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Abstract: The paper presents a variational autoencoder (VAE) tailored for the identification
of hybrid piecewise models in input-output form. We show that using a specialized autoencoder
structure, the latent space can provide an interpretable representation in terms of the modes of
the underlying hybrid system. In particular, we use categorical encoding of the discrete latent
variables whose distribution is approximated via the encoder neural network, characterizing a
partition of the regressor space, while the decoder consists of a set of neural networks, each
corresponding to a local submodel of the piecewise hybrid system. By employing variational
Bayesian framework for inference, the constitutive terms of the evidence lower bound (ELBO)
are derived analytically with the chosen VAE architecture. The ELBO loss consists of a
reconstruction error term and a regularization term over the latent modes. This loss is
optimized in order to train the encoder-decoder networks concurrently via back-propagation.
The developed framework is not restricted to simple piecewise affine (PWA) models and it
can be straightforwardly extended to general class of piecewise non-linear systems over non-
polyhedral domains.
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1. INTRODUCTION

The availability of flexible software with automatic differ-
entiation capabilities along with the hardware support for
parallelization has led to the development of algorithms
using neural networks for the identification of non-linear
dynamical systems (Ljung et al., 2020; Forgione and Piga,
2020; Masti and Bemporad, 2021; Piga et al., 2021; Wang,
2017). In comparison, relatively less attention is given for
developing a deep learning framework for modeling hybrid
systems, which operate concurrently in continuous as well
as discrete domains. Hybrid models are a powerful tool to
describe the behavior of many real-world systems which
are characterized by different operating regions or modes.

Most of the conventional approaches for hybrid system
identification (see, survey paper (Garulli et al., 2012) for
an overview) are restricted to simple hybrid structures
(such as piecewise affine maps), often requiring linear sep-
arability assumptions of the data clusters. These methods
do not utilize powerful deep learning tools, which can
potentially be exploited to recognize non-linear clustering
patterns and more complex local dynamics. In this paper,
we aim at developing a framework for learning a class of
hybrid dynamical models called piecewise models, utilizing
tools from modern deep learning.

A piecewise model consists of a set of local submod-
els, each defined over a specific region of the regressor
space. Depending upon the parameterization of local sub-
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models as well as its corresponding region, the piece-
wise models are classified into piecewise affine (PWA),
piecewise non-linear (PWN), non-linearly piecewise affine
(NPWA) and nonlinearly piecewise nonlinear (NPWN)
model classes (Lauer and Bloch, 2008). Learning piecewise
models from data is an NP-hard problem (Lauer, 2015),
which requires estimating the sub-models as well as a
partition of the regressor space. Over the years several
heuristics have been developed for learning piecewise mod-
els (albeit, not utilizing deep learning), which include:
the recently proposed optimization-based algorithm (Be-
mporad, 2022) for handling numeric as well as categorical
data; the bounded-error approach (Bemporad et al., 2005);
recursive clustering-based methods (Boukharouba et al.,
2009; Breschi et al., 2016; Mejari et al., 2020a), mixed-
integer programming algorithms (Roll et al., 2004; Mejari
et al., 2020b), Bayesian inference (Juloski et al., 2005; Piga
et al., 2020), among many others. The aforementioned con-
tributions and most of the existing approaches proposed in
the literature are restricted to PWA models having affine
submodel parameterization over polyhedral partitioning.
Very few works have addressed the identification of non-
linear submodels and non-polyhedral domains, e.g., in
(Lauer and Bloch, 2008), kernel regression and support vec-
tor machines are employed to identify PWN and NPWA
models. Kernel methods (for submodel estimation) com-
bined with optimization-based strategies (for clustering)
are proposed in (Lauer and Bloch, 2014; Mazzoleni et al.,
2021) to learn PWN models. In this paper, we propose a
method based on variational autoencoder (VAE) to learn
piecewise models. The VAE was first introduced in the
seminal work (Kingma andWelling, 2014), generalizing the



deterministic autoencoderto the families of probabilistic
models with variational Bayesian inference. In our work,
we consider specific architectures for the encoder and
decoder networks in VAE, in order to take into account
the hybrid nature of the underlying system. The encoder
approximates a distribution of the discrete latent modes,
characterizing a partition of the regressor space, while
the decoder consists of a set of neural networks, each
corresponding to a local submodel of the piecewise hybrid
system. With categorical encoding of the latent modes, we
compute the expectation terms in the ELBO loss analyti-
cally. This avoids sampling and re-parameterization trick
employed in the conventional VAE (Kingma and Welling,
2014), reducing the overall training cost.

To the best of our knowledge, neural networks have been
considered for piecewise models only in (Brusaferri et al.,
2020), where a neural network classifier to recognize the
partition of the regressor space is proposed for identifica-
tion of NPWA models. Our work differs from (Brusaferri
et al., 2020) in the following ways: (i) in (Brusaferri et al.,
2020), an expectation-maximization algorithm is employed
in a frequentists setting to derive maximum-likelihood
(ML) estimate of the model parameters. Our method is
based on amortized variational inference in a Bayesian
framework, which allows incorporating prior information
of the latent mode probabilities via a prior distribution;
(ii) the method in (Brusaferri et al., 2020) is restricted
to affine parameterization of the submodels (PWA and
NPWA models), while our work is applicable to non-linear
submodels using decoder neural networks, i.e., identifica-
tion of more general classes of piecewise models such as
PWN and NPWN; (iii) the ELBO loss derived in this
paper consists of a regularization term in the form of mode
entropy, which allows to control potential mode collapses
during training as well as to impose regular structure over
the latent space.

2. HYBRID PIECEWISE MODELS

In this section, we describe types of piecewise hybrid
models which we aim to identify. We consider models in
input-output form with inputs denoted as xt ∈ X ⊆ Rnx ,
and measured outputs as yt ∈ Y ⊂ Rny .

Piecewise affine model: The PWA model f : X → Y is
described as follows:

f(xt) =


θ
′

1

[
1
xt

]
if xt ∈ X1,

...
...

θ
′

K

[
1
xt

]
if xt ∈ XK ,

(1)

where K ∈ N is the number of modes (i.e., the number
of affine functions defining f), and θi ∈ R(nx+1)×ny is the
parameter vector associated to the i-th affine submodel.
The regions Xi ⊆ X can be either polyhedral (PWAmodel)
or non-polyhedral (NPWA model). The set {Xi}si=1 forms
a complete partition 1 of the regressor space X.

Probability weighted affine model: The probability
weighted affine (PrA) model provides a smooth relaxation
of the PWA model (Taguchi et al., 2009), where the

1 The collection {Xi}Ki=1 is a complete partition of X if
⋃K

i=1
Xi = X

and
◦
Xi ∩

◦
Xj = ∅, ∀i ̸= j, with

◦
Xi denoting the interior of Xi.

individual models are composed by probabilistic weighting
functions as follows:

yt = fpr(xt) + vt =

K∑
i=1

pitθ
′

i

[
1
xt

]
+ vt, (2)

where pit denotes the probability that the regressor xt

belongs to mode i and is parametrized by the softmax

function pit =
exp(η

′
i

[
1
xt

]
)

1+
∑K−1

i=1
exp(η

′
i

[
1
xt

]
)
where ηi ∈ Rnx+1 is an

unknown parameter vector characterizing the partition of
the regresor space.

Piecewise non-linear model: Piecewise non-linear mod-
els represent a non-linear extension of PWA (1) ones, and
are defined as follows:

f(xt) =


g1(xt; θi) if xt ∈ X1,
...

...
gK(xt; θK) if xt ∈ XK ,

(3)

where gi : Xi → Y are local non-linear maps with
parameters θi. As stated before, the regions Xi ⊆ X
can be either polyhedral (PWN model) or non-polyhedral
(NPWN model).

3. LEARNING PROBLEM

We consider a training dataset D = {xt, yt}Tt=1 generated
from the following system S

yt = f(xt) + vt, (4)

where vt ∼ N (0, σ2
vIny

) is a multivariate zero-mean white
Gaussian noise with diagonal covariance, statistically in-
dependent of the input xt.

Piecewise regression problem: Given a dataset D, the
piecewise regression problem entails the following tasks:

T1 Computation of the parameters Θ = [θ1, · · · , θK ]
defining the local affine functions in the PWA map
f in (1); or equivalently fpr in (2); or equivalently
functions {gi(xt; θi)}Ki=1 in (3);

T2 Classification of the regressors xt into clusters and
subsequent characterization of the partition {Xi}Ki=1
of the regressor space.

In this work, we fix the number of modes K a-priori.

Active mode: In this paper, we will make use of a
K dimensional discrete latent variable zt, termed as the
active mode at time t, having a 1-of-K representation, such
that

zit =

{
1 if xt ∈ Xi,
0 otherwise.

(5)

Thus, the i-th component zit of the vector zt is 1 if and
only if the regressor xt belongs to the i-th region Xi.
The sequence of discrete active modes {zt}Tt=1, dictates
the overall clustering of the regressor vectors {xt}Tt=1 to
corresponding regions, which can be used to compute a
partition of the regressor space X .

Bayesian problem formulation: In the rest of the pa-
per, we consider a Bayesian setting in which it is assumed
that the output samples in D are generated from an (un-
known) true distribution yt ∼ pΘ(yt|xt) with parameters
Θ of the piecewise hybrid system. The active mode zt in



Fig. 1. Autoencoder architecture for PWA regression.

(5) represents latent encoding of the output yt, which is
assumed to be jointly distributed with yt according to an
unknown joint distribution pΘ(zt, yt|xt). In other words,
the data generating system is modelled as pΘ(yt|xt) =∑K

i pΘ(z
i
t, yt|xt) =

∑K
i pΘ(yt|zit, , xt)pΘ(z

i
t|xt). Accord-

ingly, the posterior over the latent modes is given by

pΘ(zt|yt, xt) =
pΘ(yt|xt,zt)pΘ(zt|xt)

pΘ(yt|xt)
, where pΘ(yt|xt, zt) and

pΘ(zt|xt) denote the likelihood and the prior, respectively.

With this setting, the piecewise regression problem is
formalized as follows:

Problem 1. We aim to estimate the parameters Θ of the
piecewise model defining the data-generating distribution
pΘ(yt|xt) (corresponding to task T1) and to estimate
the unknown posterior distribution pΘ(zt|yt, xt) over the
latent modes, consequently identifying the mode sequence
{zt}Nt=1 which characterizes a partition of the regressor
space (i.e., task T2).

4. AMORTIZED VARIATIONAL INFERENCE

For inference of the piecewise models, we adopt the vari-
ational autoencoder (VAE) introduced in (Kingma and
Welling, 2014). The VAE consists of an encoder neural
network approximating the posterior over latent variables,
followed by a decoder network which models the likelihood.
The encoder-decoders networks are trained jointly by max-
imizing the evidence lower bound (ELBO) loss over the
network parameters. In this work, we adapt and specialize
the VAE concept for piecewise regression. In particular,
the encoder characterizes a partition of the regressor space
by recognizing active modes zt, while the weights and
biases of the decoder network represent the parameters Θ
of the local submodels. In order to the compute posterior
over the discrete latent modes zt and to estimate the
parameters Θ, we derive the corresponding ELBO loss for
the piecewise models. By parameterizing encoder posterior
with a categorical distribution, the expectation terms in
the ELBO loss can be computed analytically, and thus, we
avoid sampling and re-parameterization trick employed in
the conventional VAE, reducing the computational effort
during training.

We consider VAE network architecture shown in Fig. 1.

Encoder : The encoder NN e(xt;ϕ) is a feed-forward neu-
ral network with trainable parameters ϕ and with the
regressor xt fed as input feature. The last layer of the
encoder consists of a softmax activation function taken
over K modes. Thus, the output of the encoder µt ∈ RK

represents the probability of each mode at time t, given by

µt = NN e(xt;ϕ), (6)

where

µi
t = p(zit = 1), µi

t ∈ [0, 1], i = 1, . . . ,K,

K∑
i=1

µi
t = 1

with zt being the discrete latent variable characterizing
the active mode as defined in (5).

Decoder: For PWA model, we define a decoder consisting
of K independent neural networks, each corresponding
to an affine submodel in the PWA map (1). Each of
the K network consists of a single linear layer, weights
(and biases) of which correspond to the parameters θi ∈
Rnx , i = 1, . . . ,K of the local affine function. The feature
inputs to the i-th network are the regressor xt and the
probability of the i-th mode µi

t obtained from the encoder.
The output of the i-th network is then given by ŷit =

θ̂
′

i

[
µi
t

xt

]
+ bi with θ̂

′

i and bi denoting the weights and bias

of the network respectively. Given that the current active
mode is i with probability µi

t = 1, the i-th network’s
weights and biases correspond to the parameters θi of the
affine submodel in (1). The decoder output is the weighted
sum of the individual network’s outputs given by

ŷt =

K∑
i=1

µi
tθ

′

i

[
1
xt

]
, (7)

This is equivalent to the probability weighted affine (PrA)
model (2) with probabilities given by the encoder. As
noted before, such PrA model provides a smooth relax-
ation of PWA model in (1), such that the deterministic
partition is replaced by probabilistic boundaries. This
particular structure of the decoder along with categor-
ical parameterization of the encoder distribution allows
us to compute the expected likelihood over latent space
analytically. Alternatively, in order to learn PWN and
NPWN models, we can consider a non-linear decoder
consisting of K independent feed-forward MLP neural
networks having weights θi, with inputs xt, µ

i
t and output

ŷit = NN d(xt, µ
i
t; θi). Each network corresponds to local

non-linear submodel and the decoder output is given by
the probability weighted sum of K non-linear network

outputs, ŷt =
∑K

i=1 µ
i
tNN d(xt, µ

i
t; θi).

5. EVIDENCE LOWER BOUND LOSS

In order to train the VAE for piecewise models described
above, in this section, we derive the ELBO loss L(ϕ,Θ) to
be optimized over the encoder and decoder parameters.

Prior: Let us define the prior over the latent modes zt as
the following categorical distribution,

p(zt|xt) =

K∏
i=1

(πi
t)

zi
t , (8)

where πi
t ∈ [0, 1] is the prior probability of the i-th mode,

i.e., πi
t = p(zit = 1). Recall that zt is K dimensional 1-

of-K encoded categorical variable with the property that
exactly one element has value 1 and the others have
the value 0, thus, probability mass function p(zt|xt) =
p(zit = 1) for the active mode i. This allows incorporating
prior knowledge about the initial clustering pattern of the
system. Possible choices for prior distribution are provided
in the following.

Uniform prior: We can set πi
t =

1
K , i.e., p(zt|xt) =

1
K , to

weigh all modes equally.



Dirichlet hyperprior: Let α = [α1 . . . , αK ] be concentra-
tion hyperparameter of a Dirichlet distribution Dir(K|α).
The prior probabilities are then given by

πt = [π1
t , . . . , π

K
t ] ∼ Dir(K|α) ∼ 1

B(α)

K∏
i=1

(πi
t)

αi−1,

The choice of hyperparameter α determines the priorities
assigned to a specific mode.

Likelihood: For PWA model structure, the likelihood of
the output observation at time t is given as follows

pΘ(yt|zt, xt) = pθi(yt|xt, z
i
t = 1) = N (yt; θ

′

i

[
1
xt

]
, σ2

vIny
)

=

K∏
i=1

(N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
))z

i
t , (9)

where we recall, σ2
v is the variance of the measurement

noise. Since the noise samples vt in (4) are assumed to be
i.i.d., the overall likelihood is composed of product over
the likelihood of individual observations given as follows,

pΘ(y1, · · · , yT |z1, · · · , zT , x1, · · · , xN )

=

T∏
t=1

K∏
i=1

(N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
))z

i
t (10)

The likelihood for PWN and NPWN model class (3) can
be derived in a similar manner.

Variational distribution: The encoder provides a dis-
tribution over discrete latent variable zt parameterized as
the following categorical distribution,

qϕ(zt|xt) =

K∏
i=1

(µi
t)

zi
t (11)

where µi
t ∈ [0, 1], i = 1, . . .K are the probabilities given

by the encoder output (see (6)) and ϕ are the weights
of the encoder network. Note that the true (unknown)
posterior pΘ(zt|xt, yt) is approximated by the variational
distribution qϕ(zt|xt) given by the encoder.

Evidence lower bound: Next, we derive the expression
for the evidence lower bound. We recall that the Kull-
back–Leibler (KL) divergence between the distribution
qϕ(zt|xt), given by the probabilistic encoder network and
the true (unknown) posterior pΘ(zt|yt, xt) can be written
as,

DKL(qϕ(zt|xt)||pΘ(zt|xt, yt))

= log(pΘ(yt|xt)) + DKL(qϕ(zt|xt)||p(zt|xt))

− Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)] (12)

where pΘ(yt|xt) is the marginal likelihood or the evidence.
Note that the left hand side of (12) is the KL divergence
between the two distributions, it is always non-negative.
Thus, the evidence is lower bounded by the following term,

log(pΘ(yt|xt)) ≥ Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)]

−DKL(qϕ(zt|xt)||p(zt|xt)) (13)

The right hand side of (13) is the evidence lower bound
(ELBO) of the data sample at t. Re-writing (12), we define
the ELBO loss LΘ,ϕ(xt, yt) as follows,

LΘ,ϕ(xt, yt)

= log(pΘ(yt|xt))−DKL(qϕ(zt|xt)||pΘ(zt|xt, yt)) (14a)

= Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)]−DKL(qϕ(zt|xt)||p(zt|xt))

(14b)

Note that from (14a), maximizing the ELBO loss LΘ,ϕ

implies maximization of the log marginal likelihood
log(pΘ(yt|xt)) for model learning from data and forcing
the approximate posterior qϕ(.) towards the true one by
minimizing the KL distance DKL(qϕ(·)||pΘ(zt|xt, yt), in
order to have regular latent structure. However, both of
these terms are intractable to compute. Nonetheless, this
objective is achieved by considering the ELBO loss given
in (14b), where the constitutive terms can be computed
analytically. Thus, the goal is to maximize the ELBO loss
LΘ,ϕ given in (14b) w.r.t. both the encoder parameters ϕ
and the decoder parameters Θ.

We now compute both the terms of the loss LΘ,ϕ in (14b)
for PWA model.

Reconstruction error: The first term in (14b) is the av-
eraged log likelihood of the model over the approximate
posterior distribution. This term is equivalent to “recon-
struction or fitting error” in an autoencoder which drives
learning of the model from data.

Substituting the expression of the likelihood (9), we have

Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)]

= Ezt∼qϕ(zt|xt)

[
log

K∏
i=1

(N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
))z

i
t

]

= Ezt∼qϕ(zt|xt)

[
K∑
i=1

zit log(N (yt; θ
′

i

[
1
xt

]
, σ2

vIny
))

]

= Ezt∼qϕ(zt|xt)

[
−1

2σ2
v

K∑
i=1

zit

∥∥∥yt − θ
′

i

[
1
xt

]∥∥∥2 + const

]

=
−1

2σ2
v

K∑
i=1

µi
t

∥∥∥yt − θ
′

i

[
1
xt

]∥∥∥2 + const (15)

Given the categorical approximate posterior distribution
qϕ(zt|xt) of the encoder in (11), the last equality in (15) is
obtained using the fact that Ezt∼q(zt|xt)

[
zit
]
= µi

t for the
categorical variable zt.

Equivalently, for the probability weighted affine model
(PrA) of the decoder, we have,

Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)] =
−1

2σ2
v

∥∥∥∥∥yt −
K∑
i=1

µi
tθ

′

i

[
1
xt

]∥∥∥∥∥
2

,

(16)

and for piecewise non-linear models we have,

Ezt∼qϕ(zt|xt) [log pΘ(yt|zt, xt)] =

−1

2σ2
v

∥∥∥∥∥yt−
K∑
i=1

µi
tNN d(xt, µ

i
t; θi)

∥∥∥∥∥
2

(17)

where NN d(·) is the non-linear MLP decoder network.

Regularization over latent variables: The second term
in (14b) is KL divergence between the (approximate)
posterior (11) and prior over latent variables defined in
(8). This acts as a regularization term and provides a
consistent structure to the latent space. Substituting (8)
and (11), in the second term of (14b) we have,



DKL(qϕ(zt|xt)||p(zt|xt)) = Ezt∼qϕ(zt|xt)

[
log

(
qϕ(zt|xt)

p(zt|xt)

)]
= Ezt∼qϕ(zt|xt)

[
log

(∏K
i=1(µ

i
t)

zi
t∏K

i=1(π
i
t)

zi
t

)]

= Ezt∼qϕ(zt|xt)

[
K∑
i=1

zit log(µ
i
t)− zit log(π

i
t)

]

=

K∑
i=1

µi
t log

(
µi
t

πi
t

)
(18)

The last equality follows as Ezt∼qϕ(zt|xt)

[
zit
]
= µi

t.

For a uniform prior, we have πi
t = 1

K , thus the KL term
simplifies to

K∑
i=1

µi
t log

(
µi
t

πi
t

)
=

K∑
i=1

µi
t log

(
µi
t

)
− log(1/K)

The first term can be interpreted as the (negative) mode
entropy which allows to control potential mode collapse
during the training. We note that limµi

t→0 µi
t log

(
µi
t

)
= 0,

thus, the regularization term is set to 0 for non-active
modes having small probability values.

Substituting the expressions of fitting error (15) and
regularization loss (18) in the ELBO (14b) and averaging
over all data samples, we get the following loss function

LΘ,ϕ({xt, yt}Tt=1) =

1

T

T∑
t=1

K∑
i=1

(
−µi

t

∥∥∥yt − θ
′

i

[
1
xt

]∥∥∥2 − λµi
t log

(
µi
t

πi
t

))
(19)

where λ is a regularization hyper-parameter to achieve
trade-off between reconstruction error and regularization
loss. The encoder and decoder networks are trained at once
to compute the parameters ϕ,Θ via back-propagation of
the loss (19) over training data. The estimate ϕ defines
an encoder which approximates the posterior pΘ(zt|yt, xt)
characterizing the partition of the regressor space, while
decoder parameters Θ give the parameters of the local
submodels of the piecewise hybrid model, thus, solving
Problem 1.

6. NUMERICAL EXAMPLE

The effectiveness of the proposed technique is evaluated
on numerical example, namely, identification of a NPWA-
ARX system is presented. Further examples, e.g., PWA
function regression, identification of a benchmark PWA-
ARX system and identification of PWNL model using
non-linear decoder networks, with link to the codes are
reported in the technical report (Mejari et al., 2022). All
computations are carried out on an i7 1.9-GHz Intel core
processor with 32 GB of RAM. The codes are implemented
with PyTorch 1.12.1 for the training of the neural net-
works.

The quality of the trained models is assessed in terms
of their ability to recognize the partition of the re-
gressor space and their predictive capability quanti-
fied via R2 score computed on a test dataset R2 =(
1−

∑T

t=1
(yt−ŷt)

2∑T

t=1
(yt−ȳ)2

)
× 100 %, where y is the measured

Fig. 2. NPWA-ARX model: True partition (solid black
lines) vs estimated clustering of the regressor space.

output, ŷ is the estimated model output and ȳ is the

average value of y, i.e., ȳ = 1
T

∑T
t=1 yt. We have chosen a

uniform prior p(zt) =
1
K . The number of hidden layers and

number of nodes in each layer of encoder-decoder networks
are tuning hyper-parameters of the VAE, which are chosen
via cross-validation.

6.1 Identification of NPWA-ARX model

In this example, we consider estimation of nonlinearly
piecewise affine system. Specifically, we consider the fol-
lowing data-generating system as a slight modification
to the benchmark PWA-ARX system (Bemporad et al.,
2005), which can be conceived as an extension to the
nonlinearly piecewise affine model (Lauer and Bloch, 2008;
Brusaferri et al., 2020):

yt=


[−0.4 1 1.5 ]xt + et, if [ 4 −1 10 ]xt<0,

[ 0.5 −1 −0.5 ]xt + et, if [ 4 −1 10 ]xt ≥ 0,
& [ 5 1 −6 ]xt ≤ 0,

[−0.4 1 1.5 ]xt + et, if [ 5 1 −6 ]xt > 0,

(20)

with regressor xt = [ yt−1 ut−1 1 ]
′
and e ∼ N (0, σ2) with

σ = 0.3, which corresponds to the SNR = 19 dB. A
training dataset of 6000 samples and a noise-free test
dataset of 2000 samples is gathered. Here, the system
with K = 2 local affine models is assumed to introduce
nonlinear partitioning requirements. We remark that the
problem could be solved by considering a PWA-ARX
model with K = 3 modes and linearly separable clusters.
However, in this example, we aim to infer nonlinearly
PWA-ARX (NPWA-ARX) model by considering onlyK =
2 modes with a nonlinear boundary between mode 1
and mode 2. Note that the system is defined by the
same dynamics occurring over two regions of the regressor
space, although, identification methods which rely on
linear partition of the regression space would require
three modes as the regions are not linearly separable.
For estimation with VAE, we consider encoder network
having a single-hidden-layer with relu activations in the
hidden layer and softmax activation at the output layer.
The number of nodes in the hidden layer of the encoder
is set to 10, while the number of output layer nodes is
set to K = 2. The decoder consists of 2 linear networks,
each with a single layer having dimension equal to the
dimension of the parameters of local affine function in (20).
The VAE is trained by maximizing the loss function (19)
with λ = 1 · 10−3. The learning rate is set to 1 · 10−3

and number of SGD iterations are fixed to 20 · 103. The



Table 1. True vs estimated model parameters
(weights and biases of the decoder network).

Mode True Estimated

1 [−0.4, 1, 1.5 ] [−0.4032, 1.0006, 1.5034 ]
2 [ 0.5, −1, −0.5 ] [ 0.5047, −1.0012, −0.5054 ]

required training time is 92.5 sec. The estimated clustering
pattern is shown in Fig. 2. It can be seen from the figure
that despite nonlinear partitioning induced by the data-
generating system, the encoder is able to recognize the
underlying operating regions of the two dynamics very
accurately. The parameters of the local affine models
(decoder weights and biases) are reported in Table 1, which
closely match the true system parameters for both modes.
Finally, the R2 score obtained on the test data computed
using one-step-ahead predicted output is R2 (1− step) =
99.68% and using simulated output R2 (sim) = 96.77%,
which shows the estimated model is able to reconstruct
the output with high accuracy.

7. CONCLUSION AND FUTURE WORKS

We have presented a framework for learning piecewise
models using specialized variational autoencoder. In con-
trast to the traditional black-box deep learning models, the
developed VAE is interpretable, in the sense that the latent
space can be interpreted in terms of the modes of the un-
derlying hybrid system while the decoder represents local
submodels. The developed approach is effective to identify
a general class of piecewise models as demonstrated in
numerical case study. Future works involve extension of
the proposed method to PWA state-space models and
investigating other variants of VAE, e.g., vector quantized
(VQ-VAE) for data-driven modeling of hybrid systems.
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