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Abstract— We present a direct data-driven approach to syn-
thesize robust control invariant (RCI) sets and their associated
gain-scheduled feedback control laws for linear parameter-
varying (LPV) systems subjected to bounded disturbances. A
data-set consisting of a single state-input-scheduling trajectory
is gathered from the system, which is directly utilized to
compute polytopic RCI set and controllers by solving a semi-
definite program. The proposed method does not require an
intermediate LPV model identification step. Through a numer-
ical example, we show that the proposed approach can generate
RCI sets with a relatively small number of data samples when
the data satisfies certain excitation conditions.

I. INTRODUCTION

A set is referred to as robust control invariant (RCI)
if, from every initial state within the set, there exists an
admissible control input that maintains the state trajectories
within the set despite any bounded disturbances acting on
the system [4]. For linear parameter-varying (LPV) systems,
several algorithms have been proposed to compute RCI
set and its associated controllers, see for e.g., [6], [7],
[12]. These approaches are model-based in which an LPV
model of the system is assumed to be available. However,
obtaining an LPV model of the underlying system poses
several challenges such as structure selection, estimation and
validation [8], [13]. An inaccurate model can lead to the loss
of the invariance property and the violation of constraints
during closed-loop operations.

To mitigate the limitations of model-based methods, direct
data-driven approaches have emerged as favorable alterna-
tives which circumvent the necessity for model identification.
The direct data-driven algorithm presented in [3], computes
a state-feedback controller from open-loop data to induce
robust invariance in a polyhedral set. However, this method
requires that the set is known a-priori. Recent contributions
offer data-driven techniques that simultaneously compute
RCI sets and associated invariance-inducing controllers [2],
[9], [17]. These methods generate RCI sets having zono-
topic [2], polytopic [9] and ellipsoidal [17] set representa-
tions, however, they are limited to linear time-invariant (LTI)
systems. In the context of LPV systems, several approaches
have focused on direct data-driven algorithms to synthesize
LPV controllers, see for e.g., LPV input-output controllers
for constrained systems [13], predictive controllers [15]
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and gain-scheduled controllers [10], [16]. In spite of the
several methods proposed for control design, to the best
of our knowledge, there is no contribution which addresses
the problem of RCI set computation for constrained LPV
systems in a data-driven framework.

In this regard, we develop a direct data-driven approach
to compute polytopic RCI sets and gain-scheduled state-
feedback controllers for unknown LPV systems subject to
state, input, scheduling and disturbance constraints. We built
upon the method recently developed by the authors in [9].
The method in [9] is restricted to LTI models, which is
extended in this work to LPV systems. A novel data-based
condition for invariance is derived, which ensures invariance
robustly for all scheduling trajectories within a given set and
for all bounded disturbances acting on the system. In partic-
ular, a set of admissible LPV models is identified, which is
compatible with measured data and disturbance bounds. The
invariance is guaranteed robustly for all feasible models in
this set. Furthermore, we employ a gain-scheduled controller
which uses available scheduling signal measurements. The
set invariance is guaranteed robustly for all scheduling pa-
rameters lying in a given set. Non-linearly between “for all”
unknown plant models and “for all” scheduling parameters is
resolved through vertex enumeration of scheduling parameter
set and employing full block S-procedure. Our approach
does not require an LPV model of the system but only a
single state-input-scheduling trajectory consisting of finite
data samples. We show via a numerical example that if the
gathered data satisfies certain excitation conditions, then RCI
sets and invariance inducing gain-scheduled controllers can
be synthesized with relatively few number of data samples.

II. NOTATIONS AND PRELIMINARIES

We denote by Inm ≜ {m, . . . , n}, a set of natural numbers
between two integers m and n, m ≤ n. In the paper
∗’s represent matrix entries uniquely identifiable from
symmetry. Let A ∈ Rm×n be a matrix written according
to its n coulumn vectors as A = [ a1 ··· an ], we define
vectorization of A as A⃗ ≜ [ a⊤

1 ··· a⊤
n ]

⊤ ∈ Rmn, stacking
the columns of A. For a finite set Θv ≜ {θj ∈ Rn, j ∈ Ir1},
the convex-hull of Θv is given by, conv(Θv) ≜{
θ ∈ Rn : θ =

∑r
j=1 αjθ

j , s.t
∑r

j=1 αj = 1, αj ∈ [0, 1]
}

.
A⊗B denotes the Kronecker product between A,B.

Lemma 1 (Vectorization): For matrices A ∈ Rk×l, B ∈
Rl×m, C ∈ Rm×n and D ∈ Rk×n, the matrix equation
ABC = D is equivalent to (see, [1, Ex. 10.18]),

(C⊤ ⊗A)
#»

B =
#         »

ABC =
#»

D (1)



III. PROBLEM FORMULATION

A. Data-generating LPV system and constraints

The following LPV A-affine discrete-time data-generating
system is considered

xk+1 = A(pk)xk+Bouk+wk, (2)

where xk ∈ Rn, uk ∈ Rm, pk ∈ Rs and wk ∈ Rn

denotes the state, control input, scheduling parameter and
the (additive) disturbance vectors, at time k, respectively.
The function A(pk) is assumed to have a linear dependency
on the parameter pk as,

A(pk) =

s∑
j=1

pk,jA
j
o, (3)

where pk,j denotes the j-th element of pk ∈ Rs and
Aj

o ∈ Rn×n. The system matrices {Aj
o}sj=1, Bo are unknown.

Using (3), the LPV system (2) can be written as

xk+1 =
[
A1

o · · · As
o Bo

]︸ ︷︷ ︸
Mo

[
pk ⊗ xk

uk

]
+ wk. (4)

We assume that a data-set {xk, pk, uk}T+1
k=1 of T +1 samples

generated from System (2) is available. The data are arranged
in the following matrices,

X+ ≜ [x2 x3 · · · xT+1] ∈ Rn×T , (5a)

Xp
u ≜

[
p1 ⊗ x1 p2 ⊗ x2 . . . pT ⊗ xT

u1 u2 . . . uT

]
∈ R(ns+m)×T ,

(5b)

We consider the following state, input, scheduling and dis-
turbance constraints sets, respectively:

X ≜ {x : Hxx ≤ 1nx} , U ≜ {u : Huu ≤ 1nu} , (6a)

P ≜conv({pj}, j ∈ Ivp1 ) (6b)

W ≜ {w : −1nw
≤ Hww ≤ 1nw

} , (6c)

where Hx, Hu, Hw, are given matrices and {pj}, j ∈ Ivp1
are given vertices. The states are affected by unknown
disturbance samples wk, however, they are assumed to lie
in a bounded known disturbance set W for k ∈ IT+1

1 .

B. Set of admissible LPV models

and ‘informative’ data Let us define a set of admissible
model matrices which satisfy the system equation (2) and
are compatible with the disturbance set W , as follows

MT ≜

{
M : xk+1 −M

[
pk ⊗ xk

uk

]
∈ W, k ∈ IT1

}
. (7)

where M = [A1,...As, B ] ∈ Rn×(ns+m). The matrix Mo

in (4) of the true data-generating system belongs to this set.
Using (5) and (6c), the feasible model set MT is represented
as,

MT ≜
{
M : −1̄ ≤ HwX

+ −HwMXp
u ≤ 1̄

}
, (8)

with 1̄ ≜ [ 1nw 1nw ··· 1nw ] ∈ Rnw×T .

We now rewrite the feasible model set MT in (8) using
the vectorization Lemma 1 for

# »

M ∈ Rn(ns+m) as follows,

MT ≜
{

# »

M : −1Tnw+d ≤ Z
# »

M≤1Tnw
+d
}
, (9)

where we define Z ∈ RTnw×(ns+m)n and d ∈ RTnw as

Z ≜
(
Xp

u
⊤ ⊗Hw

)
, d ≜

 Hwx2

...
HwxT+1

 (10)

Proposition 1 (Bounded admissible model set): The ad-
missible model set MT in (9) is a bounded polyhedron if
and only if rank (Xp

u) = (ns+m) and Hw has a full column
rank n, see [3, Fact 1].
From the measured data, the full row rank of Xp

u can be
checked. We note that this also relates to the “informative”
data and persistency of excitation condition for LPV sys-
tems [16, condition 1]. If the rank conditions are not met,
then for an unbounded set MT , it is challenging to find an
RCI set and invariance inducing controller, which will work
for all models M ∈ MT .

C. Gain-scheduled invariance inducing control

We parameterize the controller to be a state-feedback
control law with a linear dependency on the scheduling
parameters given as follows

uk = K(pk)xk, (11)

where K(pk) =
∑s

j=1 pk,jK
j with Kj ∈ Rm×n for j ∈ Is1

are feedback gain matrices. Let K = [K1,··· ,Ks ] ∈ Rm×ns

such that uk = K(pk)xk = K
[
pk ⊗ xk

]
.

From (7) and (11), for an admissible model M ∈ MT ,
the closed-loop dynamics is given by

x+ = M

[
Ins
K

] [
p⊗ x

]
+ w, (12)

where the k dependence is omitted and x+ denotes the
successor state. We now consider an RCI set S parameterized
as a 0-symmetric polytope1 defined as follows

S ≜
{
x ∈ Rn : −1nc

≤ CW−1x ≤ 1nc

}
, (13)

where C ∈ Rnc×n is a fixed matrix, W ∈ Rn×n is an
unknown matrix to be computed. The matrix C is chosen in
such a way that S will be a full dimensional polytope in Rn,
the choice of C is discussed in details in [6, Section 5].

A set S is referred to as robustly invariant for the
system (12), if for any given p ∈ P , the following condition
is satisfied

x ∈ S ⇒ x+ ∈ S, ∀M ∈ MT ,∀w ∈ W. (14)

By definition the RCI set S also satisfies the state and
input constraints, S ⊆ X and KS ⊆ U , given as follows

x ∈ S ⇒ x ∈ X , (15)

x ∈ S ⇒ u = K
[
p⊗ x

]
∈ U ∀p ∈ P (16)

1In the definition of S, we have assumed that W is invertible, which
would be later guaranteed by the LMI conditions for invariance.



We now formalize the problem considered in this letter:
Problem 1: Given the measured state-input-scheduling

data {xk, pk, uk}T+1
k=1 , the constraints sets (6a) and a user-

chosen matrix C, compute the matrix W parameterizing
the set S in (13) and feedback controller gains K such
that: 1) The invariance condition (14) is satisfied; 2) The
set S satisfies the state and input constraints (15) and (16),
respectively. We also aim at maximizing the size of the RCI
set S.

IV. DATA-BASED SUFFICIENT LMI CONDITIONS FOR
SYSTEM CONSTRAINTS AND INVARIANCE

In order to obtain tractable conditions for the system
constraints and the invariance, we define an appropriate
coordinate transformation of the state as follows [6]:

θ = W−1x ⇔ x = Wθ. (17)

Based on this transformation, the set S in (13) is given as

S ≜ {Wθ ∈ Rn : θ ∈ Θ} , (18)

where Θ is a symmetric set defined in the θ-state-space:

Θ ≜ {θ ∈ Rn : −1nc ≤ Cθ ≤ 1nc} . (19)

Note that, the candidate invariant set Θ is a known 0-
symmetric set. The choice of W is the key factor that wholly
determines the corresponding polytopic set S in the original
x-state-space, and it is our objective to compute W. The
vertices

{
θ1, . . . , θ2σ

}
of Θ are known for a fixed C, and

the set can be represented as a convex hull of its vertices:

Θ = conv
({

θ1, . . . , θ2σ
})

, (20)

where σ > 0 is a known integer determined by C.

A. System constraints

Based on the transformation defined in (17), the state and
input inequality constraints (6a) can be expressed in the θ-
state-space. When the constraints are met at all the vertices
{θi}2σi=1, of the convex set Θ, it guarantees their fulfillment
for the entire set Θ due to the convexity property. The state
constraints (15) in terms of W at the vertices of Θ are given
as follows:

HxWθ ≤ 1nx
,∀θ ∈ Θ ⇔ HxWθi ≤ 1nx

, i∈ I2σ1 (21)

In order to express the control input constraints in terms of
W, we introduce the matrix variables Nl ∈ Rm×n for l ∈ Is1
as follows:

N ≜
[
N1 · · · Ns

]
=
[
K1W · · · KsW

]
∈ Rm×ns

(22)
with Kl = NlW−1. The control input constraints in (16)
are then given as

HuK
[
pk ⊗Wθ

]
≤ 1nu , (23)

where,

K
[
pk ⊗Wθ

]
=
[
K1Wpk,1 + · · ·+KsWpk,s

]
θ

=
[
K1W · · · KsW

]︸ ︷︷ ︸
N

[
pk ⊗ θ

]
(24)

The input constraints (23) can be written as

HuN
[
p⊗ θ

]
≤ 1nu ,∀(θ, p) ∈ (Θ,P) ⇔ (25)

HuN
[
pj ⊗ θi

]
≤ 1nu

, i ∈ I2σ1 , j ∈ Ivp1 (26)

Note that (25) and (26) are equivalent as the Kronecker
product map is linear in each of its arguments (p, θ) and
the sets P,Θ and U are convex.

B. Invariance condition

We now write the system dynamics in the θ-state-space
for an admissible LPV model M ∈ MT and for all w ∈ W ,
p ∈ P . By using (17) and (24), the closed-loop dynamics
(12) can be written as

Wθ+ = M

[
p⊗Wθ

K
[
p⊗Wθ

]]+ w = M

[
Isp⊗Wθ
N
[
p⊗ θ

]]+ w,

= M

[
W̄
N

] [
p⊗ θ

]
+ w, (27)

where W̄ ≜ Is ⊗W and the last equality follows from the
mixed-product property of the Kronekar product. Based on
the closed-loop dynamics (27), we will now state and prove
two equivalent invariance conditions in the θ state-space.

Lemma 2: If the set Θ in (19) is robustly invariant for
system (27) then the following two statements are equivalent:
(i) for all θ ∈ Θ, for any given p ∈ P , ∀(w,M) ∈

(W,MT ),

θ+ =

(
W−1M

[
W̄
N

] [
p⊗ θ

]
+W−1w

)
∈ Θ (28)

(ii) for each vertex θi, i ∈ I2σ1 of the set Θ, and for each
vertex pj , j ∈ Ivp1 of the set P , ∀(w,M) ∈ (W,MT ),

θi,j
+
=

(
W−1M

[
W̄
N

] [
pj ⊗ θi

]
+W−1w

)
∈ Θ (29)

See Appendix VIII for the proof of Lemma 2. In the rest
of the paper, we will consider condition (29) for ensuring
robust invariance of the set Θ.

C. LMI Condition for Data-Driven Invariance

We will now present a data-based sufficient LMI condition
to compute W and an associated LPV state-feedback con-
troller such that the set Θ is rendered invariant. The closed-
loop dynamics (29) at the vertices θi, pj can be written as,

Wθi,j
+
=

(([
W̄
N

] [
pj ⊗ θi

])⊤

⊗ In

)
︸ ︷︷ ︸

G(W,N,pj ,θi)

# »

M + w. (30)

where we have used the vectorization identity in (1). In order
to obtain less conservative LMI conditions, we introduce
new matrix variables Vijk ∈ Rn×n and signals ξijk =

V−1
ijkWθi,j

+, for k ∈ Inc
1 , i ∈ I2σ1 , j ∈ Ivp1 , and express

the dynamics (30) as follows,

G
(
W,N, pj , θi

) # »

M + w −Vijkξijk = 0. (31)



From the set definition in (19) the invariance condition (29)
is given as, for all k ∈ Inc

1 , i ∈ I2σ1 j ∈ Ivp1 ,

1− (e⊤k Cθi,j
+
)2 ≥ 0, ∀w ∈ W, ∀ # »

M ∈ MT , (32)

where ek is the k-th column vector of the identity matrix
Inc

. By substituting (31) in (32) we obtain,

1−(e⊤k CW−1Vijkξijk)
2 ≥ 0, ∀w ∈ W, ∀ # »

M ∈ MT , (33)

Following the S-procedure [14], (33) is multiplied by a
positive scalar variable ϕijk > 0 and the left hand side
is lower bounded by a term that is guaranteed to be non-
negative for all w ∈ W,

# »

M ∈ MT as follows,

ϕijk(1− (e⊤k CW−1Vijkξijk)
2) ≥

2ξ⊤ijk

(
G(W,N, pj , θi)

# »

M + w −Vijkξijk

)
︸ ︷︷ ︸

0

+
(
(1+ d)− Z

# »

M
)⊤

Λijk

(
(1− d) + Z

# »

M
)

︸ ︷︷ ︸
≥0

+ (1+Hww)
⊤Γijk(1−Hww)︸ ︷︷ ︸

≥0

, (34)

with Λijk ∈ DTnw
+ ,Γijk ∈ Dnw

+ , being diagonal matrix
variables having non-negative entries. Note that the right
hand side of (34) is non-negative, which can be verified
based on (30) and the set definitions W , MT in (6c), (9)
respectively. We rewrite (34) into the following quadratic
form:

κ⊤Pijk(W,N,Λijk,Γijk,ϕijk,Vijk)κ ≽ 0, ∀κ, (35)

where κ⊤ =
[
1

# »

M⊤ w⊤ −ξ⊤ijk

]
and Pijk is a sym-

metric matrix. Thus, a sufficient invariance condition is the
LMI Pijk ≽ 0, i.e.,
rijk −d⊤ΛijkZ 0 0
∗ Z⊤ΛijkZ 0 G⊤ (W,N, pj , θi

)
∗ ∗ H⊤

wΓijkHw In
∗ ∗ ∗ Vijk+V⊤

ijk−V⊤
ijkLijkVijk

 ≽ 0,

(36)
where Lijk ≜ ϕijkW

−⊤C⊤eke
⊤
k CW−1 and rijk ∈ R,

G(W,N, pj , θi) ∈ Rn×(ns+m)n are defined as follows:

rijk ≜ ϕijk−1⊤Λijk1−1⊤
nw
Γijk1nw

+ d⊤Λijkd, (37a)

G
(
W,N, pj , θi

)
≜

([
W̄
N

] [
pj ⊗ θi

])⊤

⊗ In, (37b)

Note that the block (4, 4) in (36) exhibits nonlinear depen-
dence on the variables ϕijk,Vijk and W. To resolve this
non-linearity we will introduce new matrix variables.

Theorem 3 (Data-based LMI conditions for invariance):
Given available data (X+, Xp

u) and a user-specified fixed
matrix C ∈ Rnc×n, if there exists variables W ∈ Rn×n,
N ∈ Rm×ns, and {ϕijk ∈ R+,Λijk ∈ DTnw

+ ,Γijk ∈
Dnw

+ ,Xijk,Vijk ∈ Rn×n} that satisfy the following LMIs
for k ∈ Inc

1 , i ∈ I2σ1 and j ∈ Ivp1 ,[
W⊤ +W −Xijk ϕijkC

⊤ek
ϕijke

⊤
kC ϕijk

]
≽0. (38)


rijk −d⊤ΛijkZ 0 0 0
∗ Z⊤ΛijkZ 0 G⊤ (W,N, pj , θi

)
0

∗ ∗ H⊤
wΓijkHw In 0

∗ ∗ ∗ Vijk+V⊤
ijk V⊤

ijk

∗ ∗ ∗ ∗ Xijk

 ≽ 0,

(39)
where, rijk, G(W,N, pj , θi) are as defined in (37a), (37b),
then, the state feedback controller gain is obtained as Kl =
NlW−1 for l ∈ Is1 which renders the set S in (18) robust
invariant.

Proof: Let us introduce a new matrix variable Xijk =
X⊤

ijk ≻ 0 such that

X−1
ijk−Lijk≻0 ⇔ X−1

ijk−ϕijkW
−⊤C⊤eke

⊤
kCW−1≻0,

(40)
in order to resolve the non-linearity in the block (4, 4) of
(36). By applying Schur complement to (40) we obtain,[

X−1
ijk ϕijkW

−⊤C⊤ek
ϕijke

⊤
kCW−1 ϕijk

]
≻0. (41)

Using congruence transformation matrix diag{W, In}, LMI
in (41) can be rewritten as[

W⊤X−1
ijkW ϕijkC

⊤ek
ϕijke

⊤
kC ϕijk

]
≻0. (42)

In order to resolve the nonlinear dependence in the (1, 1)
block of the left hand side matrix in (42), we use,

W⊤X−1
ijkW=(W−Xijk)

⊤X−1
ijk(W−Xijk)+W+W⊤−Xijk

≽ W +W⊤ −Xijk (43)

By substituting W⊤X−1
ijkW in (42) with W+W⊤−Xijk,

we obtain a sufficient LMI condition for (42) as given in
(38). Thus, proving the first LMI condition (38) stated in
Theorem 3.

From (40), the condition (36) can be rewritten as
rijk −d⊤ΛijkZ 0 0
∗ Z⊤ΛijkZ 0 G⊤

(
W,N, pj , θi

)
∗ ∗ H⊤

wΓijkHw In
∗ ∗ ∗ Vijk+V⊤

ijk−V⊤
ijkX

−1
ijkVijk

≽0,
(44)

which, after applying the Schur complement, we obtain the
second LMI condition (39).

V. SDP PROGRAM FOR VOLUME MAXIMIZATION OF THE
RCI SET

The volume of the polytopic set S in (13) is proportional
to the determinant |det(W)| [6], for a given C. We present
an iterative determinant maximization algorithm to maximize
the size of S . At the q-th iteration, let W q and Xq

ij be the
values of the variables W, Xij . At each subsequent iteration,
the volume of the RCI set increases, i.e., |det(W q+1)| ≥
|det(W q)|, if the following LMI condition is imposed,

W⊤W q + (W q)⊤W − (W q)⊤W q ≽ Wobj ≻ 0, (45)

where Wobj = W⊤
obj ∈ Rn×n is the new symmetric matrix

variable. Moreover, the non-linearity (43) can be written as,

W⊤X−1
ijkW≽W⊤Zq

ijk+Zq
ijk

⊤
W−Zq

ijk
⊤
XijkZ

q
ijk, (46)



where Zq
ijk ≜ (Xq

ijk)
−1W q . At the q-th iteration, the (1, 1)-

block in (38) is substituted with the right hand side of (46),[
W⊤Zq

ijk + Zq
ijk

⊤
W − Zq

ijk
⊤
XijkZ

q
ijk ϕijkC

⊤ek
ϕijke

⊤
kC ϕijk

]
≽0.

(47)
Thus, we solve the following SDP program at each iteration:
Algorithm 1: q-th iteration:

max log det(Wobj)
ZSDP

subject to: (45),
(21), (26), (state-input constraints)
(39), (47), (invariance LMIs)

(48)
where the optimization variables are ZSDP ≜
(W,N,Xijk,Vijk,ϕijk,Λijk,Γijk,Wobj), for k ∈ Inc

1 ,
i ∈ I2σ1 , j ∈ Ivp1 . The SDP (48) consists of linear state-input
constraints which are identified by 2σnx, 2σnuvp scalar
inequalities. The invariance conditions (39), (47) consists of
2ncσvp LMI constraints, each LMI has (1+(ns+m)n+3n),
and (n + 1) number of rows, respectively. All constraints
are in terms of 3n2 + mns + (T + 1)nw + 1 optimization
variables. The number of variables scale quadratically in the
state dimension n, thus, the approach can be computationally
expensive for systems having a large state dimension.

VI. NUMERICAL EXAMPLE

The effectiveness of the proposed method is shown via
a numerical example. The algorithm is implemented in
Python with cvxpy [5] and MOSEK [11] to solve the SDP
program.

Open-loop unstable LPV data-generating system

We consider parameter-varying double integrator system:

xk+1 =

[
1 + δk 1 + δk

0 1 + δk

]
xk +

[
1
1

]
uk + wk, (49)

where |δk| ≤ 0.2, with the following state-input constraints,[
0.10 −0.10 0.10 −0.10 0 0
0.15 −0.10 −0.15 0.15 0.25 − 1

6

]⊤
x ≤ 1, |u|≤3,

The disturbance is assumed to lie in a set W = {w : |w| ≤
0.1}. The system can be written in the LPV form (2) with

A1 =

[
1.2 1.2
0 1.2

]
, A2 =

[
0.8 0.8
0 0.8

]
, B =

[
1
1

]
defining pk,1 = 2.5(0.2 + δk), pk,2 = 2.5(0.2 − δk). This
corresponds to the simplex scheduling parameter set P =
{p ∈ R2 : p ∈ [0, 1], p1 + p2 = 1} = conv([ 10 ] , [

0
1 ]). The

system matrices {A1, A2, B} are unknown and only used
to gather the data. A single state-input-scheduling trajectory
of T = 20 samples is gathered by exciting the system (49)
with inputs uniformly distributed in [−3, 3]. The data satisfies
the rank condition in Proposition 1, i.e, rank(Xp

u) = 5. We
select the matrix C to define a regular polytope of desired
complexity by assuming W = I . The maximum volume
RCI set and the associated PD state-feedback gain matrices
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Fig. 1: Maximum volume RCI sets S (blue), closed-loop
simulated trajectories (orange) and state constraints set (red).
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Fig. 3: Control input u = K(p)x trajectories for the com-
puted state-feedback gain. Input constraints (dashed-red).

are computed with Algorithm 1 solving (48) iteratively for
5 iterations with data-based LMI conditions. The obtained
invariant set matrix W and feedback control gains {K1,K2}
for the set complexity nc = 2, 3 are :

C2 =

[
1 0
0 1

]
,

 W2

K1
2

K2
2

 =


6.02 −0.79
0.02 2.15

−0.11 −0.73
−0.18 −0.94

 ,

C3=

 20 20
−20 0
0 −25

 ,

 W3

K1
3

K2
3

=


115.82 44.77
−14.83 81.46
−0.27 −0.68
−0.31 −0.67


In Fig. 1, the corresponding RCI sets are plotted. The

volume of the obtained RCI sets S are 53.14 (nc = 2) and
64.86 (nc = 3). The volume of the RCI sets w.r.t. iterations
of Algorithm 1 is shown in Fig. 2. It can be observed that
as nc increases, size of the RCI set increases, thus C can be
used as a tuning parameter to achieve a trade-off between
complexity vs size of the set. Fig. 1 also depicts closed-
loop state trajectories starting from each vertex of the RCI



set and corresponding control input trajectories are shown
in Fig. 3. The state trajectories are obtained by simulating
the true system (49) in closed-loop with the obtained state-
feedback controller u = K(p)x with each vertex of the RCI
set as the initial condition. Note that for each closed-loop
simulation, a different realization of the scheduling signal
p ∈ [0, 1] is generated, as well as a different realization
of the disturbance signal w in the given bound is acting
on the system at each time instance. The result shows that
the approach guarantees robust invariance w.r.t. all possible
scheduling signals taking values in a given set as well as in
the presence of a bounded but unknown disturbance, while
respecting the state-constraints. Fig. 3 shows that the input
constraints are also satisfied. Finally, we analyse the effect

T 20 50 100 200
volume(S) 64.86 67.04 68.55 68.77

TABLE I: Volume of S vs number of data samples T .

of number of data samples T on the size of the RCI set S.
The results are reported in Table I, which show that as T is
increases, volume of the RCI sets increases. This is due to
the fact that the feasible model set MT shrinks progressively
MT+1 ⊆ MT , as T increases.

VII. CONCLUSION

We proposed a direct data-driven method to compute a
polytopic RCI set and gain scheduled state-feedback control
law for LPV system. Novel data-based sufficient invariance
conditions are proposed which utilize a single state-input-
scheduling trajectory without requiring to identify an LPV
model of the system. The effectiveness of the proposed
algorithm is shown via a numerical example to generate RCI
set from a small number of collected data samples. As a
future work, we propose to extend the present approach for
synthesizing parameter-dependent RCI sets for LPV systems.

VIII. APPENDIX: PROOF OF LEMMA 2

Proof: Since for each vertex θi, i ∈ I2σ1 , and pj , j ∈
Ivp1 , we have θi ∈ Θ, pj ∈ P , it holds that (i) ⇒ (ii). Now
we will prove (ii) ⇒ (i). Any given θ ∈ Θ and p ∈ P can
be expressed as a convex combination of the vertices of the
respective sets, θ =

∑2σ
i=1 αiθ

i,
∑2σ

i=1 αi = 1, αi ≥ 0
and p =

∑vp
j=1 βjp

j ,
∑vp

j=1 βj = 1, βj ≥ 0 Then, based
on the closed-loop dynamics (27) we get,

θ+=W−1M

[
W̄
N

] vp∑
j=1

βjp
j ⊗

2σ∑
i=1

αiθ
i

+W−1w (50)

=

vp∑
j=1

βj

2σ∑
i=1

αi

(
W−1M

[
W̄
N

] [
pj ⊗ θi

]
+W−1w

)
︸ ︷︷ ︸

θi,j+∈Θ

(51)

=

vp∑
j=1

βj

2σ∑
i=1

αiθ
i,j+

︸ ︷︷ ︸
θj+∈Θ

=

vp∑
j=1

βjθ
j+ ∈ Θ, (52)

where (51) follows from the distributive property of the
Kronecker product. We know that θi,j

+ ∈ Θ according to
(29). As θj

+ in (52) is a convex combination of θi,j
+ and

the set Θ is convex, we obtain θj
+ ∈ Θ. Similarly, as θ+ is

a convex combination of θj
+ ∈ Θ and the set Θ is convex,

we get θ+ ∈ Θ, thus proving (ii) ⇒ (i).
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