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Abstract. An adaptive test is a computer-based testing technique which
adjusts the sequence of questions on the basis of the estimated ability
level of the test taker. We suggest the use of credal networks, a general-
ization of Bayesian networks based on sets of probability mass functions,
to implement adaptive tests exploiting the knowledge of the test devel-
oper instead of training on databases of answers. Compared to Bayesian
networks, these models might offer higher expressiveness and hence a
more reliable modeling of the qualitative expert knowledge. The counter-
part is a less straightforward identification of the information-theoretic
measure controlling the question-selection and the test-stopping criteria.
We elaborate on these issues and propose a sound and computationally
feasible procedure. Validation against a Bayesian-network approach on
a benchmark about German language proficiency assessments suggests
that credal networks can be reliable in assessing the student level and
effective in reducing the number of questions required to do it.

1 Introduction

The use of communication and information technologies in education is actually
growing. Both online (e.g., MOOCs) and classroom courses are urgently asking
for more flexible and sophisticated e-learning and e-testing tools [I]. Al-based
approaches such as intelligent tutoring systems, adapting the interaction with the
student on the basis of his/her knowledge and /or psychological profile, represent
an important direction to improve the quality of the (e-)learning experience [2].

Bayesian networks (BNs) [3] have been used to model the knowledge driving
such intelligent systems [4]. However, collecting large sets of reliable data in ed-
ucational domains may be difficult and time consuming (e.g., a course with few
students, or taught for the first time), and the quantification should be based
on expert knowledge only. To elicit a Bayesian network, an expert might face
questions like: “which is the probability of a student with a particular knowledge
level giving the right answer to a question?”. Giving sharp probabilities for ques-
tions of this kind can be problematic for an expert, whose knowledge is mostly
qualitative (e.g., “a right answer is very unlikely”). Fuzzy linguistic approaches
represent a viable, non-numerical, way to address these issues [5]. To stick within
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the probabilistic framework, verbal-numerical probability scales associated with
sharp values [6] or intervals [7] have been also proposed.

In this paper we show how to conjugate an interval-valued probabilistic elic-
itation of expert knowledge with the BN framework. This means to cope with a
credal network (CN) [8], a generalization of BNs based on the imprecise proba-
bility theory [7], where local parameters are defined by set-valued probabilities.
This simplifies the elicitation process and offers a more reliable handling of the
related uncertainty. Moving from BNs to CNs implies two main issues: (i) nu-
merical inferences will be interval-valued too, thus making debatable both the
decision criterion [9] an the information measures [I0] to adopt; and (ii) inference
tasks in CNs typically belongs to higher complexity classes than their Bayesian
counterparts [I1]. Both these issues are addressed by defining a computation-
ally feasible procedure based on CNs to be used for practical implementation
of intelligent systems solely specified by expert knowledge. To the best of our
knowledge this is the first attempt to perform e-testing with models of this kind.

We focus on the application of CNs to computer adaptive testing (CAT), i.e.,
an approach to e-testing that adjusts the sequence and the number of questions
to the ability level of the test taker. CATs have the potential to make the test
an individualised experience that challenges and does not discourage the test
takers, as most of the questions are near their ability levels. Building upon item
response theory [12], the common background underpinning CATs, graphical
modeling (such as BNs and CNs) offers a powerful language for describing com-
plex multivariate dependencies between skills and rich tasks. Several researchers
have exploited the potential of BNs both in adaptive and non-adaptive educa-
tional assessment [I314]. These authors focus on applications for which data
are available to learn the model parameters. We regard this point as a serious
limitation, possibly hindering CATs adoption by many teachers and instructors.

We start from a CAT procedure based on BNs that uses entropy as the
information-theoretic measure driving the question selection and the stopping
criteria (Sect. . Our goal is to improve this procedure by using CNs to better
describe the pervasive uncertainty characterizing the model. A direct extension
of the Bayesian framework to CNs would require the computation of bounds for
the conditional entropy with respect to the CN specification. This corresponds
to a non-linear non-convex optimization task. We therefore propose a number
of simplifying assumptions to overcome this problem at the price of accepting
sub-optimal question selection schemes (Sect. . The approach is tested on a
real-world benchmark about German language proficiency assessment (Sect. .
The results are promising: CAT based on CNs is effective in reducing the num-
ber of questions while maintaining a high accuracy in the evaluation and the
approximations introduced do not compromise the procedure’s effectiveness.

2 Adaptive Testing by Bayesian Networks

Skills modeling. We describe the knowledge level of a student as a collection
of categorical variables, say X := (X1,...,X,), called skills. A joint probability
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mass function (PMF) P(X) describes the uncertainty about the actual values
of the skills. A compact specification of such multivariate model can be achieved
by a BN [3]. This corresponds to: (i) a directed acyclic graph whose nodes are in
one-to-one correspondence with the variables of X; and (ii), for each X; € X,
a collection of conditional PMFs P(X;|rx,), one for each value 7w, of the joint
variable IIx, denoting the parents (i.e., the immediate predecessors) of X;. The
Markov condition for BNs assumes every variable conditionally independent of
its non-descendants non-parents given the parents. Accordingly, the joint PMF
associated with a BN is such that P(z) := [[\_, P(x;|rx,), for each &, where
the values of x; and 7y, are those consistent with .

Questions modeling. The above joint probabilistic model describes the uncer-
tainty about the skills of a student prior to his/her answers to the questions. To
evaluate the student we formulate a number of questions, described as a collec-
tion of variables Y := (Y7,...,Y,,). We assume these variables to be Boolean,
with the true value corresponding to the correct answerB We call background of
a question the set of skills “required” to answer it. This can be regarded as a
conditional independence statement: given the background skills, the answer to
the question is independent of the other skills and of the other questions. Fol-
lowing the Markov condition, this can be modeled by representing each question
as a leaf node whose parents are the background skills. Such augmented graph
requires the quantification, for each Y; € Y, of a conditional PMF P(Yj|my;) for
each value 7y, of the background skills ITy,. This procedure defines a BN over
the skills and the questions, and hence a joint PMF P(X,Y).

Non-adaptive testing. Let Y = y denote a student’s answers to the test. In
the above considered framework, the posterior knowledge about the skills is
modeled by the joint PMF P(X|y). By running standard BN updating algo-
rithms, the most probable level Z; of skill X; can be therefore evaluated as
Z; = argmax,, P(z;|y), for each X; € X. This reflects a non-adaptive, proba-
bilistic approach to student evaluation.

Adaptive testing. To add adaptiveness to the above approach, every question
should be chosen on the basis of the previous answers. As the goal is to gather
information about the student skills, we evaluate the expected information gain
(IG, i.e., the change in information entropy) associated with each possible new
question, and pick the one maximizing this measure. The entropy of a BN over
X can be computed as H(X) = Y. | H(X;|IIx,) [3], where H(X;|IIx,) :=
Eﬂ'xi H(X;|rx,)P(mx,) is the conditional entropy for X given its parents and
H(X;|rx,) is the entropy of the conditional PMF P(Xi|7rX1.)E|Let Y = y denote

! Extension to non Boolean answers is trivial as all answers Y; are manifest variables,
and, thus, Y; can be always regarded as a binary variable with the two values denoting
the observed answer y; and its negation [I5].

2 To have entropy levels between zero and one, we define the entropy of the PMF
P(X)as H(X) := -3 P(x)log, P(z), with b number of states of X.
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the answers to the questions already asked and Y’ the set from which the next
question should be picked. If the answer to every question Y’ € Y’ would be
known, and denoted by y’, the question ¥’ € Y’ to choose would be the one
leading to the largest IG. Yet, as the decision has to be made before the student’s
answer, conditional entropy should be considered instead, i.e.,

Y= H(X|y) - HX[Y' y)] . 1
arg max [H(X|y) - H(X[Y", y)] (1)

CATs should also decide when to stop asking questions. Again, entropy can be

used as a measure to decide when the current evaluation is sufficiently informa-

tive, i.e., we stop the test if the skills entropy given the answers is below some
threshold H. The overall approach is depicted in Fig.

QUESTIONS N PICK A ASK COLLECT
DATABASE QUESTION QUESTION ANSWER
C B -

ASSIGN

STOPPING
LEVELS YES RULE?

END TEST

Fig. 1. CAT procedure
3 Adaptive Testing by Credal Networks

Credal sets and credal networks. A set of PMFs over X; is called here credal
set (CS) and denoted as K(X;). We always remove the inner points (i.e., those
corresponding to convex combinations of the others) of a CS. CNs [16] are gen-
eralized BNs whose local PMFs are replaced by CSs. The BN defined in the
previous section over the skills X and the questions Y becomes a CN if we re-
place with CSs the skill-to-skill and skill-to-question conditional PMFs. A joint
CS K(X,Y) is consequently obtained as the collection of all the joint PMF's in-
duced by BNs whose parameters take their values from the corresponding CSs,
ie.,

K(X,Y) = {P(X,Y)‘ i Pl 1L, Poslm, ) } (2)

P(Xi|rx,)EK(Xi|nx,; ), P(Yj|ry; )€K (Yj|my;)

where the values of z;, mx,, y;, 7y, are those consistent with & and y.

Ezxpert knowledge modeling. For a reliable expert knowledge modeling, we use
CSs induced by probability intervals. Qualitative judgments about the probability
of a state are converted in interval constraints such as I < P(x) < w, with the
interval [l,u] capturing the expert knowledge behind the judgment in a more
reliable way than a sharp assessment. The CS consistent with these constraints
is eventually obtained by standard polyhedral algorithms. Verbal to interval-
numeric scales such as that Tab. [2| are used. For instance, if for the probability
of the true state of the Boolean variable Y the expert judgment is “very likely”,
the corresponding linear constraint is .2 < P(Y = true) < .4.
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Non-adaptive testing. Given the answers y to the questions Y, we evaluate the
student as in the previous section by updating the marginal probabilities of each
skill. With CNs, these posterior values are set-valued and their characterization
can be provided by lower and upper bounds, say P(X;|y) and P(X;|y) for each
X; € X. CN updating algorithms can eventually compute these bounds. The
task displays higher complexity than in the case of BNs (e.g., exact inference in
non-binary singly-connected CNs is NP-hard [I1]), but approximate techniques
can be considered when exact inference is unfeasible [I7].

To compare the posterior intervals and decide the actual level of the student
we might adopt the (conservative) interval dominance criterion [9], which rejects
a level if its upper probability is smaller than the lower probability of some
other level. Overlaps between intervals might therefore induce a situation of
indecision between two or more levels. This is a so-called credal classification
of the student level [I8], and it represents the fact that students answers are
somehow contradictory or not informative enough to provide a sharp decision.
Interval dominance can return unnecessarily imprecise results. Maximality is a
more refined criterion that rejects the levels which are less probable than another
level for all the elements of the CS [7]. Maximality can be reduced to multiple
updating tasks on auxiliary binary leaf nodes defined for each pair of states [17].

Adaptive testing. To achieve CAT with CNs using entropy as measure of infor-
mativeness for PMFs, as in the BN approach of Sect. [2] computation of entropies
should be extended to CSs. This topic has been the subject of much discussion
[10). A cautious approach [19] consists in taking the upper entropy H(X), i.e.,
the entropy of the most entropic PMF in the convex closure K(X) of K(X).
In our framework, we should, then, look for maximum values of conditional
entropies, such as H(X;|Y’,y) or H(X;|IIx,), as conditional entropies are re-
quired to compute both: (i) the joint (unconditional) entropy H(X) (and its
posterior values); and (ii) the conditional entropies involved in the question se-
lection in Eq. . By definition a conditional entropy is a convex combination
(whose weights are the elements of a marginal PMF) of convex functions (the
entropies). The objective function might, then, be non-convex, as the weights
are also optimization variablesﬂ

Then, to bypass this non-convex optimization task, we compute (i) by sepa-
rately considering the entropies of each skill X; € X. This is analogous to the
marginal approach commonly considered in multi-label classification to mini-
mize Hamming losses [20]. The issue (ii) is more challenging. We consider the
following upper approximation of H(X;|Y”’, y):

H(X|Y y) = max _ > HXilyv)PW'ly), )
PO RO 0P 0} e hamase)

3 E.g., if f(x) and g(x) are convex functions of z, h(z,y) := yf(z) + (1 — y)g(x) is not
convex even for 0 <y < 1.
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where the bounds of P(y’|y) are obtained by standard CN updating algorithms.
The problem thus reduces to the computation of upper entropies as

H(Xily) = sup H(Xily), (4)
P(Xi|y)eR (X.]y)

where K (X;|y) is the posterior CS after conditioning on the observed answers y.
If K(X;|y) has a finite number of non-inner points, this is a linearly-constrained
convex optimization whose solution typically corresponds to either the uniform
PMF or a non-inner point on the frontier of K(X;|y). A numerical solution can
be easily found by a simple iterative approach in the special case of CS specified
by probability intervals [I9]. We have therefore computed the posterior lower
and upper bounds of P(X;|y), and then maximized the entropy with respect to
those bounds. The procedure induces an outer approximation of K (X;|y), and

hence the upper approximation of the maximum entropy H(X|y) > H(X|y).
Finally, to generalise Eq. to CNs, we define the information gain provided
by a question Y for its background skill Xy~ as H(Xy|y) — H(Xy/|Y’,y) and
select the question Y’ leading to the maximum information gain, i.e.,

/. -5 , 77 1y
V' = ang max [H(Xy/ly) — HXy Y, y)] - (5)

For the stopping criterion, as we do not consider the joint entropy over the
skills, we separately require each H(X;|y) to be smaller than a threshold H. To
be consistent with this choice, we remove from the set of questions to be selected,
those whose background skills already satisfy this condition.

Note that the use of an outer approximation of the upper entropy affects
only the question selection process (eventually making it sub-optimal), whereas
it has no effect on the student evaluation given a set of answers.

4 Application to Language Assessment

Before the academic year begins, the students of the University of Applied Sci-
ences and Arts of Southern Switzerland (SUPSI) are asked to take an online
German language placement test with 95 questions. In years 2015 and 2016, the
answers of 451 students to all the questions have been collected. This benchmark
is used to simulate CATs based on BNs and CNs as described in Sects. Bl and Bl

Model elicitation. Four skills are assessed: Wértschatz (X1, vocabulary), Kom-
munikation (Xz, communication), Horen (X3, listening), and Lesen (X4, read-
ing). For each skill the student is assigned to a knowledge level compliant with
EU guidelinesﬁ Levels A1, A2, B1, and B2 are considered, and skills are there-
fore modeled as quaternary variables. Teachers associate each question with a
single skill, which is set as the unique background skill of the question. The

4 http://www.coe.int/t/dg4/linguistic/Source/Framework_EN.pdf.
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number of questions associated with X;/X>/X3/X, is 26/24/30/15. The cur-
rent evaluation method assigns levels by setting thresholds on the percentage ~y
of correct answers on each skill (A1 if v < 35%, A2 up to 55%, B1 up to 75%)E|

We first elicit from the teachers the structure of the BN/CN graph over
the skills. The result is a chain, which is augmented by leaf nodes modeling
the questions, each having its background skill as single parent. Overall, a tree-
shaped topology as in Fig. [2]is obtained. This makes exact inference in the BN
fast, while in the CN a variable elimination might be slow (a minute for query
in our setup). A faster approximate CN algorithm is therefore used [17].

Fig. 2. A directed graph for CAT.

Teachers report their knowledge about the unconditional states of X7 and the
conditional states of X; given X;_1, for i = 2, 3,4, as qualitative judgments (top
of Tab. . To simplify the elicitation, the probabilities P(X;|X;_1) are given the
same verbal judgment for all i = 2,3,4. A more detailed model could provide
more accurate evaluations but it would be very hard for the domain expert to
elicit it in a reliable way. Also, questions are divided by the teachers in three
groups, corresponding to different difficulty levels. Questions in the same group
are quantified in the same way, irrespective of their background skill, giving the
judgments reported in the bottom part of Tab.

X: P(X))  P(XiXia) Xii=Al X, 1 =A2 X, , =Bl X, ,=B2

Al improbable X;=Al fifty-fifty uncertain  improbable impossible
A2 uncertain  X;=A2 uncertain  fifty-fifty  uncertain  improbable
B1 wuncertain  X;=B1 improbable  uncertain  fifty-fifty  uncertain
B2 improbable X;=B2 impossible improbable uncertain  fifty-fifty

P(Y=T|X) X=Al X=A2 X=Bl X=B2

Easy uncertain  fifty-fifty  expected probable
Medium improbable uncertain fifty-fifty expected
Difficult impossible improbable uncertain fifty-fifty

Table 1. Expert judgements.

5 These data as well as the software used for the simulations are freely available at
http://ipg.idsia.ch/software.php?id=138|
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For the CN, those judgements are translated in interval constraints for the
corresponding events on the basis of the verbal-numerical scale in Tab. 2] Dif-
ferent probability intervals are considered for skills and questions as they refer
to events of different type. For instance, when the expert considers “impossible”
for an A1 level student to know the answer to a difficult question, the student is
assigned a probability between .175 and .2 of answering correctly, as the ques-
tions offer only four choices plus the option of giving no answer. Notice that, by
doing so, we are not anymore assuming that all questions in the same difficulty
group share exactly the same conditional PMF's (as done by the BN model), as
PMFs of different questions can vary independently in the given intervals. This
seems a more sensible assumption than that of the precise model. For the BN,
the PMFs corresponding to the centers of mass of the CSs defining the CN are
used. Numerical inferences in the BN are consequently included in the intervals
computed with the CN.

Judgement impossible improbable uncertain fifty-fifty expected probable

Skills 1-10% 10-20%  20-40% 30-50% - -
Questions 17.5-20% 22.5-25% 30-35% 60-65% 75-80% 95-97.5%

Table 2. A verbal-numerical scale for probability-intervals elicitation.

Ezperimental results. BN and CN methods in their non-adaptive (NA) and adap-
tive (AD) versions are considered. Accuracy, i.e., the proportion of students to
whom the test assigns the same level of the current evaluation method, describes
BN performances. This measure cannot be used for the set-valued outputs of CN
methods. In this case the ugs measure can provide a comparison with the ac-
curacy [18]. If £ is the set of levels assigned by the CN on a skill and L its
cardinality, a discounted accuracy gives 1/L if £ includes the true level and zero
otherwise. The ugs is a concave reinforcement of this score based on risk-adverse
arguments. Its underlying assumption is that acknowledging the indecision be-
tween more levels has larger utility than randomly choosing one of them (e.g., the
teacher could set up further assessments in the undecided cases). Tab. [3| shows
the NA comparison. In Fig. [3| (left), the BN-NA accuracy is separately evalu-
ated on the determinate (light bars) and indeterminate (dark bars) instances,
i.e. those for which, respectively, a single level or multiple levels are returned
by the CN model. On average, CN-NA returns single levels in 37.25% of the
cases and, if this is not the case, an average of 2.36 levels (3.22 with interval
dominance) are returned.

In the AD case we also track the average number of asked questions. Results
are in Fig. [3[ (right). CN-AD (circles) is tested for different thresholds over the
entropy (labels of the markers) against a version of BN-AD based on the joint en-
tropy (triangles). Similar values are obtained by coping with marginal entropies.
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Algorithm Average X, X5 X3 X4

BN-NA (acc)  63.09% 67.56%  60.85%  75.84%  48.10%
CN-NA (ues) 65.37% 67.71%  66.67%  70.33%  56.76%

Table 3. Non-adaptive tests results.

We also allow the BN-AD method to return multiple levels by maximizing the
expected ugs utility over any possible set of levels. This variant is called BN-AD’
and the corresponding ugs measure is reported (squares).

D D determinate

I B indeterminate

.75

.50
.25
0
X1 Xo X3 X4

Skills Number of questions

acc

Fig. 3. Non-adaptive (left) and adaptive (right) tests performance.

As a comment, CNs seem to identify hard-to-evaluate students as those for
which multiple levels are provided. In fact, the agreement between the BN and
the traditional tests is larger when the CN test is determinate. As a consequence,
the CN ug; measure is, on average, larger than the BN accuracy. A limitation of
the CN test is the large fraction of indeterminate evaluations. One can interpret
this result as a lack of robustness of the BN model, as even small variations
in the model specifications can result in different decisions. Results also show
that, both BN-AD and CN-AD approaches reduce the number of questions asked
without significantly affecting the accuracy. BN-AD performances are improved
by the “credal” variant BN-AD’. The results becomes very similar to those of
the CN-AD. Yet, the latter method appears to be a more principled and suitable
approach for a direct modeling of qualitative expert knowledge.

5 Conclusions and Outlooks

A procedure for adaptive testing built solely on expert knowledge has been
proposed based on credal networks. The procedure has been validated on a
real dataset about a German language test. Results are promising, as the credal
approach simplifies the model elicitation, recognizes when a sharp decision about
the student level should not be made (that is, when the traditional and precise
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Bayesian evaluations disagree) and achieves an accuracy comparable to that of
an indecisive Bayesian approach maximizing the expected ug; measure. However,
the fraction of instances where CNs issue multiple levels remains rather large,
therefore further research is needed to make CN-based CAT's a viable solution
for adaptive testing solely based on expert knowledge.
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