
7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

A Fully Polynomial Time Approximation Scheme for Updating Credal
Networks of Bounded Treewidth and Number of Variable States

Denis D. Mauá
IDSIA, Switzerland

denis@idsia.ch

Cassio P. de Campos
IDSIA, Switzerland

cassio@idsia.ch

Marco Zaffalon
IDSIA, Switzerland
zaffalon@idsia.ch

Abstract
Credal networks lift the precise probability assumption of
Bayesian networks, enabling a richer representation of un-
certainty in the form of closed convex sets of probabil-
ity measures. The increase in expressiveness comes at the
expense of higher computational costs. In this paper we
present a new algorithm which is an extension of the well-
known variable elimination algorithm for computing pos-
terior inferences in extensively specified credal networks.
The algorithm efficiency is empirically shown to outper-
form a state-of-the-art algorithm. We then provide the first
fully polynomial time approximation scheme for inference
in credal networks with bounded treewidth and number of
states per variable.

Keywords. Probabilistic graphical models, credal net-
works, approximation scheme, valuation algebra.

1 Introduction

Credal networks [11] are generalizations of Bayesian net-
works that allow for a richer representation of uncer-
tainty in the form of set-valued probabilities—in contrast
to the sharp numeric values required by their Bayesian
counterpart. They are models of imprecise probability
as advocated by Walley [18]. In a nutshell, credal net-
works rely on a directed acyclic graph (DAG) to encode a
compact and computationally efficient representation of a
closed convex set of joint probability mass functions over
a set of variables, much in the same way that Bayesian
networks do for single joint probability mass functions.
Namely, credal networks respect the local Markov condi-
tion that each variable (uniquely represented by a node in
the DAG) is (strongly) independent of its non-descendant
non-parents conditional on its parents. Strong indepen-
dence is justified by a sensitivity analysis interpretation,
where we assume that there exists a single probability
mass function representing our knowledge which we can-
not know precisely for lack of resources; epistemic irrele-
vance, on the other hand, is arguably more consistent with
a behavioral interpretation of inherent imprecision [18]. In

the following, we assume credal networks to operate under
strong independence.

In order to enable efficient computation, additional con-
straints need to be imposed to the set-valued specifications
of the local probabilities. The two most common choices
are extensively specified sets, in which local models are
given as sets of probability potentials, and separately spec-
ified sets, in which local models are specified as collec-
tions containing one set of probability mass functions for
each configuration of the parents. Separately specified net-
works can be mapped to extensively specified and vice-
versa [2].

There is also another subtlety when computing with such
local models, which concerns the way they are represented
in a computer. The sets of local (conditional) probabil-
ity mass functions can be encoded either as sets of points
(e.g., the sets of vertices of a convex polytope), or as sets
of (linear) inequalities. Although these two encodings can
represent any finitely-generated closed convex set, mov-
ing from an inequality-based encoding to a vertex-based
encoding can dramatically increase the length of the rep-
resentation of the local models. For example, a simple
8-dimensional polytope specified by 729 inequalities has
between 5 thousand and 12 billion vertices [4].

Inference with credal networks has been theoretically and
empirically shown to be a difficult problem. For example,
computing exact marginals in credal networks is known
to be NP-hard even for polytree-shaped networks, a par-
ticular case that can be computed in polynomial time in
Bayesian networks [7]. Despite the hardness of the prob-
lem, several algorithms are known to perform reasonably
well under certain conditions. Most notably, the 2U al-
gorithm [12], which computes exact posterior bounds in
polytree-shaped credal networks with binary variables,
continues to be the only known polynomial time algo-
rithm available, and its generalizations to arbitrary net-
works (e.g., the GL2U [3]), which perform approximate
inference, are among the fastest algorithms. A notable ex-
ample, against which we compare our results in this pa-
per, is the algorithm of de Campos and Cozman [8], which



algorithm complexity topology inference representation

2U [12] polynomial polytree exact inequality
GL2U [3] polynomial all approximate vertex
A/R+ [16] exponential polytree approximate inequality

IP [8] exponential all exact/approx. inequality
ML [6] exponential all exact/approx. inequality
HC [9] exponential all exact/approx. vertex

Table 1: Comparison of some existing algorithms for inference in credal networks.

finds exact posterior bounds in general networks by con-
verting the problem into a mixed integer program, which
can be solved exactly for small networks, or relaxed to
provide approximate results in large networks. Other ap-
proaches mix branch-and-bound methods for exact infer-
ence and local searches for approximate results [6, 9, 16].
Table 1 contrasts some of the available algorithms. To
date, no algorithm is known to provide approximations
within given bounds in polynomial time. Recently, de
Cooman et al. [10] developed a polynomial time algorithm
for tree-shaped credal networks, but it operates under epis-
temic irrelevance.

In this paper, we present a new algorithm for computing
exact posterior bounds in extensively specified credal net-
works encoded by vertices, as well as a fully polynomial
time approximation scheme (FPTAS) for networks with
bounded treewidth and number of states per variable. We
begin by stating the basic elements of our formalism (Sec-
tion 2), followed by a formal definition of inference in ex-
tensively specified credal networks (Section 3). Then we
present a modified variable elimination algorithm for ex-
act inference, which has worst-case complexity exponen-
tial in both the treewidth of the graph and the size of local
sets (Section 4). We address this issue by devising an FP-
TAS (Section 5). Experiments showing the performance
of the algorithms are presented and discussed in Section 6.
Finally, Section 7 contains our concluding thoughts.

Due to the limited space, we only present proofs for the
most important results.

2 An Algebra of Ordered Potentials

In this section, we introduce the main ingredients of the
message passing algorithms that we present later as well
as the basic results needed to guarantee the correctness and
efficiency of computations.

From an algebraic viewpoint, the primitive entities of
our formalism are the so-called labeled valuations (φ, x),
which encode information about a (local) domain through
a valuation φ and a set of variables x. Here we adopt
the equivalent notation φx to denote the pair (φ, x). More
concretely, valuations can take as straightforward forms as

bounded real-valued functions (Section 2.2), or represent
more complicated objects such as sets of pairs of probabil-
ity potentials (Section 2.3).

The set of all variables we consider relevant to a problem,
denoted by U , is the largest set of variables that can be con-
sidered for a (labeled) valuation in our setting, which we
assume to be bounded. We write variables with capital let-
ters (e.g., X1, . . . , Xn ∈ U) and sets of variables in lower
case (e.g., x = {X1, . . . , Xn}). Any variable X is as-
sumed to be associated with a finite set of values ΩX called
its frame. The elements of ΩX are called states. If x is a
set of variables, the domain Ωx is given by the Cartesian
product of the frames of variables in x, Ωx ,×X∈x ΩX .
Any element of Ωx is called a configuration. If x is a con-
figuration in Ωx, the notation x↓y denotes the projection
of x onto y ⊆ x, with x↓∅ , λ, where λ denotes the null
element that does not appear in any frame.

The set of all valuations (φ, x) over a subset x ⊆ U is
denoted by Φx. The set of all valuations is denoted by
Φ ,

⋃
x⊆U Φx. The algebra comes with two basic op-

erations of combination and marginalization. Intuitively,
combination represents aggregation of two pieces of in-
formation. If φx and φy are two arbitrary valuations, then
φx×φy is a valuation φx∪y with domain Ωx∪y . Marginal-
ization, on the other hand, acts by coarsening informa-
tion. If φx is a valuation then the marginal φ↓yx is a val-
uation with domain Ωy . Sometimes, it is convenient to
define the elimination operation, which is in a one-to-one
correspondence to marginalization. Formally, if φx is a
valuation then φ−yx , φ

↓x\y
x is the result of the elimi-

nation of variables in y. When clear from the context,
we write Y to denote a singleton y = {Y }, for exam-
ple φ−Yx = φ

↓x\{Y }
x . A system (Φ,U ,×, ↓) closed under

combination and marginalization is said to be a valuation
algebra if it satisfies the following three axioms [15, 17].

(A1) Combination is commutative and associative.

(A2) For y ⊆ x ⊆ z,
(
φ↓xz
)↓y

= φ↓yz .

(A3) If x ⊆ z ⊆ x ∪ y then (φx × φy)
↓z

= φx × φ↓z∩yy .

The purpose of a valuation algebra is the computation of
marginals of the form (×i φui)

↓y , where the joint valu-



ation ×i φui is computationally too expensive to be ob-
tained explicitly. The complexity of the operations of com-
bination and marginalization is given by the size of the
valuations involved, which is in general a function of the
cardinality of the domain. Hence, as a rule-of-thumb, the
larger the domain of a valuation the more expensive are the
operations involving it. The axioms of valuation algebras
provide the necessary framework for breaking down the
computation of costly marginals into a sequence of com-
putations of marginals over smaller domains. The pseudo-
code in Algorithm 1 exhibits the variable elimination pro-
cedure (also known as fusion algorithm), which more effi-
ciently computes marginals of factorized valuations.

Algorithm 1: Variable Elimination
input : A finite set of valuations Ψ, a set of target

variables y ⊂ U ,
⋃
φu∈Ψ u, and an ordering

o = (X1, . . . , Xn) of the variables in U \ y
output: The marginal (×φ∈Ψ φ)↓y

for i← 1 to n do
Set Bi ← {φu ∈ Ψ : Xi ∈ u} ;
Compute Ψi , (×φ∈Bi φ)−Xi ;
Set Ψ← (Ψ \ Bi) ∪ {Ψi};

end
return Γ ,×φ∈Ψ φ;

Instead of computing a valuation ×φ∈Ψ φ over a large
domain ΩU and then marginalizing to y, the algorithm
computes marginals (×φ∈Bi φ)−Xi over possibly much
smaller domains. The overall complexity of the algorithm
is given by the size of the largest valuation Ψi generated
at the loop step. If such a size is bounded then (A1)–(A3)
are sufficient to show that the algorithm efficiently outputs
the desired marginal [15].

Some optimization tasks like the credal network infer-
ences we aim at here admit a partial ordering over the
valuations. Let ≤ denote a partial order over Φ (i.e., a
reflexive, antisymmetric and transitive relation). An or-
dered valuation algebra [13] is a system (Φ,U ,×, ↓,≤),
where (Φ,U ,×, ↓) is a valuation algebra and ≤ is mono-
tonic with respect to × and ↓:

(A4) If φx ≤ ψx and φy ≤ ψy then (φy × φx) ≤ (ψy ×
ψx) and φ↓yx ≤ ψ↓yx .

Given a finite set of ordered valuations Ψ ⊆ Φ, we say
that φ ∈ Ψ is maximal if for all ψ ∈ Ψ such that φ ≤ ψ
it holds that ψ ≤ φ. The operation max(Ψ) returns the set
of maximal valuations of a set Ψ. Given any relation R on
Ψ, a subset Ψ′ ⊆ Ψ is called an R-covering of Ψ if for
every φ ∈ Ψ there is ψ ∈ Ψ′ such that φRψ. For example,
the set max(Ψ) is a ≤-covering for Ψ.

2.1 Set-Valuations

The algorithms we develop use the more complex entities
of sets of valuations, called set-valuations. Theses entities
can nevertheless be casted in the algebra of valuations, and
manipulated by the variable elimination algorithm to pro-
duce sets of marginal valuations.

Let 2Φx denote the power set of Φx, that is, the set of all
subsets of it. Thus, 2Φ denotes the set of all subsets of
valuations in Φ. If Ψx ∈ 2Φx and Ψy ∈ 2Φy , we define
their set-combination⊗ as the set-valuation resulting from
element-wise combination of their elements, Ψx ⊗ Ψy ,
{φx × φy : φx ∈ Ψx, φy ∈ Φy}. Likewise, we define the
set-marginalization operation ⇓ on 2Φ as the element-wise
marginalization of the valuations in a set, Ψ⇓yx , {φ↓yx :
φx ∈ Ψx}.
Proposition 1. The system (2Φ,U ,⊗,⇓) of set-valuations
with set-combination and set-marginalization is a valua-
tion algebra.

The exact variable elimination algorithm we develop in
Section 4 obtains its (relative) efficiency by propagating
only maximal valuations. Let max(2Φ) , {max(Ψ) :
Ψ ∈ 2Φ} denote the set of all sets of maximal valua-
tions in 2Φ. We define the max-combination ⊕ and max-
marginalization � as Ψx ⊕ Ψy , max(Ψx ⊗ Ψy) and
Ψ�y
x , max(Φ⇓yx ).

Proposition 2. The system (max(2Φ),U ,⊕,�) of max-
imal set valuations with max-combination and max-
marginalization is also a valuation algebra.

If (Φ1,U ,×1, ↓1) and (Φ2,U ,×2, ↓2) are two valuation
algebras, we say that a mapping h : Φ1 → Φ2 is a
homomorphism if for any φx, φy ∈ Φ1 we have that
h(φx)×2 h(φy) = h(φx×1 φy) and h(φx)↓2y = h(φ↓1yx ).
Thus, if we are interested in computing h(φ↓1y1 ) for some
valuation φ1 ∈ Φ1 that we know that factorizes as φ1 =
ψ1 ×1 · · · ×1 ψm, we can equivalently obtain (h(ψ1) ×2

· · · ×2 h(ψm))↓2y , which might be computationally more
convenient. The following result relates the algebras of
set-valuations and maximal set-valuations.

Proposition 3. max is a homomorphism from
(2Φ,U ,⊗,⇓) to (max(2Φ),U ,⊕,�).

Since the set of maximal elements of a set is in the worst
case as large as the set itself, but often much smaller, the
homomorphism max allows us to conveniently obtain a
set of maximal marginals max([

⊗
i Ψxi ]

⇓y) by computing
the equivalent [

⊕
i max(Ψxi)]

�y . Recall that⊗ is defined
as element-wise combination of valuations in the carte-
sian product, and assume that the set-valuations Ψxi can
not be factorized as combinations of other set-valuations.
Hence, the set

⊗
i Ψxi is exponentially large in the size

of each Ψxi and often intractable. On the other hand,
the combination of maximal set-valuations

⊕
i max(Ψxi)

can mitigate the exponential explosion if the number of



maximal points is kept bounded after each pairwise com-
bination. For instance, if each of the local maximal sets
max(Ψxi) is half as large as its original set Ψxi , then com-
puting max([

⊗
i max(Ψxi)]

⇓y) involves O(2n) less com-
putations than max([

⊗
i Ψxi ]

⇓y). The speed up strongly
depends on the number of non-maximal elements that are
discarded after each max-combination.

In the rest of this section we introduce the concrete valua-
tion algebras our framework relies on.

2.2 Probability Potentials

Probability potentials are perhaps the most common exam-
ple of valuation algebras. They generalize (conditional)
probability mass functions. If x ⊆ U is a nonempty set
of variables, we define a potential px as a mapping from
Ωx to the set of nonnegative reals. A potential p∅ over the
empty set is defined as a nonnegative real number. The size
of a potential px is the cardinality of its domain. The fol-
lowing operations are defined over potentials. Combina-
tion of potentials is done by element-wise multiplication:
for z ∈ Ωx∪y ,

(px × py)(z) , px(z↓x)py(z↓y) . (1)

Marginalization is defined as the sum of compatible ele-
ments. For y ∈ Ωy ,

p↓yx (y) ,
∑

x∈Ωx:x↓y=y

px(x) . (2)

Note that if y = ∅, the marginal p↓yx is a (nonnegative real)
number.

Partial ordering is given by weak Pareto dominance. Given
two potentials px and qx over Ωx, we define px ≥ qx if
px(x) ≥ qx(x) for all x ∈ Ωx. Note that if px and qx
have equal sum (i.e.,

∑
x∈Ωx

px(x) =
∑

x∈Ωx
qx(x)) then

px 6≥ qx and qx 6≥ px (unless px = qx). This is the
case, for example, of potentials representing (conditional)
probability mass functions. Therefore, the identity Px =
max(Px) holds for any set Px of (conditional) probability
mass functions. Let P denote the set of all probability
potentials.

Proposition 4. The system (P,U ,×, ↓,≤) is an ordered
valuation algebra.

Given a real number α > 1, we define an equivalence
relation≡α over potentials such that any two potentials px
and qx are α-equivalent (i.e., px ≡α qx) if for all x ∈ Ωx
either px(x) = qx(x) = 0 or px(x) and qx(x) are both
positive and blogα px(x)c = blogα qx(x)c.

2.3 Pairs of Potentials

The algorithms we develop in Sections 4 and 5 rely on a
more abstract structure over pairs of potentials. Let φx =

(p`x, p
r
x) denote a pair of probability potentials over x. The

potentials p`x and prx are referred to as the left and right po-
tentials of φx, respectively. For any two pairs of potentials
φx and ψx, we define φx = (p`x, p

r
x) ≥ (q`x, q

r
x) = ψx if

p`x ≤ q`x and prx ≥ qrx. The partial order defined in this way
reflects the nature of computations with credal networks.
We seek for a solution that partly dominates (according
to right potentials) all other potentials and partly is dom-
inated by them (according to left potentials). It is in part
this dichotomy in the objective that makes posterior infer-
ences in credal networks much harder than their Bayesian
counterpart.

If φx = (p`x, p
r
x) and φy = (p`y, p

r
y) are two pairs of po-

tentials, we define their combination as the pair of left
and right combinations of potentials, that is, φx × φy ,
(p`x × p`y, p

r
x × pry). Similarly, the marginalization of

a pair φx = (p`x, p
r
x) is performed on both potentials,

φ↓yx , ((p`x)↓y, (prx)↓y). Let Φ be the set of all pairs of
potentials.

Proposition 5. The system (Φ,U ,×, ↓,≤) is an ordered
valuation algebra.

Let 2Φ and max(2Φ) denote, respectively, the set of all sets
of pairs of potentials and the set of all sets of maximal pairs
of potentials. It follows from Propositions 1 and 2 that the
systems (2Φ,U ,⊗,⇓) and (max(2Φ),U ,⊕,�) are valua-
tion algebras. Moreover, max is a homomorphism from
2Φ to max(2Φ). Thus, given a collection of finite sets of
pairs Ψx1 , . . . ,Ψxn , we can obtain the set max(Ψy) ,
max((

⊗
Ψxi)

⇓y) of maximal marginal valuations poten-
tially more efficiently by performing computations in the
algebra of sets of maximal pairs, that is, by computing
max((

⊕
i max(Ψxi))

�y). Bentley et al. [5] showed that
sets with n uniformly distributed pairs of potentials over
a domain Ωy have, on average, O((log n)2|Ωy|−1) maxi-
mal elements. Unfortunately, the uniformity assumption
does not hold in the computations we perform, and we ex-
pect the average number of maximal elements to be higher
than this. To our knowledge, it remains to be obtained any
bounds or expectations on the size of maximal sets ob-
tained from propagated valuations such as those generated
by variable elimination. Note that, as with sets of probabil-
ity potentials, if Ψ contains only valuations whose left or
right potentials specify a probability mass function, then
Ψ = max(Ψ).

We can have an upper bound on the cardinality of sets
by relaxing the partial order to allow approximate Pareto
dominance. Given a real number α > 1, we define a re-
lation ≤α such that φ ≤α ψ denotes that by mistakenly
assuming φ ≤ ψ we introduce an error no greater than α
in each coordinate. More formally, we define φ ≤α ψ if
(α−1, α) × ψ ≥ φ. Note that ≤α is neither transitive nor
antisymmetric, and that we may have φ ≤α ψ for φ 6≤ ψ.

The α-equivalence relation over potentials can easily be



extended to pairs. Two pairs (p`x, p
r
x) and (p`y, p

r
y) are α-

equivalent if p`x ≡α p`y and pry ≡α pry . It is not difficult to
see that φ ≡α ψ implies both φ ≤α ψ and ψ ≤α φ.

A ≤α-covering for a set of pairs of potentials Ψx pro-
vides an approximated version of Ψx, one in which for
each φx ∈ Ψx we are guaranteed to have a pair ψx in the
covering such that the left and right potentials of ψx and
φx differ in each coordinate by a factor no greater than α.
We can easily obtain a≤α-covering of Ψx of bounded car-
dinality from its quotient set Ψx/α, that is, by discarding
one of any two α-equivalent pairs in Ψx. The approxima-
tion algorithm we develop in Section 5 strongly relies on
the following results.
Lemma 6. If k1, . . . , km are positive integers and
Ψx1

,Ψ′x1
, . . . ,Ψxm ,Ψ

′
xm are set valuations such that for

i = 1, . . . ,m Ψ′xi is a ≤αki -covering for Ψi, then Ψ′x1
⊗

· · · ⊗Ψ′xm is a ≤β-covering for Ψx1 ⊗ · · · ⊗Ψxm , where
β = α

∑m
i=1 ki .

Proof. We work by induction on j = 1, . . . ,m. For j =
1, it follows directly that Ψ′1 is a ≤αk1 -covering for Ψ1.
Assume the result holds for 1 ≤ j < m− 1, and consider
any pair φ = φ′ × φ′′ in Ψx1 ⊗ · · · ⊗ Ψxj+1 , where φ′ ∈
Ψx1
⊗ · · · ⊗Ψxj and φ′′ ∈ Ψxj+1

. There is ψ = ψ′ × ψ′′
in Ψ′x1

⊗ · · · ⊗ Ψ′xj+1
, where ψ′ ∈ Ψ′x1

⊗ · · · ⊗ Ψ′xj and

ψ′′ ∈ Ψxj+1
, such that (α−

∑j
i=1 ki , α

∑j
i=1 ki) × ψ′ ≥

φ′ (by assumption) and (α−kj+1 , αkj+1) × ψ′′ ≥ φ′′. It
follows from (A4) that (α−

∑j+1
i=1 ki , α

∑j+1
i=1 ki)×ψ ≥ φ.�

Let Ψx1
, . . . ,Ψxm denote sets of pairs of potentials which

take values on the interval [0, 1], and let b be the number
of bits required to encode these sets.
Proposition 7. The number of elements in (Ψx1

⊗ · · · ⊗
Ψxm)⇓y/α is O((bmα/(α− 1))2|Ωy|).

The latter result is in fact an adaptation of Papadim-
itriou and Yannakakis’ result on the boundedness of ε-
approximate Pareto curves in multi-objective optimization
problems [1, Theorem 1].

3 Credal Networks

In this section we review the basic concepts and computa-
tional challenges of extensively specified credal networks.
Let G = (U , E) be a DAG, and X a node in U . We write
pa(X) , {Y ∈ U : (Y,X) ∈ E} to denote the parents
of X , ch(X) , {Y ∈ U : (X,Y ) ∈ E} to denote the
children of X in U , and fa(X) , {X} ∪ pa(X) to denote
the family of X . We call Y a descendant of X if there is a
directed path from X to Y in G.

An extensive credal setKx is a set of probability potentials
px over domain Ωx. Given an extensive credal set Kx, we
write H(Kx) to denote its convex hull (i.e., the set ob-
tained by all convex combinations of elements inKx), and
ext[H(Kx)] to denote its extreme points (i.e., the elements

A

B C

K{A} =

{(
0.1
0.9

)}

K{B,A} = H

({(
0.2 0.3
0.8 0.7

)
,

(
0.4 0.5
0.6 0.5

)})
K{C,A} =

{(
0.6 0.7
0.4 0.3

)}

Figure 1: Example of extensively specified credal net-
work.

of H(Kx) that cannot be written as a convex combination
of other elements). The convex hull of a set and the set of
its extreme points are themselves extensive credal sets.

An extensively specified credal network is a pair (G,K),
where K is a collection of finitely-generated closed con-
vex extensive credal sets Kfa(X), one for each X ∈
U , such that each potential pfa(X) ∈ Kfa(X) satis-
fies

∑
x↓pa(X)=π pfa(X)(x) = 1 for all π ∈ Ωpa(X)

(i.e., they represent conditional probability mass functions
p(X|pa(X))). Figure 1 depicts a simple extensively spec-
ified credal network over 3 binary-valued variables.

The strong extension of a credal network is given by the
credal set generated by the convex closure of the product
of all extensive credal sets in K,

Kstrong
U , H

(⊗
X∈U

Kfa(X)

)
. (3)

Since the product of local extremes Kext
U ,⊗

X∈U ext[Kfa(X)] is a subset of the strong extension (by
definition), we have that ext[Kstrong

U ] = ext[H(Kext
U )] ⊆

Kext
U . Notice that Kext

U contains a finite number of
elements.

Let q, e ⊂ U denote disjoint sets of query and evidence
variables, respectively, and (q, e) an element of Ωq∪e. In-
ference with credal networks consists in computing lower
and upper posterior probabilities (we assume p↓e(e) > 0
for all p ∈ Kstrong

U ):

p(q|e) , min
p∈Kstrong

U

p↓q∪e(q, e)

p↓e(e)
, (4)

p(q|e) , max
p∈Kstrong

U

p↓q∪e(q, e)

p↓e(e)
. (5)

Our goal in the rest of this section is to show that the
continuous optimizations of Equations (4) and (5) can
be mapped into problems of computing maximal sets of
marginals of the combinations of finite sets of pairs of po-
tentials. We begin with a well-known result that the so-
lutions to the convex optimizations in Equation (5) are at-
tained at extreme points of the strong extension [18]. Since



any non-extreme point of Kext
U is also a non-extreme point

of the strong extension, we have that

p(q|e) = max
p∈Kext

U

p↓q∪e(q, e)

p↓e(e)
(6)

= max
pU∈Kext

U

p↓q∪e(q, e)

p↓q∪e(q, e) + p↓q∪e(¬q, e)
, (7)

where p↓q∪e(¬q, e) ,
∑

q′∈Ωq :q′ 6=q p
↓q∪e(q′, e). We

can derive analogous equations for the lower bound. The
passage from Equation (6) to (7) follows from the defi-
nition of marginalization. Notice that Equation (7) states
a combinatorial problem over products of local extreme
points. If p(q|e) > 0, we can divide the numerator and
the denominator of Equation (7) by p↓q∪e(q, e) > 0 and
obtain

p(q|e) = max
p∈Kext

U

(
1 +

p↓q∪e(¬q, e)

p↓q∪e(q, e)

)−1

. (8)

For any potential p ∈ Kext
U , let pq|e denote the pos-

terior probability obtained by p, that is, pq|e , [1 +

p↓q∪e(¬q, e)/p↓q∪e(q, e)]−1. Now consider two poten-
tials p and r such that p↓q∪e(¬q, e) ≤ r↓q∪e(¬q, e) and
p↓q∪e(q, e) ≥ r↓q∪e(q, e). Clearly, pq|e ≥ rq|e, and r is
not a solution of the maximization problem (conversely, p
is not a solution of the minimization problem). This allows
us to define a partial ordering among solutions p ∈ Kext

U .

Let Φq|e denote the set of pairs of potentials
(p↓q∪e(¬q, e), p↓q∪e(q, e)), where p ∈ Kext

U . Then
Equation (8) can be rewritten as

p(q|e) = max
(p`,pr)∈max(Φq|e)

(
1 + p`/pr

)−1
. (9)

Basically, what Equation (9) states is that we can narrow
down the optimization space to the set of potentials whose
corresponding pairs in Φq|e are not smaller than any other
pair in the set (conversely, we take the set of minimal el-
ements in the minimization case). Although this set could
be as large asKext

U , our experiments show that most often it
is significantly smaller. Thus, if max(Φq|e) is sufficiently
small, we can find the solution by a simple enumerative
scheme, and the optimization problem is then converted
into the problem of computing the maximal elements of
Φq|e, which can be done by the variable elimination pro-
cedure in Algorithm 1, as the following section shows.

4 Exact Inference

In this section we describe an algorithm for exact compu-
tation of upper posterior probabilities in credal networks.
An algorithm for obtaining lower probabilities can be ob-
tained in a very similar way.

For any variable X and a subset X ⊂ ΩX , we define the
identity potential IX as a potential over X that returns 1
for x ∈ X and 0 otherwise. If X = {x} is a singleton,
we write Ix. For any x ∈ ΩX , we define the set ¬x ,
ΩX \ {x}.

Consider a credal network (G,K), an elimination order-
ing o = (X1, . . . , Xn) of the variables in U , sets of query
and evidence variables q and e, and a query-evidence pair
(q, e) ∈ Ωq∪e. The variable elimination algorithm (Al-
gorithm 1) can be used to compute exact upper posterior
probabilities using the valuation algebra of sets of max-
imal pairs of potentials in the following way. Let Ψ be
the set that contains (i) for each X ∈ U a set-valuation
ΨX , {(pfa(X), pfa(X)) : pfa(X) ∈ ext[Kfa(X)]} in Φ;
(ii) a set-valuation Ψq , {(I¬q, Iq)} in Ψ; and (iii) for
each E ∈ e a set-valuation ΨE , {(Ie↓E , Ie↓E )} in
Ψ. Let Γ be the output of the variable elimination al-
gorithm with max-combination, and max-marginalization
and inputs Ψ, y = ∅ and ordering o, and let pq|e ,

max(p`,pr)∈Γ

(
1 + p`/pr

)−1
. Finally, let p(q|e) be the

solution of the maximization problem in Equation (5). The
following result states the correctness of the upper poste-
rior probability obtained the procedure.

Theorem 8. pq|e = p(q|e).

Proof. The sets ΨX ,Ψq,ΨE ∈ Ψ as well as the sets Ψi

generated by the variable elimination algorithm are valu-
ations in the valuation algebra of sets of maximal pairs of
potentials. It follows from (A1)–(A3) that

Γ =

(
Ψq

⊕
E∈e

ΨE

⊕
X∈G

ΨX

)�∅

(10)

= max

([
Ψq

⊗
E∈e

ΨE

⊗
X∈G

ΨX

]↓∅)
, (11)

where the last equivalence is obtained by repeatedly ap-
plying Proposition 3. Recall that combination of pairs is
defined as the pair formed by the combination of left po-
tentials and the combination of right potentials. Therefore,
Γ is a set of maximal pairs of potentials (p`, pr), where by
definition of Ψq , ΨE , and ΨX ,

p` =

(
I¬q

⊗
E∈e

Ie↓E
⊗
X∈G

pfa(X)

)↓∅
(12)

= p↓q∪eU (¬q, e) , (13)

pr =

(
Iq
⊗
E∈e

Ie↓E
⊗
X∈G

pfa(X)

)↓∅
(14)

= p↓q∪eU (q, e) . (15)

Moreover, p` and pr are compatible, that is, for any po-
tential pfa(X) in p` taken from a local extensive credal set
Kfa(X), the same potential appears in pr and no other po-
tential from Kfa(X). Hence, Γ = max(Φq|e). The result



is obtained by comparing the definition of pq|e and Equa-
tion (9). �

The complexity of the algorithm is upper bounded by the
cost of the combination of sets of pairs in computing Ψi

during the variable elimination part. Each of these compu-
tations takes time polynomial in the size of the largest set,
which might be exponential in the size of the input sets.
For instance, the size of the largest potential is a function
of the topology of G and the given elimination ordering
o. The number of elements of a set, on the other hand,
depends on the number of non-maximal elements that are
discarded at each combination or marginalization opera-
tion. In the worst-case scenario where no element is ever
discarded, the algorithm runs in exponential time even if
the network treewidth and the cardinality of the frames of
the input sets are bounded (which is not surprising given
that the problem is NP-hard under such assumptions).

An algorithm for lower posterior probabilities can be ob-
tained by substituting sets of maximal valuations and max-
imizations by sets of minimal valuations and minimiza-
tions, respectively. The correctness and complexity analy-
ses are analogous to the maximization case.

5 FPTAS

The computational bottleneck of the variable elimination
procedure presented in Section 4 is the existence of large
sets at some point in the propagation step (apart from the
inherent difficulty of manipulating potentials over large
domains). We can remedy the large set problem by trading
off accuracy and running time. In this section, we devise
a multiplicative approximation scheme that runs in time
polynomial in the number of potentials of the input ex-
tensive credal sets, but it is still exponential in the size
of the largest pair ψXi generated during the propagation
step, which depends only on the sizes of the frames of the
variables and the network treewidth. For the rest of this
section, we assume the size of variable frames and the net-
work treewidth to be bounded by a constant. Additionally,
we require the input potentials to be represented by ratio-
nal numbers, so that the length of the input is well-defined.
The approximation scheme we obtain is an FPTAS, that is,
a family of algorithms parameterized by ε > 0 that returns
in time polynomial to 1/ε and to the input size a feasible
solution that is no worse than the optimal solution by a fac-
tor of ε. If x∗ is the optimal solution (of a maximization
problem), the approximation algorithm returns a solution
x such that x∗/(1 + ε) ≤ x ≤ x∗.

Given a real number α greater than one, we define the
α-combination of two set-valuations Ψx and Ψy as the
quotient set of the their set-combination, that is, Ψx �α
Ψy , (Ψx ⊗Ψy)/α. The operation �α is not associative,
that is, there are set-valuations Ψx, Ψy and Ψz such that
(Ψx�αΨy)�αΨz differs from Ψx�α (Ψy�αΨz). Nev-

ertheless, the order in which sets are α-combined does not
alter the combined approximation factor, as the following
result states.
Lemma 9. If Ψ1, . . . ,Ψm are set-valuations, then Ψ1�α
· · ·�αΨm (where the operations are applied in any order)
is a ≤β-covering for Ψ1 ⊗ · · · ⊗Ψm, where β = αm−1.
Proof. We work by induction on k = 2, . . . ,m. For k =
2, it follows directly from the definition of α-combination
that Ψ1�αΨ2 is an≤α-combination for Ψ1⊗Ψ2. Assume
for k ∈ {2, . . . ,m− 1} that Ψ1 �α · · ·�α Ψk−1 is a ≤β-
covering for Ψ1⊗· · ·⊗Ψk−1, where β = αk−2. Consider
any pair φ = φ′ × φ′′ in Ψ1 ⊗ · · · ⊗ Ψk, where φ′ ∈
Ψ1 ⊗ · · · ⊗Ψk−1 and φ′′ ∈ Ψk. There is ψ = ψ′ × ψ′′ in
Ψ1�α · · ·�αΨk−1⊗Ψk, where ψ′ ∈ Ψ1�α · · ·�αΨk−1

and ψ′′ ∈ Ψk, such that ψ′ ≥β φ′ (by assumption) and
ψ′′ = φ′′. Then it follows from (A4) that ψ ≥β φ, or
equivalently that (β−1, β) × ψ ≥ φ. But since Ψ1 �α
· · ·�αΨk is a≤α-covering for Ψ1�α · · ·�αΨk−1⊗Ψk,
there is ψ′′′ ∈ Ψ1 �α · · · �α Ψk such that ψ′′′ ≥α ψ, or
equivalently that (α−1, α)×ψ′′′ ≥ ψ. By combining both
sides with (β−1, β) and applying (A4) we get to

(β−1, β)× (α−1, α)× ψ′′′ ≥ (β−1, β)× ψ ≥ φ ,

and hence (α−(k−1), αk−1)×ψ′′′ ≥ φ, and ψ′′′ ≥αk−1 φ.
The lemma follows from the induction. �

Thus, by properly choosing the value of α we can ob-
tain a covering that approximates a combination of set-
valuations with errors as small as we want. In addition,
Proposition 7 guarantees that the sets obtained after each
α-combination have cardinality polynomial in the input
length and in the maximum error, and so the covering.

We can then modify the exact variable elimination algo-
rithm devised in Section 4 to provide an FPTAS by sub-
stituting max-combination and max-marginalization by α-
combination with α = 1 + ε/4n and set-marginalization.
Let Ψi and Ψi

α denote, respectively, the sets obtained in
the ith iteration of the loop step of variable elimination us-
ing set-combination and α-combinations (and both with
set-marginalization). In other words, Ψi is the set ob-
tained by a brute-force elimination algorithm, whereas Ψi

α

denote the sets obtained by the approximation algorithm.
Similarly, we let Γ and Γα denote the outputs of variable
elimination with set-combination and α-combination, re-
spectively.

Let s1 denote the number of set-valuations that are com-
bined to compute Ψ1

α (and also Ψ1) minus one, that is,
s1 , |B1| − 1. Then, for i = 2, . . . , n, we define si re-
cursively as si , |Bi| − 1 +

∑
j:Ψjα∈Bi sj . Intuitively,

si denote the number of valuations from the input that are
required either directly or indirectly to compute Ψi

α (and
also Ψi) minus one. Hence, if Ψ is the set obtained after
the loop step, we have that |Γα|+

∑
i:Ψiα∈Ψ si = n, since

there are n set-valuations given as input and each is used
exactly once in the computation of some Ψi

α (or Ψi).



The following lemma relates the set-valuations propagated
by variable elimination with α-combination to the corre-
sponding sets obtained by set-combination.

Lemma 10. For i = 1, . . . , n, the set-valuation Ψi
α is a

≤αsi -covering for Ψi.

Proof. For i = 1 the result follows directly from
Lemma 9. Without loss of generality, let Ψi = [Ψ1 ⊗
· · · ⊗ Ψk ⊗ · · · ⊗ Ψ|Bi|]

−Xi , where Ψ1, . . . ,Ψk denote
set-valuations given as input and Ψk+1, . . . ,Ψ|Bi| denote
sets Ψj (j < i) generated in the propagation step. Simi-
larly, let Ψi

α = [Ψ1 �α · · · �α Ψk �α Ψ′k+1 �α · · · �α
Ψ′|Bi|]

−Xi , where, for k + 1 < ` < |Bi|, Ψ` = Ψj

implies Ψ′` = Ψj
α. Assume by induction that the re-

sult holds for 1, . . . , i − 1. Hence, if Ψ′` = Ψj
α then

Ψ′` is a ≤αsj -covering for Ψ`. Now, consider any pair
φ = [φ′ × φ′′]−Xi ∈ Ψi, where φ′ ∈ Ψ1 ⊗ · · · ⊗ Ψk

and φ′′ ∈ Ψk+1 ⊗ · · · ⊗ Ψ|Bi|. From Lemma 9, we
have that there is ψ′ ∈ Ψ1 �α · · · �α Ψk such that
(α−k+1, αk−1)×ψ′ ≥ φ′. Likewise, since Ψ′k+1�α· · ·�α
Ψ′|Bi| is a≤α|Bi|−(k+1) -covering for Ψ′k+1⊗· · ·⊗Ψ′|Bi| (by
Lemma 9) and Ψ′k+1 ⊗ · · · ⊗ Ψ′|Bi| is a ≤α∑

` s` -covering
for Ψk+1 ⊗ · · · ⊗ Ψ|Bi| (by Lemma 6 and the induction
hypothesis), there is ψ′′ ∈ Ψ′k+1�α · · ·�αΨ′|Bi| such that
(α−si+k, αsi−k)×ψ′′ ≥ φ′′. Since ≡α implies ≤α, there
is ψ ∈ (Ψ1�α · · ·�αΨk)�α (Ψk+1�α · · ·�αΨ|Bi|) such
that (α−1, α)× ψ ≥ ψ′ × ψ′′. Thus, it follows from (A4)
that [(α−si , αsi) × ψ]−Xi ≥ φ. But from (A3) we have
that [(α−si , αsi) × ψ]−Xi = (α−si , αsi) × ψ−Xi , where
ψ−Xi ∈ Ψi

α. Since this is true for any φ ∈ Ψi, the result
holds for i. The lemma follows from the induction. �

Consider a credal network (G,K), an elimination ordering
o = (X1, . . . , Xn) of the variables in U , sets of query
and evidence variables q and e, and a query-evidence
pair (q, e) ∈ Ωq∪e. Let Ψ be a collection of sets of
pairs as defined in Section 4, and consider the variable
elimination algorithm with inputs Ψ, y = ∅ and o, and
α-combination and set-marginalization. Finally, return
pq|e , max(p`,pr)∈Γα(1 + p`/pr)−1 as the approximate
solution output.

Theorem 11. The procedure described is an FPTAS for
computing upper posterior probabilities for networks of
bounded treewidth and number of states per variable.

Proof. First, we analyze the time complexity of the algo-
rithm. We are thus interested in the maximum cardinal-
ity of a set Ψi

α, and in the cardinality of the domain of a
valuation generated in the loop step. The boundedness as-
sumptions imply that the cardinality of the domain of any
propagated valuation is smaller than a constant. Hence,
the polynomial time complexity depends on |Ψi

α| being
bounded. For i = 1, . . . , n, any valuation φi ∈ Ψi

α is pro-
duced by first combining valuations that are either in some
previously generated set Ψj

α (j < i) or in a set given as in-
put, and then eliminating Xi from it. Thus, by recursively

applying (A1)–(A3) to factorize each valuation from a Ψj
α

into a combination of valuations and moving the elimina-
tions out, we have that φi = [φ1×· · ·×φsi+1]−{X1,...,Xi},
where each φj is in a set-valuation given as input. Hence,
each Ψi

α can be factorized as [Ψ1⊗· · ·⊗Ψsi ]
−{X1,...,Xi},

where each Ψi is a subset of a set-valuation given as
input. It follows then from Proposition 7 that Ψi

α has
O([bsiα/(α − 1)]2ω), where ω is a constant greater than
the cardinality of the domain of any φi. Since α =
1 + ε/4n, O([bsiα/(α− 1)]2ω) ≤ O((4n2b/ε)2ω), where
b is the length of the input in bits. Therefore the algorithm
runs in time polynomial in the input, in the given approxi-
mation factor ε, and in the number of variables n.

Let p(q|e) , max(p`∗,p
r
∗)∈Γ(1 + p`∗/p

r
∗)
−1 denote the op-

timum value. We now show that the approximation algo-
rithm yields a solution such that pq|e ≥ p(q|e)/(1+ε) for
any given positive ε. Let Ψ′1, . . . ,Ψ

′
m denote the sets Ψi

α

in Ψ after the loop step of the approximation algorithm,
where m = |Γα|, and let Ψ1, . . . ,Ψm be the sets Ψi in
Ψ after the loop step of the brute-force version. Then,
Γα = Ψ′1 �α · · · �α Ψ′m and Γ = Ψ1 ⊗ · · · ⊗ Ψm. It
follows from Lemma 9 that Γα is a ≤αm−1 -covering for
Ψ′1 ⊗ · · · ⊗Ψ′m, which in turn is a ≤αn−m -covering for Γ,
by Lemma 10. Hence, for any φ ∈ Γ there is ψ ∈ Γα such
that (α−(n−1), αn−1)×ψ ≥ φ an thus (α−n, αn)×ψ ≥ φ.
In particular, there is ψ = (p`, pr) ∈ Γα such that
ψ ≥αn (p`∗, p

r
∗) = φ∗. Therefore, p` ≤ αnp`∗, αnpr ≥ pr∗,

and

(1 + p`/pr)−1 ≥ (1 + α2np`∗/p
r
∗)
−1

≥ α−2n(1 + p`∗/p
r
∗)
−1 .

Since α = (1 + ε/4n), we have that

(1 + p`/pr)−1 ≥ (1 + ε/4n)−2n(1 + p`∗/p
r
∗)
−1

≥ (1 + ε)−1(1 + p`∗/p
r
∗)
−1

= (1 + ε)−1p(q|e) ,

where the second passage is due to the inequality (1 +
x/z)z ≤ 1 + 2x, valid for any x ∈ [0, 1] and any positive
integer z. Hence, pq|e ≥ p(q|e)/(1 + ε). �

Finally, we note that the approximation algorithm can
be made more efficient by discarding non-maximal pairs
from sets Ψi

α like in the exact algorithm in Section 4. This
is done in our implementation of the algorithm whose per-
formance we evaluate in the next section.

6 Experiments

We evaluate the performance of the exact and the approx-
imation algorithms on a collection of extensively speci-
fied credal networks randomly generated using the BN-
Gen package [14]. The graph topology of these networks
is divided in three types, namely (from the simplest to the



Type Exact Method Approx. (ε = 0.1) Integer Programming
% Time(sec) % Time(sec) % Time(sec)

solved Median Avg. SD solved Median Avg. SD solved Median Avg. SD

M10-2-16 20 824 5617 9923 21 955 6978 11157 6 40464 35079 10451
M10-2-2 100 0.04 0.04 0.03 100 0.04 0.04 0.03 100 2 6 8
M10-2-4 100 4 1096 3906 100 3 276 1025 73 11445 13487 9206
M10-4-2 100 0.19 0.38 0.46 100 0.2 0.41 0.49 75 1320 5699 8922
M10-4-4 100 248 2030 4407 100 238 1992 4335 3 8459 8459 1108
M20-2-2 95 113 1835 4304 96 95 1592 3747 46 8039 12601 10654
M20-4-2 81 1154 5864 9584 81 1266 6009 9594 0 – – –
M30-2-2 26 8560 12170 11710 30 4032 13775 13734 3 9484 9484 0
P10-4-16 10 15428 16877 14159 10 16719 16470 13080 0 – – –
P10-4-2 100 0.04 0.04 0.03 100 0.04 0.05 0.03 96 248 2451 7752
P10-4-4 100 4 1977 5075 100 4 2095 5476 6 15101 15101 1564
P20-4-2 100 39 2055 5097 100 32 1691 4483 0 – – –
P20-4-4 6 20669 20669 20588 6 13484 13484 13400 36 5393 8931 6016
P30-4-2 6 8207 8207 1385 6 5171 5171 1306 0 – – –
T10-4-16 13 1559 1381 687 16 1855 9778 16704 0 – – –
T10-4-2 100 0.04 0.04 0.02 100 0.04 0.05 0.02 100 12 14 7
T10-4-4 100 6 784 3554 100 6 674 3129 0 – – –
T20-4-2 96 89 2415 6164 96 73 2597 7009 13 29022 29587 4839

Table 2: Performance of proposed methods and the integer programming idea. Columns show percentage of solved cases,
median, mean and standard deviation (SD) for each group. Numbers greater than one are truncated.

most complicated): trees (graphs with maximum in-degree
one), polytrees (graphs where the underlying undirected
graph has no cycles), and multi-connected (DAGs without
restrictions). All networks have treewidth no greater than
four, 10 to 30 nodes, 2 to 4 states per variable, and 2 to
16 potentials in each local extensive credal set. In order to
have statistically significant measures, we group networks
of similar structure which we identify by the notation Sn-
k-c, where S is one of T (for trees), P (for polytrees),
or M (for multi-connected), n is the number of nodes in
the graph, k is the number of states per node, and c is the
cardinality of the credal sets. The number of networks in
each group is either 30 or 60 (see second column of Ta-
ble 3). For each network, we set some evidence to every
leaf node and arbitrarily choose a node with no parents
as query. This creates problems where a brute-force ap-
proach would have to execute cn Bayesian network infer-
ences. The elimination ordering is obtained by a greedy
algorithm that attempts to minimize the size of propagated
set-valuations. To make the removal of non-maximal val-
uations effective, we ensure the set-valuation Ψq is in B1,
even if it is not required (i.e., if X1 /∈ q). Since the query
has no parents, this can only increase the treewidth by one.

Table 2 reports the performance of the exact and the ap-
proximation algorithms along with the integer program-
ming method of de Campos and Cozman [8]. The latter
is a state-of-the-art solver for inference in credal networks
that performs a symbolic inference in the credal network
to obtain a set of linear constraints over continuous and
binary optimization variables, which is then processed by

a mixed integer programming solver. For each inference
method and network group, Table 2 contains the percent-
age of cases that were correctly solved using at most 12
hours of CPU time and 2GB of RAM, and the median,
average and standard deviation of the time spent. Regard-
ing the mixed integer programming, we considered an in-
stance solved only if the lower and upper bounds given
returned by the solver matched. As the networks become
more complicated, the percentage of solved cases reduces
and the time to solve each case increases. The superior-
ity against the integer programming is clear, though we
suspect the integer programming might be suffering from
numerical issues that are preventing it to achieve better re-
sults. Regarding the approximation, we see no significant
reduction in time nor increase in the number of solved
cases with respect to the exact method. Some facts con-
tribute to that: (i) the limit of 12 hours of computation
might be too short to get a consistent difference in the per-
formance of the methods; (ii) the approximation has an
additional computational cost in removing α-equivalent
pairs, which is asymptotically irrelevant but significant
otherwise; (iii) the number of discarded potentials in each
step depends on the elimination order, the dimension of
the potentials, and the randomness of input values. Table
3 shows average and standard deviation of the maximum
number of elements in a set generated by the exact and ap-
proximation algorithms in the loop step. Recall that the
complexity is related to the number of elements (as well
as the cardinality) of the set-valuations generated. For in-
stance, there would eventually be cn propagated potentials
if no ≤ relation (conversely, ≤α relation) was observed.



Type # of Exact Approximation
nets Avg. SD Avg. SD

M10-2-16 60 36046 28928 34579 28563
M10-2-2 60 154 141 130 109
M10-2-4 60 24642 64632 7254 9439
M10-4-2 60 225 128 224 127
M10-4-4 60 46147 65056 42664 55941
M20-2-2 60 37515 61606 28977 46774
M20-4-2 60 67573 73868 66185 73362
M30-2-2 30 93213 55519 81624 57996
P10-4-16 30 104468 75687 92784 64183
P10-4-2 30 115 100 114 100
P10-4-4 30 37155 78008 31361 64117
P20-4-2 30 24856 44469 20337 37219
P20-4-4 30 76083 68966 58358 51241
P30-4-2 30 92744 5476 65708 16654
T10-4-16 30 11840 9570 11834 9572
T10-4-2 30 135 108 132 107
T10-4-4 30 17178 49396 13706 41225
T20-4-2 30 57055 104187 49044 96469

Table 3: Average and standard deviation (SD) of the max-
imum number of pairs of a set for the cases where both
methods solved the inference. Numbers are truncated.

7 Conclusion

We derived a new algorithm for exact posterior inference
in extensively specified credal networks under strong in-
dependence. The algorithm is empirically shown to out-
perform an state-of-the-art method, being able to solve
medium-sized networks in feasible time. We then showed
that for networks of bounded treewidth and number of
states per variable, a FPTAS for the problem exists. In
our experiments, approximation and exact algorithms per-
formed similar, likely due to the large constants hidden by
the boundedness assumptions in the asymptotic complex-
ity analysis.

Acknowledgements

This work was partially supported by the Swiss NSF grants
n. 200020 134759 / 1, 200020-121785 / 1, and by the
Hasler foundation grant n. 10030.

References

[1] C. Papadimitriou and M. Yannakakis. On the approx-
imability of the trade-offs and optimal access of web
sources. In Proc. of the Annual Symp. on Founda-
tions of Computer Science, 2000.

[2] A. Antonucci and M. Zaffalon. Decision-Theoretic
Specification of Credal Networks: A Unified Lan-
guage for Uncertain Modeling with Sets of Bayesian
Networks. Intl. J. Approx. Reasoning 49(2), 2008.

[3] A. Antonucci, Y. Sun, C. P. de Campos and M. Zaf-
falon. Generalized loopy 2U: a new algorithm for
approximate inference in credal networks. Intl. J.
Approx. Reasoning 55(5), 2010.

[4] D. Avis. Living with lrs. In Discrete and Compu-
tational Geometry, Lecture Notes in Computer Sci-
ence, Springer, 2000.

[5] J. L. Bentley, H. T. Kung, M. Schkolnick and
C. D. Thompson. On the average number of maxima
in a set of vectors and applications. J. of the ACM 25,
1978.

[6] C. P. de Campos and F. G. Cozman. Inference in
credal networks using multilinear programming. In
Proc. of the Starting AI Researchers’ Symp., 2004.

[7] C. P. de Campos and F. G. Cozman. The inferential
complexity of Bayesian and credal networks. In Intl.
Joint Conf. on Artif. Intelligence, 2005.

[8] C. P. de Campos and F. G. Cozman. Inference in
credal networks through integer programming. In
Proc. of the Intl. Symp. on Imprecise Probability:
Theories and Applications, 2007.

[9] A. Cano, M. Gomez, S. Moral and J. Abellan. Hill-
climbing and branch-and-bound algorithms for ex-
act and approximate inference in credal networks. In
Intl. J. Approx. Reasoning 44(3), 2007.

[10] G. de Cooman, F. Hermans, A. Antonucci, and
M. Zaffalon. Epistemic irrelevance in credal nets:
The case of imprecise Markov trees. In Intl. J. Ap-
prox. Reasoning 51(9), 2010.

[11] F. G. Cozman. Credal networks. Artif. Intelligence
120(2), 2000.

[12] E. Fagiuoli and M. Zaffalon. 2U: an exact interval
propagation algorithm for polytrees with binary vari-
ables. Artif. Intelligence 106(1), 1998.

[13] R. Haenni. Ordered valuation algebras: a generic
framework for approximating inference. Intl. J. Ap-
prox. Reasoning 37(1), 2004.

[14] J. S. Ide , F. G. Cozman and F. T. Ramos. Generat-
ing Random Bayesian Networks with Constraints on
Induced Width. In Proc. of the European Conf. on
Artif. Intelligence, 2004.

[15] J. Kohlas. Information Algebras: Generic Structures
for Inference. Springer-Verlag, 2003.

[16] J. C. F. da Rocha and F. G. Cozman. Inference in
credal networks: branch-and-bound methods and the
A/R+ algorithm. Intl. J. Approx. Reasoning 39(3),
2005.

[17] P. Shenoy and G. Shafer Axioms for Probability and
Belief-Function Propagation. In Proc. of the Conf.
on Uncertainty in Artif. Intelligence, 1988.

[18] P. Walley. Statistical Reasoning with Imprecise Prob-
abilities. Chapman and Hall, New York, 1991.


