exist. These include polyno-

mial programming [Duarte et al., 2021], credal networks

inference [Zaffalon et al., 2020], sampling [Zhang et al.,

2022], and EM [Zaffalon et al., 2021]. The latter, in partic-

ular, allows us to derive credible intervals while reducing

the bounds’ computation to iterated (Bayesian network) in-

ferences in a fully specified structural causal model. Such

a method requires multiple queries over models sharing the

same structural equations but different exogenous probabil-

ities.

Tractable arithmetic circuits (e.g., Darwiche [2022b]) of-

fer a graphical formalism to represent generative probabil-

istic models and compute standard inferential tasks in lin-

ear time by a circuit traversal. The ACE library1 allows

Bayesian network compilation to arithmetic circuits with

state-of-the-art performances [Agrawal et al., 2021].

The goal of this paper is to adopt the above compila-

tion strategy to achieve a sizeable inferential speed-up

in the computation of bounds for counterfactual queries.

In particular, we consider a symbolic knowledge compila-

tion as in Darwiche [2022a] to obtain the circuit structure

with the symbolic parameters to be replaced by their ac-

tual values when computing the different queries (Sect. 3).

We also present parallelisation techniques to further speed

up the bound computation. Experiments based on ACE

against standard Bayesian network algorithms report com-

putational speed-ups up to an order of magnitude (Sect. 4).

This contribution appears to be the first application of

knowledge compilation to counterfactual inference. A dis-

cussion on the outlooks of these strategies is in Sect. 5.

1
http://reasoning.cs.ucla.edu/ace.

Accepted for the 6th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2023).

http://arxiv.org/abs/2310.03352v1
mailto:<david.huber@idsia.ch>?Subject=Your TPM 2023 paper
http://reasoning.cs.ucla.edu/ace


2 NOTATION AND BASICS

Variable X takes values from a finite set ΩX , θX is a prob-

ability mass function (PMF) over X , θx denote the probab-

ility of X = x, and λx the indicator function of that event.

Bayesian Networks (BNs) Given variables Y and X , a

conditional probability table (CPT) θY |X is a collection

of PMFs over Y indexed by the values of X . Given a

joint variable X := (X1, . . . , Xn) and a directed acyc-

lic graph G with nodes in a one-to-one correspondence

with the variables in X , a BN is a collection of CPTs

θ := {θXi|PaXi
}ni=1, where PaXi

denotes the parents of

Xi according to G (see, e.g., Fig. 1). A BN induces a PMF

θX s.t. θx =
∏n

i=1 θxi|paXi

, for each x ∈ ΩX .

θX1
= [0.1, 0.9]

θX2|X1=0 = [0.2, 0.8]

θX2|X1=1 = [0.3, 0.7]

X1 X2

Figure 1: A BN over two Boolean variables.

Arithmetic Circuits (ACs) We can express the joint

PMF of a BN as a multi-linear function of the CPT para-

meters, i.e., θx =
∑

x′
1
,...,x′

n

∏
i θx′

i
|pa

Xi

λxi
. Such an

exponential-size representation becomes more compact by

exploiting the BN conditional independence relations in-

duced by G and consequently moving the sums inside the

products. The representation might be even more compact

if different CPT parameters take the same value. Common

examples are context-specific independence relations and

CPTs implement deterministic relations through degener-

ate (i.e., 0/1) values only. Such functions are graphically

depicted as ACs composed by leaves, annotated by CPT

probabilities and indicator functions, and inner nodes con-

taining sums and multiplications (e.g., Fig. 2). Those ACs

are called tractable, as they allow to answer some queries

in linear-time, through feed-forward passes on the circuit

structure. A number of compilation algorithms have been

proposed to build compact AC representations of BNs.

+
∗ ∗

λX1=0 0.1 + + 0.9 λX1=1

∗ ∗ ∗ ∗

0.2 λX2=0 0.3 0.8 λX2=1 0.7

Figure 2: An AC implementing the BN in Fig. 1.

Structural Causal Models (SCMs) A structural equa-

tion (SE) f associated with variable Y and based on the

input variable(s) X , is a surjective function f : ΩX → ΩY

that determines the value of Y from that of X . Given two

joint variables U and V , called respectively exogenous and

endogenous, a collection of SEs {fV }V ∈V such that, for

each V ∈ V the input variables of fV are in (U ,V ), is

called a partially specified SCM (PSCM). A PSCM induces

a directed graph G with nodes in correspondence with the

variables in (U ,V ) and such that there is an arc between

two variables if and only if the first variable is an input

variable for the SE of the second (e.g., Fig. 3). We focus

on semi-Markovian PSCMs, i.e., those PSCMs that lead

to acyclic graphs. A fully specified SCM (FSCM) is just a

PSCM M paired with a collection of marginal PMFs, one

for each exogenous variable. As SEs induce (degenerate)

CPTs, an FSCM defines a BN over (U ,V ) based on G.

θU1
= [0.1, 0.9]

fV1
(U1) = U1

θU2
= [0.05, 0.15, 0.25, 0.55]

fV2
(V1, U2 =
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U1 U2

V1 V2

Figure 3: A FSCM over two endogenous (black) and two

exogenous variables (grey nodes).

Causal Queries in FSCMs BN algorithms allow to com-

pute inferences in FSCMs. This is trivially the case for ob-

servational queries involving joint or conditional states of

the endogenous variables. For interventional queries, this

can be also done provided that the SEs of the intervened

variables are replaced by constant maps pointing to the

selected state. For counterfactual queries, where the same

variable may be observed as well as subject to intervention,

albeit in distinct worlds, we use auxiliary structures where

different copies of the endogenous variables and their SEs

are considered in each world. Han et al. [2023] provides a

precise characterisation of the computational complexity of

those inferences in terms of treewidth.

Partially Identifiable Causal Queries in PSCMs

FSCMs are rarely available. Considering a PSCM spe-

cification with a dataset D of endogenous observations

represents a more common setup. This is not critical for

observational queries: a BN over the endogenous variables

can be obtained by deriving its graph from that of the

PSCM and the CPTs from D [Tian, 2002]. Interventional

queries can be possibly reduced to observational queries

by the do calculus [Pearl, 2009]. If this is not possible, we

say that the query is only partially identifiable. In those

cases, a characterisation is still provided by the bounds

spanned by the values of the query computed for all the

FSCMs consistent with the PSCM and the endogenous BN

(e.g., Zaffalon et al. [2020]). Counterfactual queries are

very often only partially identifiable.
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3 TRACTABLE BOUNDING OF

COUNTERFACTUALS

Bounding partially identifiable queries PSCMs is an NP-

hard problem even on polytrees [Zaffalon et al., 2021, The-

orem 2].

Zhang et al. [2022] have proposed a Bayesian sampling pro-

cedure that eventually approximates the bounds via cred-

ible intervals. The sampling is query-driven; new queries

will require new sampling. The accuracy of the approxima-

tion is unclear in general as a systematic experimental ana-

lysis is missing.

EM Approach The algorithm proposed by Zaffalon et al.

[2021] samples the initialisation of the exogenous chances,

which are used to start an EM scheme returning a compat-

ible FSCM specification. Alg. 1 depicts a single EM run.

The interval spanned by the values of the query computed

on the FSCMs returned by the EM for each run provides an

(inner) approximation of the expectation bounds. This ap-

proach is ‘agnostic’ w.r.t. the query. It aims at reconstruct-

ing the uncertainty related to exogenous variables (via sets

of probabilities). Once this is done, different (counterfac-

tual) queries will use the same sets of probabilities to com-

pute the wanted bounds—no more sampling is needed.

Algorithm 1 In a PSCM paired with an endogenous dataset

D, given a random initialisation {θ
(0)
U }U∈U in input, the al-

gorithm returns the exogenous chances {θU}U∈U obtained

after likelihood convergence.

1: t← 0
2: while P (D|{θt+1

U }U∈U ) ≥ P (D|{θtU}U∈U ) do

3: for U ∈ U do

4: θt+1
U ← |D|−1

∑
v∈D θt

U|v

5: t← t+ 1
6: end for

7: end while

An approximate bounding scheme based on Alg. 1 may suf-

fer from two potential bottlenecks: (i) an insufficient num-

ber of runs leading to a poor inner bound approximation;

(ii) the time needed by the FSCM inferences required by

the exogenous queries (line 4) and the likelihood evaluation

(line 2).

Regarding (i), Zaffalon et al. [2022] derived a characterisa-

tion of the accuracy of the bounds in terms of credible inter-

vals, and the EM scheme has been proven to yield accurate

bounds with relatively few runs.

Here we address instead (ii) by first noticing that the quer-

ies needed by Alg. 1 are computed on different FSCMs

based on the same PSCM, thus having possibly different

exogenous chances, but always the same endogenous CPTs

implementing the SEs of the PSCM. This is true for the

models corresponding to different time steps t, but also

when different exogenous initialisations are considered in

input. In practice the algorithm requires the computation of

inferences in different BNs having the same CPTs for the

non-root nodes, but different marginal PMFs on the root

nodes. This simple remark suggests the use of AC compil-

ation to achieve faster inferences.

Symbolic Knowledge Compilation Consider the AC

compilation of two BNs over the same variables and with

the same graph but different CPT parameters. Suppose

these parameters, separately for each BN, have no repeated

values. In that case, the compiler minimises the size of the

ACs by only exploiting the independence relations induced

by the BN graph. As these are the same for the two BNs, the

two ACs returned by the compiler should share the same

inner nodes and the same indicators on the leaves while dif-

fering only on the chances in the leaves.

This fact allows for a symbolic compilation achieved by re-

garding the chances in the leaves as symbolic parameters

to be replaced by their actual values during an inferential

computation. Compilers can quickly implement symbolic

compilation by replacing the BN parameters with unique

numerical identifiers to be eventually retrieved in the AC

returned by the compiler.

Returning to the queries of interest for the EM scheme, we

might intend PSCM compilation as a symbolic compilation

achieved by treating the exogenous PMFs as parameters. In

contrast, the endogenous CPTs, implementing the SEs and

remaining the same for all the models, are treated as con-

stant numerical values. The degenerate nature of the CPTs

can be exploited by the compiler to achieve smaller ACs

and hence faster inferences (e.g., with the FSCM in Fig. 3

as input, ACE returns an AC with 96 arcs if the determinism

of the CPTs is not exploited and 23 arcs otherwise). After

the PSCM symbolic compilation, the AC of each FSCM re-

quired by Alg. 1 is obtained in linear time (w.r.t. the AC

size) by replacing the parameters of the symbolic AC with

the actual values in the particular FSCM.

The queries required by Alg. 1 are, for each v ∈ D, the

computation of endogenous marginal θv and the exogen-

ous posterior θu|v, to be computed for each U ∈ U and

u ∈ ΩU . We therefore focus on the computation of the

joint query θu,v for each U ∈ U , u ∈ ΩU and v ∈ D. This

is performed in linear time by a bottom-up traversal of the

AC after instantiating the indicators of the variables in V

and U .

Parallelisation Alg. 1 allows for a straightforward par-

allelisation at the run level. A more sophisticated paral-

lelisation can be based on c-components [Tian, 2002]. In

a PSCM, a c-component is a set of variables connected

through undirected paths consisting solely of exogenous-to-

endogenous arcs. For each c-component, we define a sub-

graph consisting of the nodes in the c-component and its

3



direct parents, with all other variables and edges removed.

The corresponding sub-model might yield the chances of

the exogenous variables in the c-component through Alg. 1.

The procedure can be executed in parallel, separately for

each c-component.

4 EXPERIMENTS

To evaluate the benefits of the proposed AC approach when

running the EM scheme in Alg. 1, we compare the AC

execution times against those based on standard BN infer-

ence for a synthetic benchmark of 335 PSCMs. The PSCM

graphs have a random topology (Erdös-Rényi sampling),

the number of nodes ranges between 5 and 21 (avg. 9.9),

and the number of root nodes (i.e., exogenous variables)

between 2 and 10 (avg. 4.5). All the endogenous variables

are binary, while the cardinalities of the exogenous ones

range between 3 and 256 (avg. 29.6). Each PSCM comes

with a dataset of endogenous observations of size between

1, 000 and 5, 000 records obtained by sampling a compat-

ible FSCM. The benchmark and the code used for the sim-

ulations are available in a dedicated repository.2

The code is built on the top of CREDICI3 [Cabañas et al.,

2020], a Java library implementing the EM scheme and

embedding a BN inference engine. Here we consider in-

ferences based on variable elimination with the min-fill

heuristics. The symbolic compilation is instead developed

within the Java/C++ ACE compiler (see Footnote 1). The

experiments are run on a dual 2.20GHz Intel(R) Xeon(R)

Silver 4214 CPU Dell PowerEdge R540 server running

Ubuntu 20.04.6 LTS. All the experiments are performed

using a fixed seed for the random initialisation and, as ex-

pected, resulted in the exact same set of PSCMs.

For each PSCM, we perform 200 runs of 500 iterations.

We set a timeout to 15 minutes for each experiment. The

BN approach based on the whole model often reaches this

limit. Thus, as a baseline for the BN approach, we consider

the faster BNC approach based on queries in the sub-BNs

associated with the model c-components. The number of

c-components for the benchmark models ranges between

1 and 10 (avg. 4.2). The parallelisation of BNC over the

different components is denoted instead as BNP. We sim-

ilarly denote as ACC the method based on the (symbolic)

compilation of the sub-BNs and as ACP its parallelisation.

The overall execution times (in hours) on the whole bench-

mark for the four methods are TBNC = 17.0, TBNP = 7.3,

TACC = 2.4, and TACP = 1.3. This clearly shows the ad-

vantage of the (symbolic) knowledge compilation.

A deeper analysis is provided by computing, separately for

each PSCM, the ratio between the EM execution time of

a particular approach and that of BNC. Fig. 4 shows the

2
anonymous.4open.science/r/uai-E5D7.

3
github.com/idsia/credici.

boxplots of the different approaches. In practice, using ACs

makes the bounding of the counterfactual queries one order

of magnitude faster. Note also that we considered PSCM

of bounded size (≤ 21 nodes) just to permit a comparison

against the BN approaches, which cannot handle bigger net-

works in reasonable time limits.

A
C

P

A
C

C

B
N

P

0

0.2

0.4

0.6

T
TBNC

Figure 4: Runtime savings w.r.t. BNC.

5 CONCLUSIONS

In this study, we have investigated the potential of know-

ledge compilation within the framework of partially identi-

fiable queries, such as counterfactuals, in structural causal

models. We have assumed that structural equations are

given together with a dataset of endogenous observations.

From these we reconstruct the uncertainty about the exo-

genous variables with sets of probabilities.

The advantages of using knowledge compilation appear

clear: the new approach leads to one order of mag-

nitude speed-up compared to pre-existing models based on

Bayesian nets.

As future work we intend to use the knowledge compilation

approach to execute the EM scheme in very large models

along two dimensions: the size of the network as well as

the cardinality of exogenous variables. The latter is in par-

ticular an important factor to represent general ‘canonical’

specifications of PSCMs. These specifications enable one

to be dispensed of the requisite to provide structural equa-

tions in input: a causal graph with endogenous data would

suffice to compute counterfactual inference.

We also intend to explore more in-depth problems with net-

work structures with large treewidth that may thus be in-

tractable by variable elimination.

4
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