
Learning Bayesian Networks with Thousands of
Variables

Mauro Scanagatta
IDSIA∗ , SUPSI† , USI‡
Lugano, Switzerland
mauro@idsia.ch

Cassio P. de Campos
Queen’s University Belfast

Northern Ireland, UK
c.decampos@qub.ac.uk

Giorgio Corani
IDSIA∗ , SUPSI† , USI‡

Lugano, Switzerland
giorgio@idsia.ch

Marco Zaffalon
IDSIA∗

Lugano, Switzerland
zaffalon@idsia.ch

Abstract

We present a method for learning Bayesian networks from data sets containing
thousands of variables without the need for structure constraints. Our approach
is made of two parts. The first is a novel algorithm that effectively explores the
space of possible parent sets of a node. It guides the exploration towards the
most promising parent sets on the basis of an approximated score function that
is computed in constant time. The second part is an improvement of an existing
ordering-based algorithm for structure optimization. The new algorithm provably
achieves a higher score compared to its original formulation. Our novel approach
consistently outperforms the state of the art on very large data sets.

1 Introduction

Learning the structure of a Bayesian network from data is NP-hard [2]. We focus on score-based
learning, namely finding the structure which maximizes a score that depends on the data [9]. Several
exact algorithms have been developed based on dynamic programming [12, 17], branch and bound
[7], linear and integer programming [4, 10], shortest-path heuristic [19, 20].

Usually structural learning is accomplished in two steps: parent set identification and structure
optimization. Parent set identification produces a list of suitable candidate parent sets for each
variable. Structure optimization assigns a parent set to each node, maximizing the score of the
resulting structure without introducing cycles.

The problem of parent set identification is unlikely to admit a polynomial-time algorithm with a
good quality guarantee [11]. This motivates the development of effective search heuristics. Usually
however one decides the maximum in-degree (number of parents per node) k and then simply com-
putes the score of all parent sets. At that point one performs structural optimization. An exception is
the greedy search of the K2 algorithm [3], which has however been superseded by the more modern
approaches mentioned above.

A higher in-degree implies a larger search space and allows achieving a higher score; however it
also requires higher computational time. When choosing the in-degree the user makes a trade-off
between these two objectives. However when the number of variables is large, the in-degree is

∗Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA)
†Scuola universitaria professionale della Svizzera italiana (SUPSI)
‡Università della Svizzera italiana (USI)

1

generally set to a small value, to allow the optimization to be feasible. The largest data set analyzed
in [1] with the Gobnilp1 software contains 413 variables; it is analyzed setting k = 2. In [5] Gobnilp
is used for structural learning with 1614 variables, setting k = 2. These are among the largest
examples of score-based structural learning in the literature.

In this paper we propose an algorithm that performs approximated structure learning with thousands
of variables without constraints on the in-degree. It is constituted by a novel approach for parent set
identification and a novel approach for structure optimization.

As for parent set identification we propose an anytime algorithm that effectively explores the space
of possible parent sets. It guides the exploration towards the most promising parent sets, exploiting
an approximated score function that is computed in constant time. As for structure optimization,
we extend the ordering-based algorithm of [18], which provides an effective approach for model
selection with reduced computational cost. Our algorithm is guaranteed to find a solution better than
or equal to that of [18].

We test our approach on data sets containing up to ten thousand variables. As a performance indica-
tor we consider the score of the network found. Our parent set identification approach outperforms
consistently the usual approach of setting the maximum in-degree and then computing the score of
all parent sets. Our structure optimization approach outperforms Gobnilp when learning with more
than 500 nodes. All the software and data sets used in the experiments are available online. 2.

2 Structure Learning of Bayesian Networks

Consider the problem of learning the structure of a Bayesian Network from a complete data set ofN
instances D = {D1, ..., DN}. The set of n categorical random variables is X = {X1, ..., Xn}. The
goal is to find the best DAG G = (V, E), where V is the collection of nodes and E is the collection
of arcs. E can be defined as the set of parents Π1, ...,Πn of each variable. Different scores can be
used to assess the fit of a DAG. We adopt the BIC, which asymptotically approximates the posterior
probability of the DAG. The BIC score is decomposable, namely it is constituted by the sum of the
scores of the individual variables:

BIC(G) =

=
∑n

i=1
BIC(Xi,Πi) =

∑n

i=1

∑
π∈|Πi|

∑
x∈|Xi|

Nx,π log θ̂x|π −
logN

2
(|Xi| − 1)(|Πi|) ,

where θ̂x|π is the maximum likelihood estimate of the conditional probability P (Xi = x|Πi = π),
andNx,π represents the number of times (X = x∧Πi = π) appears in the data set, and | · | indicates
the size of the Cartesian product space of the variables given as arguments (instead of the number of
variables) such that |Xi| is the number of states of Xi and |∅| = 1.

Exploiting decomposability, we first identify independently for each variable a list of candidate
parent sets (parent set identification). Then by structure optimization we select for each node the
parent set that yields the highest score without introducing cycles.

3 Parent set identification

For parent set identification usually one explores all the possible parent sets, whose number however
increases as O(nk), where k denotes the maximum in-degree. Pruning rules [7] do not considerably
reduce the size of this space.

Usually the parent sets are explored in sequential order: first all the parent size of size one, then all
the parent sets of size two, and so on, up to size k. We refer to this approach as sequential ordering.
If the solver adopted for structural optimization is exact, this strategy allows to find the globally
optimum graph given the chosen value of k. In order to deal with a large number of variables it
is however necessary setting a low in-degree k. For instance [1] adopts k=2 when dealing with
the largest data set (diabetes), which contains 413 variables. In [5] Gobnilp is used for structural
learning with 1614 variables, again setting k = 2. A higher value of k would make the structural

1http://www.cs.york.ac.uk/aig/sw/gobnilp/
2http://blip.idsia.ch

2

http://www.cs.york.ac.uk/aig/sw/gobnilp/
http://blip.idsia.ch

learning not feasible. Yet a low k implies dropping all the parent sets with size larger than k. Some
of them possibly have a high score.

In [18] it is proposed to adopt the subset Πcorr of the most correlated variables with the children
variable. Then [18] consider only parent sets which are subsets of Πcorr. However this approach
is not commonly adopted, possibly because it requires specifying the size of Πcorr. Indeed [18]
acknowledges the need for further innovative approaches in order to effectively explore the space of
the parent sets.

We propose two anytime algorithms to address this problem. The first is the simplest; we call it
greedy selection. It starts by exploring all the parent sets of size one and adding them to a list. Then
it repeats the following until time is expired: pops the best scoring parent set Π from the list, explores
all the supersets obtained by adding one variable to Π, and adds them to the list. Note that in general
the parent sets chosen at two adjoining step are not related to each other. The second approach
(independence selection) adopts a more sophisticated strategy, as explained in the following.

3.1 Parent set identification by independence selection

Independence selection uses an approximation of the actual BIC score of a parent set Π, which we
denote as BIC∗, to guide the exploration of the space of the parent sets. The BIC∗ of a parent set
constituted by the union of two non-empty parent sets Π1 and Π2 is defined as follows:

BIC∗(X,Π1,Π2) = BIC(X,Π1) + BIC(X,Π2) + inter(X,Π1,Π2) , (1)

with Π1∪Π2 = Π and inter(X,Π1,Π2) = logN
2 (|X|−1)(|Π1|+|Π2|−|Π1||Π2|−1)−BIC(X,∅).

If we already know BIC(X,Π1) and BIC(X,Π2) from previous calculations (and we know
BIC(X,∅)), then BIC∗ can be computed in constant time (with respect to data accesses). We
thus exploit BIC∗ to quickly estimate the score of a large number of candidate parent sets and to
decide the order to explore them.

We provide a bound for the difference between BIC∗(X,Π1,Π2) and BIC(X,Π1 ∪ Π2). To this
end, we denote by ii the Interaction Information [14]: ii(X;Y ;Z) = I(X;Y |Z)− I(X;Y), namely
the difference between the mutual information of X and Y conditional on Z and the unconditional
mutual information of X and Y .

Theorem 1. Let X be a node of G and Π = Π1 ∪ Π2 be a parent set for X with Π1 ∩ Π2 = ∅
and Π1,Π2 non-empty. Then BIC(X,Π) = BIC∗(X,Π1,Π2) + N · ii(Π1; Π2;X), where ii is the
Interaction Information estimated from data.

Proof. BIC(X,Π1 ∪Π2)− BIC∗(X,Π1,Π2) =

BIC(X,Π1 ∪Π2)− BIC(X,Π1)− BIC(X,Π2)− inter(X,Π1,Π2) =∑
x,π1,π2

Nx,π1,π2

[
log θ̂x|π1,π2

− log(θ̂x|π1
θ̂x|π2

)
]

+
∑

x
Nx log θ̂x =

∑
x,π1,π2

Nx,π1,π2

[
log θ̂x|π1,π2

− log

(
θ̂x|π1

θ̂x|π2

θ̂x

)]
=

∑
x,π1,π2

Nx,π1,π2
log

(
θ̂x|π1,π2

θ̂x

θ̂x|π1
θ̂x|π2

)
=
∑

x,π1,π2

N · θ̂x,π1,π2
log

(
θ̂π1,π2|xθ̂π1

θ̂π2

θ̂π1|xθ̂π2|xθ̂π1,π2

)
=

N

(∑
x,π1,π2

θ̂x,π1,π2
log

(
θ̂π1,π2|x

θ̂π1|xθ̂π2|x

)
−
∑

π1,π2

θ̂π1,π2
log

(
θ̂π1,π2

θ̂π1 θ̂π2

))
=

N · (I(Π1; Π2|X)− I(Π1; Π2)) = N · ii(Π1; Π2;X) ,

where I(·) denotes the (conditional) mutual information estimated from data.

Corollary 1. Let X be a node of G, and Π = Π1 ∪Π2 be a parent set of X such that Π1 ∩Π2 = ∅
and Π1,Π2 non-empty. Then

|BIC(X,Π)− BIC∗(X,Π1,Π2)| ≤ N min{H(X),H(Π1),H(Π2)} .

Proof. Theorem 1 states that BIC(X,Π) = BIC∗(X,Π1,Π2) +N · ii(Π1; Π2;X). We now devise
bounds for interaction information, recalling that mutual information and conditional mutual infor-
mation are always non-negative and achieve their maximum value at the smallest entropy H of their

3

argument: −H(Π2) ≤ −I(Π1; Π2) ≤ ii(Π1; Π2;X) ≤ I(Π1; Π2|X) ≤ H(Π2). The theorem is
proven by simply permuting the values Π1; Π2;X in the ii of such equation. Since

ii(Π1; Π2;X) = I(Π1; Π2|X)−I(Π1; Π2) = I(X; Π1|Π2)−I(X; Π1) = I(Π2;X|Π1)−I(Π2;X) ,

the bounds for ii are valid.

We know that 0 ≤ H(Π) ≤ log(|Π|) for any set of nodes Π, hence the result of Corollary 1 could
be further manipulated to achieve a bound for the difference between BIC and BIC∗ of at most
N log(min{|X|, |Π1|, |Π2|}). However, Corollary 1 is stronger and can still be computed efficiently
as follows. When computing BIC∗(X,Π1,Π2), we assumed that BIC(X,Π1) and BIC(X,Π2) had
been precomputed. As such, we can also have precomputed the values H(Π1) and H(Π2) at the
same time as the BIC scores were computed, without any significant increase of complexity (when
computing BIC(X,Π) for a given Π, just use the same loop over the data to compute H(Π)).

Corollary 2. LetX be a node of G, and Π = Π1∪Π2 be a parent set for that node with Π1∩Π2 = ∅
and Π1,Π2 non-empty. If Π1 ⊥⊥ Π2, then BIC(X,Π1∪Π2) ≥ BIC∗(X,Π1∪Π2). If Π1 ⊥⊥ Π2 |X ,
then BIC(X,Π1 ∪ Π2) ≤ BIC∗(X,Π1 ∪ Π2). If the interaction information ii(Π1; Π2;X) = 0,
then BIC(X,Π1 ∪Π2) = BIC∗(X,Π1,Π2).

Proof. It follows from Theorem 1 considering that mutual information I(Π1,Π2) = 0 if Π1 and Π2

are independent, while I(Π1,Π2|X) = 0 if Π1 and Π2 are conditionally independent.

We now devise a novel pruning strategy for BIC based on the bounds of Corollaries 1 and 2.

Theorem 2. Let X be a node of G, and Π = Π1 ∪ Π2 be a parent set for that node with Π1 ∩
Π2 = ∅ and Π1,Π2 non-empty. Let Π′ ⊃ Π. If BIC∗(X,Π1,Π2) + logN

2 (|X| − 1)|Π′| >
N min{H(X),H(Π1),H(Π2)}, then Π′ and its supersets are not optimal and can be ignored.

Proof. BIC∗(X,Π1,Π2) − N min{H(X),H(Π1),H(Π2)} + logN
2 (|X| − 1)|Π′| > 0 implies

BIC(Π) + logN
2 (|X| − 1)|Π′| > 0, and Theorem 4 of [6] prunes Π′ and all its supersets.

Thus we can efficiently check whether large parts of the search space can be discarded based on
these results. We note that Corollary 1 and hence Theorem 2 are very generic in the choice of Π1

and Π2, even though usually one of them is taken as a singleton.

3.2 Independence selection algorithm

We now describe the algorithm that exploits the BIC∗ score in order to effectively explore the space
of the parent sets. It uses two lists: (1) open: a list for the parent sets to be explored, ordered by their
BIC∗ score; (2) closed: a list of already explored parent sets, along with their actual BIC score.

The algorithm starts with the BIC of the empty set computed. First it explores all the parent sets of
size one and saves their BIC score in the closed list. Then it adds to the open list every parent set of
size two, computing their BIC∗ scores in constant time on the basis of the scores available from the
closed list. It then proceeds as follows until all elements in open have been processed, or the time is
expired. It extracts from open the parent set Π with the best BIC∗ score; it computes its BIC score
and adds it to the closed list. It then looks for all the possible expansions of Π obtained by adding
a single variable Y , such that Π ∪ Y is not present in open or closed. It adds them to open with
their BIC∗(X,Π, Y) scores. Eventually it also considers all the explored subsets of Π. It safely [7]
prunes Π if any of its subsets yields a higher BIC score than Π. The algorithm returns the content of
the closed list, pruned and ordered by the BIC score. Such list becomes the content of the so-called
cache of scores for X . The procedure is repeated for every variable and can be easily parallelized.

Figure 1 compares sequential ordering and independence selection. It shows that independence
selection is more effective than sequential ordering because it biases the search towards the highest-
scoring parent sets.

4 Structure optimization

The goal of structure optimization is to choose the overall highest scoring parent sets (measured
by the sum of the local scores) without introducing directed cycles in the graph. We start from the
approach proposed in [18] (which we call ordering-based search or OBS), which exploits the fact

4

500 1,000
−2,000

−1,800

−1,600

−1,400

Iteration

B
IC

(a) Sequential ordering.

500 1,000
−2,000

−1,800

−1,600

−1,400

Iteration

B
IC

(b) Indep. selection ordering.

Figure 1: Exploration of the parent sets space for a given variable performed by sequential ordering
and independence selection. Each point refers to a distinct parent set.

that the optimal network can be found in time O(Ck), where C =
∑n
i=1 ci and ci is the number of

elements in the cache of scores of Xi, if an ordering over the variables is given.3 Θ(k) is needed to
check whether all the variables in a parent set for X come before X in the ordering (a simple array
can be used as data structure for this checking). This implies working on the search space of the
possible orderings, which is convenient as it is smaller than the space of network structures. Multiple
orderings are sampled and evaluated (different techniques can be used for guiding the sampling). For
each sampled total ordering ≺ over variables X1, . . . , Xn, the network is consistent with the order
if ∀Xi : ∀X ∈ Πi : X ≺ Xi. A network consistent with a given ordering automatically satisfies
the acyclicity constraint. This allows us to choose independently the best parent set of each node.
Moreover, for a given total ordering V1, . . . , Vn of the variables, the algorithm tries to improve the
network by a greedy search swapping procedure: if there is a pair Vj , Vj+1 such that the swapped
ordering with Vj in place of Vj+1 (and vice versa) yields better score for the network, then these
nodes are swapped and the search continues. One advantage of this swapping over extra random
orderings is that searching for it and updating the network (if a good swap is found) only takes time
O((cj + cj+1) · kn) (which can be sped up as cj only is inspected for parents sets containing Vj+1,
and cj+1 is only processed if Vj+1 has Vj as parent in the current network), while a new sampled
ordering would takeO(n+Ck) (the swapping approach is usually favourable if ci is Ω(n), which is
a plausible assumption). We emphasize that the use of k here is sole with the purpose of analyzing
the complexity of the methods, since our parent set identification approach does not rely on a fixed
value for k.

However, the consistency rule of OBS is quite restricting. While it surely refuses all cyclic structures,
it also rules out some acyclic ones which could be captured by interpreting the ordering in a slightly
different manner. We propose a novel consistency rule for a given ordering which processes the
nodes in V1, . . . , Vn from Vn to V1 (OBS can do it in any order, as the local parent sets can be
chosen independently) and we define the parent set of Vj such that it does not introduce a cycle in
the current partial network. This allows back-arcs in the ordering from a node Vj to its successors, as
long as this does not introduce a cycle. We call this idea acyclic selection OBS (or simply ASOBS).
Because we need to check for cycles at each step of constructing the network for a given ordering, at
a first glance the algorithm seems to be slower (time complexity of O(Cn) against O(Ck) for OBS;
note this difference is only relevant as we intend to work with large values n). Surprisingly, we can
implement it in the same overall time complexity of O(Ck) as follows.

1. Build and keep a Boolean square matrix m to mark which are the descendants of nodes
(m(X,Y) tells whether Y is descendant of X). Start it all false.

2. For each node Vj in the order, with j = n, . . . , 1:
(a) Go through the parent sets and pick the best scoring one for which all contained par-

ents are not descendants of Vj (this takes time O(cik) if parent sets are kept as lists).
(b) Build a todo list with the descendants of Vj from the matrix representation and asso-

ciate an empty todo list to all ancestors of Vj .
(c) Start the todo lists of the parents of Vj with the descendants of Vj .
(d) For each ancestor X of Vj (ancestors will be iteratively visited by following a depth-

first graph search procedure using the network built so far; we process a node after
3O(·), Ω(·) and Θ(·) shall be understood as usual asymptotic notation functions.

5

its children with non-empty todo lists have been already processed; the search stops
when all ancestors are visited):

i. For each element Y in the todo list of X , if m(X,Y) is true, then ignore Y and
move on; otherwise set m(X,Y) to true and add Y to the todo of parents of X .

Let us analyze the complexity of the method. Step 2a takes overall timeO(Ck) (already considering
the outer loop). Step 2b takes overall time O(n2) (already considering the outer loop). Steps 2c
and 2(d)i will be analyzed based on the number of elements on the todo lists and the time to process
them in an amortized way. Note that the time complexity is directly related to the number of elements
that are processed from the todo lists (we can simply look to the moment that they leave a list, as
their inclusion in the lists will be in equal number). We will now count the number of times we
process an element from a todo list. This number is overall bounded (over all external loop cycles)
by the number of times we can make a cell of matrixm turn from false to true (which isO(n2)) plus
the number of times we ignore an element because the matrix cell was already set to true (which is
at most O(n) per each Vj , as this is the maximum number of descendants of Vj and each of them
can fall into this category only once, so again there are O(n2) times in total). In other words, each
element being removed from a todo list is either ignored (matrix already set to true) or an entry
in the matrix of descendants is changed from false to true, and this can only happen O(n2) times.
Hence the total time complexity is O(Ck + n2), which is O(Ck) for any C greater than n2/k (a
very plausible scenario, as each local cache of a variable usually has more than n/k elements).

Moreover, we have the following interesting properties of this new method.

Theorem 3. For a given ordering ≺, the network obtained by ASOBS has score equal than or
greater to that obtained by OBS.

Proof. It follows immediately from the fact that the consistency rule of ASOBS generalizes that of
OBS, that is, for each node Vj with j = n, . . . , 1, ASOBS allows all parent sets allowed by OBS
and also others (containing back-arcs).

Theorem 4. For a given ordering ≺ defined by V1, . . . , Vn and a current graph G consistent with
≺, if OBS consistency rule allows the swapping of Vj , Vj+1 and leads to improving the score of G,
then the consistency rule of ASOBS allows the same swapping and achieves the same improvement
in score.

Proof. It follows immediately from the fact that the consistency rule of ASOBS generalizes that of
OBS, so from a given graph G, if a swapping is possible under OBS rules, then it is also possible
under ASOBS rules.

5 Experiments

We compare three different approaches for parent set identification (sequential, greedy selection and
independence selection) and three different approaches (Gobnilp, OBS and ASOBS) for structure
optimization. This yields nine different approaches for structural learning, obtained by combining
all the methods for parent set identification and structure optimization. Note that OBS has been
shown in [18] to outperform other greedy-tabu search over structures, such as greedy hill-climbing
and optimal-reinsertion-search methods [15].

We allow one minute per variable to each approach for parent set identification. We set the maximum
in-degree to k = 6, a high value that allows learning even complex structures. Notice that our novel
approach does not need a maximum in-degree. We set a maximum in-degree to put our approach
and its competitors on the same ground. Once computed the scores of the parent sets we run each
solver (Gobnilp, OBS, ASOBS) for 24 hours. For a given data set the computation is performed on
the same machine.

The explicit goal of each approach for both parent set identification and structure optimization is
to maximize the BIC score. We then measure the BIC score of the Bayesian networks eventually
obtained as performance indicator. The difference in the BIC score between two alternative networks
is an asymptotic approximation of the logarithm of the Bayes factor. The Bayes factor is the ratio
of the posterior probabilities of two competing models. Let us denote by ∆BIC1,2 =BIC1-BIC2 the
difference between the BIC score of network 1 and network 2. Positive values of ∆BIC1,2 imply

6

Data set n Data set n Data set n Data set n

Audio 100 Retail 135 MSWeb 294 Reuters-52 889
Jester 100 Pumsb-star 163 Book 500 C20NG 910

Netflix 100 DNA 180 EachMovie 500 BBC 1058
Accidents 111 Kosarek 190 WebKB 839 Ad 1556

Table 1: Data sets sorted according to the number n of variables.

evidence in favor of network 1. The evidence in favor of network 1 is respectively [16] {weak,
positive, strong, very strong} if ∆BIC1,2 is between {0 and 2; 2 and 6; 6 and 10 ; beyond 10}.

5.1 Learning from datasets

We consider 16 data sets already used in the literature of structure learning, firstly introduced in [13]
and [8]. We randomly split each data set into three subsets of instances. This yields 48 data sets.

The approaches for parent set identification are compared in Table 2. For each fixed structure op-
timization approach, we learn the network starting from the list of parent sets computed by inde-
pendence selection (IS), greedy selection (GS) and sequential selection (SQ). In turn we analyze
∆BICIS,GS and ∆BICIS,SQ. A positive ∆BIC means that independence selection yields a network
with higher BIC score than the network obtained using an alternative approach for parent set iden-
tification; vice versa for negative values of ∆BIC. In most cases (see Table 2) ∆BIC>10, implying
very strong support for the network learned using independence selection. We further analyze the
results through a sign-test. The null hypothesis of the test is that the BIC score of the network
learned under independence selection is smaller than or equivalent to the BIC score of the network
learned using the alternative approach (greedy selection or sequential selection depending on the
case). If a data set yields a ∆BIC which is {very negative, strongly negative, negative, neutral}, it
supports the null hypothesis. If a data sets yields a BIC score which is {positive, strongly positive,
extremely positive}, it supports the alternative hypothesis. Under any fixed structure solver, the sign
test rejects the null hypothesis, providing significant evidence in favor of independence selection.
In the following when we further cite the sign test we refer to same type of analysis: the sign test
analyzes the counts of the ∆BIC which are in favor and against a given method.

As for structure optimization, ASOBS achieves higher BIC score than OBS in all the 48 data sets,
under every chosen approach for parent set identification. These results confirm the improvement of
ASOBS over OBS, theoretically proven in Section 4. In most cases the ∆BIC in favor of ASOBS
is larger than 10. The difference in favor of ASOBS is significant (sign test, p < 0.01) under every
chosen approach for parent set identification.

We now compare ASOBS and Gobnilp. On the smaller data sets (27 data sets with n < 500),
Gobnilp significantly outperforms (sign test, p < 0.01) ASOBS under every chosen approach for
parent set identification. On most of such data sets, the ∆BIC in favor of the network learned by
Gobnilp is larger than 10. This outcome is expected, as Gobnilp is an exact solver and those data

structure solver Gobnilp ASOBS OBS
parent identification: IS vs GS SQ GS SQ GS SQ

∆BIC (K)
Very positive (K >10) 44 38 44 30 44 32

Strongly positive (6<K <10) 0 0 0 4 1 0
Positive (2 <K <6) 0 4 2 3 0 2
Neutral (-2 <K <2) 2 3 0 4 2 4

Negative (-6 <K <-2) 0 1 2 1 0 2
Strongly negative (-10 <K <-6) 1 1 0 5 0 4

Very negative (K <-10) 1 1 0 1 1 4

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 2: Comparison of the approaches for parent set identification on 48 data sets. Given any fixed
solver for structural optimization, IS results in significantly higher BIC scores than both GS and SQ.

7

parent identification Independence sel. Forward sel Sequential sel.
structure solver: AS vs GP OB GP OB GP OB

∆BIC (K)
Very positive (K >10) 21 21 20 21 19 21

Strongly positive (6<K<10) 0 0 0 0 0 0
Positive (2<K<6) 0 0 0 0 0 0
Neutral (-2<K<2) 0 0 0 0 0 0

Negative (-6<K<-2) 0 0 0 0 0 0
Strongly negative (-10<K<-6) 0 0 0 0 0 0

Very negative (K<-10) 0 0 1 0 2 0

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 3: Comparison between the structure optimization approaches on the 21 data sets with n ≥
500. ASOBS (AS) outperforms both Gobnilp (GB) and OBS (OB), under any chosen approach for
parent set identification.

sets imply a relatively reduced search space. However the focus of this paper is on large data sets.
On the 21 data sets with n ≥ 500, ASOBS outperforms Gobnilp (sign test, p < 0.01) under every
chosen approach for parent set identification (Table 3).

5.2 Learning from data sets sampled from known networks

In the next experiments we create data sets by sampling from known networks. We take the largest
networks available in the literature: 4 andes (n=223), diabetes (n=413), pigs (n=441), link (n=724),
munin (n=1041). Additionally we randomly generate other 15 networks: five networks of size
2000, five networks of size 4000, five networks of size 10000. Each variable has a number of states
randomly drawn from 2 to 4 and a number of parents randomly drawn from 0 to 6. Overall we
consider 20 networks. From each network we sample a data set of 5000 instances.

We perform experiments and analysis as in the previous section. For the sake of brevity we do not
add further tables of results. As for parent set identification, independence selection outperforms
both greedy selection and sequential selection. The difference in favor of independence selection
is significant (sign test, p-value <0.01) under every chosen structure optimization approach. The
∆BIC of the learned network is >10 in most cases. Take for instance Gobnilp for structure opti-
mization. Then independence selection yields a ∆BIC>10 in 18/20 cases when compared to GS
and ∆BIC>10 in 19/20 cases when compared to SQ. Similar results are obtained using the other
solvers for structure optimization.

Strong results support also ASOBS against OBS and Gobnilp. Under every approach for parent set
identification, ∆BIC>10 is obtained in 20/20 cases when comparing ASOBS and OBS. The number
of cases in which ASOBS obtains ∆BIC>10 when compared against Gobnilp ranges between 17/20
and 19/20 depending on the approach adopted for parent set selection. The superiority of ASOBS
over both OBS and Gobnilp is significant (sign test, p < 0.01) under every approach for parent set
identification.

Moreover, we measured the Hamming distance between the moralized true structure and the learned
structure. On the 21 data sets with n ≥ 500 ASOBS outperforms Gobnilp and OBS and IS outper-
forms GS and SQ (sign test, p < 0.01). The novel framework is thus superior in terms of both score
and correctness of the retrieved structure.

6 Conclusion and future work

Our novel approximated approach for structural learning of Bayesian Networks scales up to thou-
sands of nodes without constraints on the maximum in-degree. The current results refer to the BIC
score, but in future the methodology could be extended to other scoring functions.

Acknowledgments

Work partially supported by the Swiss NSF grant n. 200021 146606 / 1.

4http://www.bnlearn.com/bnrepository/

8

http://www.bnlearn.com/bnrepository/

References

[1] M. Bartlett and J. Cussens. Integer linear programming for the Bayesian network structure
learning problem. Artificial Intelligence, 2015. in press.

[2] D. M. Chickering, C. Meek, and D. Heckerman. Large-sample learning of Bayesian networks
is hard. In Proceedings of the 19st Conference on Uncertainty in Artificial Intelligence, UAI-
03, pages 124–133. Morgan Kaufmann, 2003.

[3] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9(4):309–347, 1992.

[4] J. Cussens. Bayesian network learning with cutting planes. In Proceedings of the 27st Con-
ference Annual Conference on Uncertainty in Artificial Intelligence, UAI-11, pages 153–160.
AUAI Press, 2011.

[5] J. Cussens, B. Malone, and C. Yuan. IJCAI 2013 tutorial on optimal algorithms for learning
Bayesian networks (https://sites.google.com/site/ijcai2013bns/slides), 2013.

[6] C. P. de Campos and Q. Ji. Efficient structure learning of Bayesian networks using constraints.
Journal of Machine Learning Research, 12:663–689, 2011.

[7] C. P. de Campos, Z. Zeng, and Q. Ji. Structure learning of Bayesian networks using constraints.
In Proceedings of the 26st Annual International Conference on Machine Learning, ICML-09,
pages 113–120, 2009.

[8] J. V. Haaren and J. Davis. Markov network structure learning: A randomized feature generation
approach. In Proceedings of the 26st AAAI Conference on Artificial Intelligence, 2012.

[9] D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: The combina-
tion of knowledge and statistical data. Machine Learning, 20:197–243, 1995.

[10] T. Jaakkola, D. Sontag, A. Globerson, and M. Meila. Learning Bayesian Network Structure
using LP Relaxations. In Proceedings of the 13st International Conference on Artificial Intel-
ligence and Statistics, AISTATS-10, pages 358–365, 2010.

[11] M. Koivisto. Parent assignment is hard for the MDL, AIC, and NML costs. In Proceedings of
the 19st annual conference on Learning Theory, pages 289–303. Springer-Verlag, 2006.

[12] M. Koivisto and K. Sood. Exact Bayesian Structure Discovery in Bayesian Networks. Journal
of Machine Learning Research, 5:549–573, 2004.

[13] D. Lowd and J. Davis. Learning Markov network structure with decision trees. In Geoffrey I.
Webb, Bing Liu 0001, Chengqi Zhang, Dimitrios Gunopulos, and Xindong Wu, editors, Pro-
ceedings of the 10st Int. Conference on Data Mining (ICDM2010), pages 334–343, 2010.

[14] W. J. McGill. Multivariate information transmission. Psychometrika, 19(2):97–116, 1954.
[15] A. Moore and W. Wong. Optimal reinsertion: A new search operator for accelerated and

more accurate Bayesian network structure learning. In T. Fawcett and N. Mishra, editors,
Proceedings of the 20st International Conference on Machine Learning, ICML-03, pages 552–
559, Menlo Park, California, August 2003. AAAI Press.

[16] A. E. Raftery. Bayesian model selection in social research. Sociological methodology, 25:111–
164, 1995.

[17] T. Silander and P. Myllymaki. A simple approach for finding the globally optimal Bayesian
network structure. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelli-
gence, UAI-06, pages 445–452, 2006.

[18] M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learn-
ing Bayesian networks. In Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence, UAI-05, pages 584–590, 2005.

[19] C. Yuan and B. Malone. An improved admissible heuristic for learning optimal Bayesian
networks. In Proceedings of the 28st Conference on Uncertainty in Artificial Intelligence,
UAI-12, 2012.

[20] C. Yuan and B. Malone. Learning optimal Bayesian networks: A shortest path perspective.
Journal of Artificial Intelligence Research, 48:23–65, 2013.

9

