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Abstract. This paper presents a prototype semantic data framework for integrating 
heterogeneous data inputs for data-driven demand forecasting. This framework will be a core 
feature of a data exchange platform to improve the access and exchange of data between 
stakeholders involved in the operation and planning of energy systems. Surveys revealed that 
these stakeholders require reliable data on expected energy production and consumption for 
strategic and real-time decision-making. A core feature of the framework is the application of 
semantic technologies for comprehending spatial and temporal data requirements of energy 
demand forecasting. This paper demonstrates an approach to meeting these semantic 
requirements through established data standards and models. The conceptual design process 
followed the following stages: surveying stakeholders, researching digital technologies' 
capability, and systematically evaluating the available data. In this paper, we present a prototype 
based on simulated data. Inputs and results from the simulation model, extracted from open 
datasets, were structured and stored in a knowledge graph comprised of virtual entities of 
buildings and geospatial regions. Multiple virtual entities can be linked to a single real-world 
entity to provide a flexible and adaptable approach to data-driven demand forecasting.  
 

1. Introduction 
In Switzerland, the federal council implemented a strategy for a "Digital Switzerland", urging 
stakeholders from different sectors to implement digital transformation projects [1]. The strategy 
promotes the application of digital technologies as an opportunity to make the energy industry smarter, 
flexible and more efficient. The strategy outlines the need for digital tools to link sectors such as mobility 
and construction to achieve an efficient energy network supplied by sustainable and renewable 
resources. Digitalization activities are creating a rapid increase in the volume of available data. 
Opendata.swiss1 is an initiative and website operated by the Federal Statistical Office where data from 
different government sectors is published openly and can be used without restriction. The Clean Energy 
Transition is the shift from fossil fuels to renewable sources. The Swiss Energy Strategy 2050 aims to 
achieve net zero greenhouse gas emissions by 2050 [2]. Digitalization is viewed as an enabler of 
achieving climate and environmental targets. A study into approaches for data exchange in the energy 
sector commissioned by the Swiss Federal Office of Energy provides recommendations for the industry 
[3]. The report details the highly decentralized nature of data exchange across the numerous stakeholders 
of the electrical and gas grids. Digital technologies are expected to help grid operators handle the 
growing complexity and requirements; however, there is a need to improve access and use of data 
significantly. The report investigates options and critical features to include in a data hub to facilitate 
                                                      
1 https://opendata.swiss/en/ [Accessed: 01/05/2023] 

https://opendata.swiss/en/
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data exchange in the energy sector. The envisioned data hub will enable: the exchange of metering data, 
representation of flexibility, external access, implementation of change processes, and end-user offer 
management. The report also recommends the standardization of data and the use of application 
interfaces (APIs) to access the data. The report acknowledges that much of the data on the electricity 
grid operation is standardized according to the Standardised Data Exchange recommendation (SDAT) 
for the Swiss electricity market approved in 2022.  

2. Scope of contribution 
This work describes a prototype implementation of a semantic framework that will be integrated into a 
data-exchange platform to support data-driven energy demand forecasting. The formulation of use cases 
involved interviewing the various stakeholders of the proposed platform. This paper provides 
background on concepts critical to the design of the data exchange platform before detailing a prototype 
framework to handle the semantic requirements of the data.  

3. Background 

3.1 Data availability and management 
Opendata.swiss publishes each dataset with its metadata, including language, spatial & temporal 
coverage, usage information, and restrictions. The platform, however, allows a vast range of datasets to 
be published, meaning that they are often heterogeneous in structure, attributes, and formats. For this 
reason, additional transformation and mapping are required to make the data suitable for applications 
and link datasets. The datasets published on opendata.swiss are diverse and updated periodically. The 
structure and contents of published datasets may change between updates, leading to interoperability 
problems for applications reliant on data. Real-time integration of data from sensors and meters is 
becoming increasingly important. The rapidly growing and evolving Internet of Things (IoT) sectors 
enable the interconnection of physical devices, such as sensors and systems, to the Internet, enabling 
them to collect, exchange and analyze data, opening new capabilities for applications spanning 
numerous domains [4]. These developments are also relevant for the energy sector in Switzerland, where 
there is a legally binding target of replacing 80% of conventional meters with smart ones by 2027 [5]. 
This will provide a source of real-time data for the planning and operation of energy systems. IoT 
devices such as smart meters can support the implementation of smart grids across all stages of the 
energy supply chain, from generation to consumption [6]. Despite the growing abundance of data, 
semantic interoperability between applications such as building energy control, grid operation, and 
energy system modeling is fundamental to digitalizing the energy infrastructure [7].  

3.2 Energy demand forecasting  
Utilities and urban planners use demand forecasting for short-term and long-term decision-making in 
the energy sector. These decisions include: 
 

• Optimal resource allocation and investment planning: The energy industry's decision-making 
process relies on forecasts from a range of time horizons spanning: seconds to hours for demand 
response, days to months for energy trading, and years or decades for system planning and 
strategic policy-making [8]. The use of demand forecasting can also be used as inputs to energy 
system optimization models to support decision-makers [9]. IoT devices provide a data source 
for demand forecasting [10].   

• Integration of renewable energy resources: Integrating distributed energy resources can lead 
to a more holistic modeling of smart grids by understanding how the predicted loads can be met 
with intermittent generation from renewables [11]. 
 

Data-driven methodologies for load forecasting can be classified as simulation- or machine learning-
based. Both approaches rely on input data, and the data quality can significantly impact the reliability 
of the result.  
 



CISBAT 2023
Journal of Physics: Conference Series 2600 (2023) 022001

IOP Publishing
doi:10.1088/1742-6596/2600/2/022001

3

 
 
 
 
 
 

   
 

3.2.1 Building energy demand forecasting with physics-based simulation. Accurate building energy 
simulation is required in the design phase, where there is a need for models that achieve an accurate 
representation of real-world building operations [12]. Physical models of buildings simulate the energy 
flows between building components in response to variables such as occupancy and weather. Urban 
Building Energy Modelling (UBEM) uses less detailed physical models to capture the dynamic and 
complex interconnections and interdependencies between buildings and their urban environment, e.g. 
cities and districts [13]. UBEM has fewer data requirements than design stage simulations, and the 
parameters are often assigned using archetypal approaches [14].  

3.2.2 Demand forecasting with machine learning. There is a large number of different objectives and 
machine learning techniques used for energy planning. These tools are used to directly predict energy 
demand, production, or the factors that influence it e.g. weather [15]. Load profiles have been used to 
disaggregate PV production, contributing to a power profile comprising a mix of controllable and 
uncontrollable loads [16]. A large number of features have been used to train machine learning 
algorithms to predict the energy demand consumption of buildings (Cooling, heating, and lighting) [17] 

3.3 Stakeholder surveys  
The platform is designed to improve the access and exchange of data for data providers, need-owners, 
and digital services. The findings of our surveys revealed that utilities and municipalities rely on data to 
predict a district's energy consumption and production; digital services, on the other hand, require high-
quality data as inputs to their services e.g. system design and optimization [18].  

3.4 Review of data architectures and available data 
In this paper, data architecture is the collective term given to the processing and structuring of data. This 
includes using schemas and models to describe the shape and relationships in the data and data formats 
that specify how the data is encoded. Data architectures were reviewed for specific domains relevant to 
energy demand forecasting. A summary of data architectures to represent each domain is provided 
below: 
 

• Building data. Information about the construction, materials, geometry, building use, energy 
supply systems, and fuel type. Building Information Modelling (BIM) for design stage 
simulation can provide detailed information on buildings. In Switzerland, open datasets such as 
Swiss Buildings 3D and the Federal Register of Buildings and Dwellings (GWR) provide 
general information for Urban Building Energy Modelling (UBEM). 

• Spatial boundaries. Contains georeferenced boundaries for aggregating energy results and 
linking them to a specific location. The Federal Office of Topology in Switzerland (SwissTopo) 
publishes the boundaries of administrative regions. H3 is a hierarchical geospatial indexing 
system for geographic data. Geospatial indexes are not specific to a region and can also be used 
to aggregate data. Indexed data can be joined across different datasets and aggregated at varying 
levels of precision. The generic representation of geospatial classes, such as polygons and 
points, can be achieved using the GeoSPARQL web ontology language.  

• Energy data. Contains information on energy systems. Data standards such as the Common 
Information Model (CIM) and FIWARE are designed for the interoperability of smart grids and 
contain network scale energy concepts. The Brick ontology is a web ontology language used to 
describe building energy systems.  

3.5 Semantic web technologies for energy demand forecasting 
Energy demands are the result of a complex combination of societal, economic, technological, and 
environmental factors. Modellers and engineers have the challenge of incorporating knowledge derived 
from these domains to improve the accuracy of energy demand forecasts. Semantic web technologies 
are standards focused on data interoperability, contextual understanding and exchange between 
knowledge domains. Semantic web technologies have been used to create a common context from large 
heterogeneous datasets for a building energy stock model [19]. Semantic web technologies have also 
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been applied to enrich and reconcile energy performance data [20].   The combination of these features 
shows that semantic web technologies can improve the accessibility and quality of data for energy 
demand forecasting.  

4. Methodology  

4.1 Data preparation and simulation 
Energy demands for buildings in the City of Lugano were simulated using the open-source CESAR-P 
UBEM simulation tool [21]. The inputs for each building were obtained from the Federal Register of 
Buildings and Dwellings dataset (GWR). The building data was linked to OSM footprint polygons and 
H3 geospatial cells using "nearest" and "intersection" geospatial joins in QGIS, respectively.  

4.2 Semantic mapping 
Instance data, including buildings, simulation models, and geospatial cells, were serialized to Turtle 
format using the RDFLib Python Library and uploaded to a knowledge graph2. Instance data was linked 
to concepts in the Urban Energy Simulation3 and Digicities4 ontologies. Both ontologies have been 
extended for this prototype. The knowledge graph's input and serialized data are published on Zenodo5. 
The ontologies and the relationship between the Virtual Entity and its data sources are shown in Figure 1.  

4.3 Machine learning 
The knowledge graph was queried to generate structured data (CSV). This data was used as inputs to 
machine learning models created in CatBoost, LightGBM, and Scikit Learn Python packages to predict 
aggregated demands using data features attributed to the geospatial indexes.  

5. Results & Discussion 
This prototype demonstrates how the developed ontologies can organize data for data-driven energy 
demand forecasting. The aim was to provide a structured and flexible approach to meet data needs and 
overcome the barriers to data exchange in the energy sector outlined in [3]. The volume of available 
data for modeling is increasing due to digitalization strategies. This includes real-time and metered data 
to validate and retrain models to improve forecasting accuracy; however, not all data is open, and 
mechanisms to establish data agreements, ensure privacy and reduce bureaucratic barriers are still 
required [22]. Nevertheless, a data framework that evolves and adapts to meet the specific needs of 
demand forecasting is required. We introduce the Virtual Entity as a class of the Digicities ontology that 
can be linked to a Physical Record of a real-world entity using the PROV-O ontology. The Virtual Entity 
can be any real-world entity, such as a building or a geospatial region. This representation allows 
multiple Virtual Entities to be linked to a single Physical Record. Linking demands to a Virtual Entity 
enables approaches to be compared and improved as data becomes available. In the preliminary study, 
machine learning models were trained on data instances to predict the simulated demands for individual 
buildings and geospatial cell aggregations. At the aggregated level, additional features were engineered, 
including total surface area, building count, and the minimum, maximum, and average number of floors. 
The machine learning model achieved similar coefficients of determination (R2) between 0.86 and 0.94 
for single buildings and 0.87 and 0.97 for data geospatial aggregations based on the H3 indexing. The 
similarity in these results is due to the models being trained on features directly linked to the simulation 
inputs. Therefore, these results are demonstrative and future work will involve integrating data from 
various sources. This framework will be expanded as part of a data exchange platform to integrate actual 
data, simulated data, and machine learning models to provide insights for decision-makers. Future 
machine learning models will predict the performance of metered data using data features linked to the 
description of virtual entities stored on the platform. In addition to engineering new features from the 
                                                      
2 https://graphdb.nestcloud.ch/ [Accessed: 01/05/2023] 
3 https://ja98.github.io/ues [Accessed: 01/05/2023] 
4 https://ja98.github.io/digicities_ontology/ [Accessed: 01/05/2023] 
5 https://doi.org/10.5281/zenodo.7875922 [Published: 12/05/2023] 

https://graphdb.nestcloud.ch/
https://ja98.github.io/ues
https://ja98.github.io/digicities_ontology/
https://doi.org/10.5281/zenodo.7875922
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data, machine learning models will improve data quality for entities using classification. Integrating 
these features aims to reduce the time to identify and process data for machine learning models. In 
addition, semantic web technologies will increase the quantity and quality of data used for machine 
learning and simulation. This will enable the models to consider additional training features and improve 
the accuracy of the forecasts. These metrics will be evaluated across the pilot regions of this study. The 
underlying semantic framework will also be extended to facilitate the data exchange process by 
connecting to specific clauses of data usage agreements. This includes specific restrictions on data 
linking and reporting outputs to protect privacy.  
 

What

When
Where

Source

UES

Quality

H3
GeoSPARQL

DCAT 
PROV-O

Digicities O
ntology

 
 
Figure 1. Left – The semantic requirements and the data architectures used fulfil them. Right – An overview of the semantic 
data structures that trace assumptions to the original data sources. The blue nodes show entities introduced in this work. The 
prefixes indicate the use of ontology namespaces.   

6. Conclusion 
This paper presents a semantic framework to support data-driven energy demand forecasting. We have 
outlined how semantic requirements can be achieved using a combination of established ontologies. We 
have shown how the semantic framework can support simulation and machine-learning approaches to 
demand forecasting. In the next phase, the framework will be integrated and expanded as part of a data 
exchange platform, where the objective is to improve interoperability, data discovery, and data quality. 
We will work closely with stakeholders, including data providers, need-owners, and digital services, to 
integrate additional data types and validate across use cases.  
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