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Abstract

This thesis provides novel contributions to scalable Gaussian processes (GPs),
which constitute an important tool in machine learning and statistics with ap-
plications ranging from social and natural science through engineering. GPs are
powerful probabilistic methods with many benefits, such as their modeling flexi-
bility, the robustness to overfitting and the availability of well-calibrated predic-
tive uncertainty estimates. However, off-the-shelf GP inference procedures are
limited to datasets with several thousand training data points because of their cu-
bic computational complexity. This thesis presents new methodologies and novel
algorithms for scaling GP regression to larger datasets by employing sequential
and local methods. In particular, the first contribution of this work is a unifying
GP approximation method based on a recursive formulation, which enables to
train analytically a range of existing GP models in an online and distributed way.
In this formulation, the so-called hyperparameters, which refer to a few parame-
ters determining the GP, are assumed to be known. On the other hand, those can
be learned by the second major contribution consisting of two novel algorithms
for sequential hyperparameters estimation. These allow to scale the training of
GPs up to millions of training samples. The last contribution involves a novel
unifying GP approximation model exploiting sparsity and locality. Specifically, a
method based on local GPs, which can share common information with a flexible
correlation structure, is proposed. Thereby, this new model unifies several exist-
ing local and global GP approximation approaches. All the proposed methods in
this thesis are theoretically supported and empirically tested on synthetic as well
as real-world datasets with up to millions of training samples. Thereby, these
new methods outperform the state-of-the-art in several tasks. This demonstrates
the effectiveness of the novel GP approximations proposed in this thesis, which
can achieve high-scalability without sacrifying the performance of original GPs.
Therefore, this work substantially contributes to overcome the computational
complexity barrier for the large-scale adoption of GPs.
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Chapter 1

Introduction

1.1 Motivation

The amount of collected digital data is growing at a rapid pace and concerns
basically all areas from our society. Machine learning algorithms and statistical
models are employed on this data to automatically uncover hidden patterns and
extract useful information that can be used for predictions and optimal decision
making, which might have a great impact to the reality. Therefore, a research
challenge is to design scalable and robust algorithms that reliably exploit this
large amount of data, as for instance outlined in "Steps toward robust artificial
intelligence" by Dietterich [2017]. For example, in a medical application or in a
self-driving car, it is crucial that the underlying assumptions in the algorithms are
comprehensible and transparent to the user, since the resulting predictions might
have severe consequences. Furthermore, it is important that algorithms provide
predictions, which also include some information indicating how certain they
are. Moreover, the incoming data from the different sensors of a self-driving car
or a medical device arrive in a continuous stream and prediction-based actions
have to be done immediately. Thus, it is very beneficial to update the current
knowledge with the incoming information incrementally. Therefore, the aim of
this thesis consists on the development of algorithms, (i) which can be scaled to
huge datasets, (ii) in which the underlying assumptions are transparent to the
user, (iii) can quantify the reliability of their predictions, and (iv) can adapt their
knowledge incrementally.
In order to achieve these goals, probabilistic methods based on so-called Bayesian
inference constitute an attractive approach, since they model uncertainty in a
principled manner, can incorporate prior assumptions transparently and can in-
crementally update information. Bayesian inference methods rely on Bayes’ theo-

1
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rem, allowing to combine prior assumptions with information about the observed
data, resulting into a posterior belief from which predictions can be computed.
These concepts will be more thoroughly discussed in subsequent chapters. A
particular class of probabilistic methods are Gaussian processes (GPs), which en-
able to perform Bayesian inference directly in the space of functions. GPs allow
to express our prior beliefs about a class of functions before observing the data,
and to analytically compute our updated posterior beliefs about the functions in
a way that is consistent with the data and prior beliefs. Thereby, the posterior
can be used to quantify the predictive uncertainty and, therefore, to evaluate the
reliability of the model. Due to the incremental updating mechanism, GPs are
also promising for online settings. However, besides these advantages, GPs have
a main drawback: they are not scalable to large datasets due to their cubic time
and quadratic space complexity in the number of training samples. Therefore,
the specific aim of this thesis is to propose novel GP approximation methods,
which allow to scale GPs to large datasets while retaining the benefits of GPs.
Our main approach is to divide the overall problem into smaller local subprob-
lems. Instead operating on the whole—possibly huge—dataset D, we consider
in this thesis different settings, where we split the data into J smaller blocks of
data D = {D1, . . . ,DJ} and only perform computations involving one block D j at
a time as illustrated in Figure 1.1. In particular, we propose novel algorithms for
the online, sequential and distributed setting, yielding highly scalable and accu-
rate GP approximation methods, so that a range of new applications are opened
up for GPs.

D Dj

Batch Distributed

Dj

Sequential

Dj

Online

Figure 1.1. Different settings to train GP models by exploiting smaller blocks of data.
Beside full batch training involving the whole dataset D, we distinguish between online,
sequential and distributed settings. In the former two cases, we assume that the data
arrives as a stream of mini-batches D j . However, in the online setting, each mini-batch
can be only considered once, whereas in the sequential setting, it is allowed to consider
each block of data several times. In the distributed setting, we assume a central node
and each mini-batch is associated with a computational node working in parallel.
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1.2 Scientific Contributions

This thesis provides novel contributions to scalable Gaussian processes. In partic-
ular, we first review the properties of GPs with focus on regression methods, an-
alyze the state-of-the-art methods for their approximations in the literature, and
discuss their strengths and limitations. To make GPs scalable to large datasets, we
then propose new methodologies and novel algorithms, theoretically supported
and empirically evaluated by several experiments, demonstrating state-of-the-art
performance in several tasks. The main scientific contributions are based on the
following publications.

• Recursive Estimation for Sparse Gaussian Process Regression
Schürch, Azzimonti, Benavoli, and Zaffalon [2020], Automatica 2020.

• Orthogonally Decoupled Variational Fourier Features
Azzimonti, Schürch, Benavoli, and Zaffalon [2020], arXiv [2007.06363].

• Sparse Information Filter for Fast Gaussian Process Regression
Kania, Schürch, Azzimonti, and Benavoli [2021], ECML 2021.

• Correlated Product of Experts for Sparse Gaussian Process Regression
Schürch, Azzimonti, Benavoli, and Zaffalon [2022], Machine Learning jour-
nal track ECML PKDD 2022.

In this thesis, we present the content from these papers in a slightly different
structure. In particular, the first part of [Schürch et al., 2020] is discussed in
Chapter 5, whereas the second part is provided together with [Kania et al., 2021]
in Chapter 6. Further, the work in [Schürch et al., 2022] is shown together
with additional material in Chapter 7, and finally [Azzimonti et al., 2020] is
summarized in Appendix A. In the following, we briefly provide a summary of
the main novel content in this thesis.

• Online and Distributed Training of Sparse GPs (Chapter 5): We provide
a unifying recursive model for the analytic training of a range of existing GP
models in an online and distributed way for fixed hyperparameters (which
refer to a few parameters particularly determining the GP).

• Sequential Hyperparameters Estimation for Sparse GPs (Chapter 6):
We propose two novel algorithms for sequential hyperparameters estima-
tion for sparse GPs, which enables to scale the training of GPs up to millions
of training samples.
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• Unifying GP Approximation Method (Chapter 7): We present a novel GP
approximation method with flexible dependency structure based on locally
correlated experts as illustrated in Figure 1.2. Thereby, our new model uni-
fies several existing local and global GP approximation approaches. More-
over, we establish connections between GPs and local belief propagation
methods.

An explicit description about the detailed contributions with respect to the state-
of-the-art can be found at the end of each of these Chapters 5, 6 and 7.

·
·
·

·
·
·

y1 yi

yN yN−1

y3y2

f1 fi

fN fN−1

f3f2

(a) Full GP

·
·
·

·
·
·

y1 yi

yN yN−1

y3y2

f1 fi

fN fN−1

f3f2

a

(b) Sparse Global GP

·
·
·

·
·
·

y1 yi

yN yN−1

y3y2

f1 fi

fN fN−1

f3f2

(c) Correlated PoE

Figure 1.2. As a preview, the graphical models of full GP, an existing sparse global GP
approximation, and one of our novel methods with flexible dependency structure.

1.3 Outline of the Thesis

The thesis is structured into three kind of chapters: the introductory and con-
clusive Chapters 1, 2, and 8, the reviewing Chapters 3 and 4, and the Chapters
5, 6, and 7, which contain explicit novel scientific content. In the following, we
provide a brief summary about the chapters in this thesis.

• Chapter 1: This chapter provides an overview of the thesis. In particular,
it contains the motivation, the scientific contributions, the outline, and the
associated software of this thesis.

• Chapter 2: In this chapter, we discuss preliminary tools and concepts,
which are needed in the subsequent chapters about GPs and their scalable
approximations. Among other basic topics, we discuss Bayesian inference
techniques and provide an example about the Bayesian linear model with
basis functions.
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• Chapter 3: In this chapter, we introduce GPs tailored to the need for ma-
chine learning and in particular for this thesis. Specifically, we focus on GP
regression, for which we provide two different views, discuss their infer-
ence techniques and compare GPs with Bayesian linear models.

• Chapter 4: In this chapter, we present existing approximations for GPs,
whereby we will focus on two classes of approximations. On the one hand,
we discuss global approaches based on so-called inducing points, and on
the other hand, we provide an overview over local approaches combined
with prediction averaging methods.

• Chapter 5: In this chapter, we propose a novel unifying recursive model,
which allows to train analytically a range of existing sparse GP models in
an online and distributed way for fixed hyperparameters.

• Chapter 6: In this chapter, we present two new methods for sequential
hyperparameter learning for sparse GPs, which allows to train those models
with up to several millions of training data samples and achieves state-of-
the-art performance, as demonstrated in several experiments.

• Chapter 7: In this chapter, we introduce a novel unifying GP approxima-
tion model based on local and correlated experts. Our proposed model
generalizes several existing global and local approaches. Moreover, we es-
tablish connections between GPs and local belief propagation methods.

• Chapter 8: In this chapter, we conclude the thesis by summarizing the
findings in this manuscript and outline some future work.

1.4 Associated Software

For each algorithm in this thesis, the corresponding software is available on
Github. In particular, the source code in Python with explanations how to use it,
can be found at the corresponding Github repository.

• Recursive Estimation for Sparse Gaussian Process Regression
https://github.com/manuelIDSIA/SRGP.

• Sparse Information Filter for Fast Gaussian Process Regression
https://github.com/lkania/Sparse-IF-for-Fast-GP.
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• Correlated Product of Experts for Sparse Gaussian Process Regression
https://github.com/manuelIDSIA/CPoE. ,



Chapter 2

Preliminaries

In this chapter, we introduce preliminary probabilistic tools and concepts, which
are needed in the subsequent chapters about Gaussian processes and their scal-
able approximations. In particular, we provide some basic definitions and prop-
erties in Section 2.1, which are used throughout this thesis, as for instance the
multivariate Gaussian distribution, the Kullback-Leibler-divergence and some ap-
proaches for numerical optimization. Moreover, frequentistic and Bayesian ap-
proaches for inference in statistical models are discussed by the aid of a linear
regression model in Sections 2.2 and 2.3, respectively. Finally, the concept of
kernels is introduced in Section 2.4.
The content of this chapter is well known in the scientific community and it is
mainly provided here for the sake of self-completeness of this thesis. However,
these general concepts are presented in a way that is tailored to GP models and
the subsequent chapters build on these tools. In particular, Section 2.3 about
Bayesian inference is presented so as to introduce the formalism, which will then
be used for GPs in the next chapters. For instance, the inference for the Bayesian
linear model is discussed in detail, since it constitutes a simple model ideal for
introducing several abstract concepts about probabilistic inference. A reader who
is familiar with topics in probabilistic inference might skip this chapter except
Section 2.3, where relevant concepts for the rest of the thesis are introduced.

2.1 Basic Definitions and Properties

In this section, we provide some standard definitions and properties used in
subsequent chapters of this thesis. These properties can be found in the most
standard books about multivariate statistics or machine learning, in particular,
we refer the reader to Bishop [2006], Murphy [2012], and Koller and Fried-

7
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man [2009]. First, we discuss multivariate Gaussian distributions and their main
properties in Section 2.1.1, since they constitute the fundamentals of Gaussian
processes. Moreover, we briefly introduce Kullback-Leibler-(KL)-divergences and
their need for probabilistic inference in Section 2.1.2, the basics about numerical
optimization in Section 2.1.3, and some useful properties from linear algebra in
Section 2.1.4.

2.1.1 Multivariate Gaussian Distributions

Definition 2.1 (Multivariate Gaussian Distribution) A random vector z 2 RM,
which follows a M-variate Gaussian distribution

z ⇠N
�

z
�

�µ,⌃
�

= p(z)

with mean vector E[z] = µ 2 RM and positive-definite covariance matrix Cov(z) =
⌃ 2 RM⇥M, has a probability density function

p(z) = (2⇡)−
M
2 |⌃|− 1

2 exp
Å

−
1
2
(z −µ)T⌃−1(z −µ)

ã

.

2.1.1.1 Marginal and Conditional Distributions

For two random vectors y 2 RN and z 2 RM , which are jointly Gaussian dis-
tributed, the joint (N +M)-variate Gaussian distribution can be formulated as



y
z

�

⇠N

✓

y
z

� �

�

�

�



µy

µz

�

,



⌃y y ⌃y z

⌃zy ⌃zz

�◆

= p(y , z) (2.1)

with the corresponding subentries, where it holds ⌃y z = ⌃
T
zy . From this joint

distribution in (2.1), the marginal Gaussian distributions are

y ⇠N
�

y
�

�µy ,⌃y y

�

=

Z

p(y , z)dz = p(y),

z ⇠N
�

z
�

�µz,⌃zz

�

=

Z

p(y , z)dy = p(z).

(2.2)

Moreover, the conditional Gaussian distribution z|y can be derived as

p(z|y) = p(y , z)
p(y)

=N
Ä

z
�

�µz +⌃zy⌃
−1
y y(y −µy),⌃zz −⌃zy⌃

−1
y y⌃y z

ä

, (2.3)

which is a density in z. Note that p(y |z) can be computed analogously.
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Given the Gaussian marginal distribution p(z) = N
�

z
�

�µ,⌃
�

and the Gaussian
conditional distribution p(y |z) =N

�

y
�

�Az + b,Q
�

with affine mean transforma-
tion, the joint Gaussian distribution p(y , z) is given by

p(y , z) = p(y |z)p(z) =N

✓

z
y

�

�

�



µ

Aµ+ b

�

,



⌃ ⌃AT

A⌃ A⌃AT +Q

�◆

. (2.4)

The marginal distribution of y is then

p(y) =

Z

p(y , z)dz =

Z

p(y |z)p(z)dz =N
�

y
�

�Aµ+ b, A⌃AT +Q
�

. (2.5)

The opposite conditional distribution z|y can be computed by

p(z|y) = p(y |z)p(z)
p(y)

=
p(y , z)
p(y)

=N
�

z
�

�P(AT Q−1(y − b) +⌃−1)µ, P
�

, (2.6)

where P = (⌃−1 + AT Q−1A)−1.

In Figure 2.1, we illustrate marginalization and conditioning for the joint Gaus-
sian distribution p(z, y). As a preview for subsequent chapters, if we interpret
z as an unobserved variable and y as an observed variable, then p(z) is called
prior, p(y |z) likelihood, p(z|y) posterior and p(y) marginal likelihood. Note
that these simple operations correspond to inference with Gaussian processes, as
we will thoroughly discuss in Chapter 3.

2.1.1.2 Entropy of Multivariate Gaussian

The Entropy H of a M -variate Gaussian random vector z with density p(z) =
N
�

z
�

�µ,⌃
�

is defined as

H[z] = H[p(z)] =
1
2
(log |⌃|+M(1+ log2⇡)) , (2.7)

where we use log as the natural logarithm and thus the entropy is measured in
nats (natural units).

2.1.1.3 Gaussians in Canonical Form

Alternatively to Definition 2.1 of a multivariate Gaussian distribution N
�

z
�

�µ,⌃
�

parametrized by the mean µ and covariance ⌃, it can also be parameterized by
the canoncial parameters ⌘ = ⌃−1µ and ⇤= ⌃−1.



10 2.1 Basic Definitions and Properties

(a) Marginal Distributions. (b) Conditional Distributions.

Figure 2.1. Illustration for marginalization and conditioning for the joint Gaussian dis-
tribution p(z, y) as described in Equations (2.2) and (2.3), respectively.

Definition 2.2 (Multivariate Gaussian Distribution in Canonical Form) A ran-
dom vector z 2 RM, which follows a M-variate Gaussian distribution, can be written
as

z ⇠N −1 (z|⌘,⇤) = p(z)

with natural mean vector ⌘ 2 RM and precision matrix Cov(z)−1 = ⇤ 2 RM⇥M,
has a probability density function

p(z) = (2⇡)−
M
2 |⇤| 12 exp

Å

−
1
2

zT
⇤z +⌘T z −

1
2
⌘T
⇤
−1⌘

ã

.

It holds p(z) =N
�

z
�

�µ,⌃
�

=N −1 (z|⌘,⇤) with µ= ⇤−1⌘ and ⌃= ⇤−1.
The joint distribution in (2.1) can equivalently formulated in canonical form

p(y , z) =N −1

✓

y
z

�

|


⌘y

⌘z

�

,



⇤y y ⇤y z

⇤zy ⇤zz

�◆

(2.8)

with the corresponding subentries, where ⇤y z = ⇤
T
zy . From this joint distribution

in (2.8), the marginal Gaussian distribution in canonical form can be computed

p(z) =

Z

p(y , z)dy =N −1
Ä

z|⌘z −⇤zy⇤
−1
y y⌘y z, ⇤zz −⇤zy⇤

−1
y y⇤y z

ä

. (2.9)

Moreover, the conditional Gaussian distribution z|y can be derived as

p(z|y) = p(y , z)
p(y)

=N −1
�

z|⌘z −⇤zy y , ⇤zz

�

. (2.10)



11 2.1 Basic Definitions and Properties

Note that, the marginal distribution p(y) and the conditional distribution p(y |z)
can be computed analogously.

2.1.1.4 Product of Gaussians

Assume some weights aj 2 R and multivariate Gaussians pj(x ) =N
�

x
�

�µ j,⌃ j

�

=

N −1
�

x |⌘ j,⇤ j

�

for j = 1, . . . , J . The weighted product over these Gaussians den-
sities can be explicitly computed as

J
Y

j=1

pj(x )
aj =N

�

x
�

�µ,⌃
�

=N −1 (x |⌘,⇤) , (2.11)

with

⇤=

J
X

j=1

aj⇤ j and ⌘=

J
X

j=1

aj⌘ j,

as well as
⌃=

Ç

J
X

j=1

aj⌃
−1
j

å−1

and µ= ⌃

Ç

J
X

j=1

aj⌃
−1
j µ j

å

,

respectively. Note that, the Gaussians are only properly defined as long as ⌃
positive-definite (for instance if aj ⌘ 1 or

PJ
j=1 aj = 1) [Koller and Friedman,

2009, 14.2.1].

2.1.2 Kullback-Leibler Divergence

The Kullback-Leibler-(KL)-divergence is a statistical distance which measures the
difference from a base probability distribution p to a second distribution q [Bishop,
2006, Chapter 1]. This divergence is asymmetric in the two distributions p and q,
so that we distinguish between the forward KL and reverse KL denoted as KL(q||p)
and KL(p||q), respectively.

Definition 2.3 (Reverse Kullback-Leibler-(KL)-Divergence) For continous prob-
ability densities p and q, the (reverse) Kullback-Leibler-(KL)-divergence between
p(z) and q(z) is defined as

KL[p(z) || q(z)] =
Z

p(z) log
p(z)
q(z)

dz = Ep(z)

ï

log
p(z)
q(z)

ò

. (2.12)

Similarly, the definition of the forward KL is obtained by replacing p and q in
Definition 2.3.
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2.1.2.1 KL between Two Multivariate Gaussians

The (reverse) KL between two M -variate Gaussians p(z) =N
�

µp,⌃p

�

and q(z) =
N
�

µq,⌃q

�

satisfies

2 K L[p(z)||q(z)] = t r(⌃−1
q ⌃p)−M + (µq −µp)

T
⌃
−1
q (µq −µp) + log

|⌃q|
|⌃p|

.

(2.13)

2.1.2.2 Minimization of KL

In statistical inference, the KL can be used to approximate an intractable distri-
bution p with a simpler distribution q. That is, the task is to find a distribution
q with a particular structure which is close to the true distribution p in the KL-
divergence sense. In particular, minimizing the reverse KL can be formulated
as

q⇤(z) = argmin
q(z)

KL[p(z) || q(z)]

and similarly the minimization of the forward KL

q⇤(z) = argmin
q(z)

KL[q(z) || p(z)].

Note that the minimization of the forward KL often constitutes a simpler opti-
mization task, since the expectation in (2.12) is taken with respect to the ap-
proximate distribution q instead of the intractable distribution p. In Figure 2.2,
we provide an example for the two directions of the KL minimization between a
mixture of Gaussians p and approximate Gaussian distribution q.

Figure 2.2. Illustration of forward and reverse KL minimization between a mixture of
Gaussians p and approximate distribution q.
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2.1.3 Numerical Optimization

In this section, we briefly introduce some basic concepts from numerical opti-
mization which are extensively needed later for our proposed methods. In partic-
ular, we present two algorithms from deterministic and stochastic optimization.
We refer to [Wright et al., 1999] for more details about these topics.

For a scalar-valued function L(✓ ) : RP ! R with multivariate parameter ✓ =
[✓1, . . . ,✓P]

T 2 RP , we formulate a minimization or maximization problem as

✓ ⇤ = arg min
✓ 2 RP

L(✓ ) = arg max
✓ 2 RP

−L(✓ ),

where we see that each maximization task can be transformed into a minimiza-
tion task by considering the negative objective function. Ideally, we would like
to compute the optimal solution ✓ ⇤ analytically, however, for many interesting
problems, this is not possible, so that we have to resort to numerical approaches.
We briefly introduce two numerical optimization categories, namely deterministic
and stochastic approaches. In this work, we interpret the objective function L as a
loss function depending on observed data D = {D1, . . . ,DJ} with J mini-batches
D j. In the deterministic case, we consider optimization tasks of the form

✓ ⇤ = argmin
✓ 2 RP

L(✓ ,D),

where the whole data D is involved, whereas in the stochastic case, we assume
that the loss function can be decomposed into a sum of objective functions L j

only depending on the mini-batch of data D j, that is,

✓ ⇤ = argmin
✓ 2 RP

1
J

J
X

j=1

L j(✓ ,D j).

2.1.3.1 Deterministic Optimization

Deterministic numerical optimization algorithm can be further categorized into
derivative-free (for instance [Nelder and Mead, 1965]), first-order (e.g. gradient
descent [Cauchy et al., 1847]) or second-order algorithms (for instance Newton-
method e.g. [Wright et al., 1999] or BFGS [Fletcher, 1987]). In the following of
this work, we assume that the function L is differentiable, so that the correspond-
ing gradient vector can be computed ΔL(✓ ,D) = [ @L(✓ ,D)

@ ✓1
, . . . , @L(✓ ,D)

@ ✓P
]T 2 RP ,

involving the partial derivatives @L(✓ ,D)
@ ✓p

. We briefly discuss gradient descent (GD)
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algorithm [Cauchy et al., 1847], which is an iterative procedure, where in each
step the parameter ✓ is updated in direction of the negative gradient direction,

✓ (t+1) = ✓ (t) − γt ΔL(✓
(t),D), (2.14)

with a small learning rate γt 2 R+ and initial guess ✓ (0). Under some conditions
[Fletcher, 2005], gradient descent is guaranteed to converge to a local minimum
of the objective function and we refer to Wright et al. [1999] for more details
about this topic.

2.1.3.2 Stochastic Optimization

Stochastic gradient descent (SGD) [Robbins and Monro, 1951] is a stochastic ap-
proximation of gradient descent, since for large dataD, the gradient computation
ΔL(✓ ,D) is expensive. We assume that the loss function decomposes into a sum
of J terms L j, each involving only mini-batch D j, that is,

L(✓ ,D) =
1
J

J
X

j=1

L j(✓ ,D j).

In this case, the gradient update in (2.14) is replaced by

✓ (t+1) = ✓ (t) − γt ΔL j(✓
(t),D j), (2.15)

where mini-batch D j is selected randomly at each step t. This classic stochas-
tic gradient descent update scheme is generally sensitive to appropriate learning
rates γt . In order to achieve fast convergence, one is tempted to increase the
learning rates, however, this might induce numerical instability. There are sev-
eral approaches for improved and adaptive learning rates, consider for instance
[Rumelhart et al., 1986; Duchi et al., 2011; Kingma and Ba, 2014]. However,
all these methods still depend on a parameter, which has to be carefully chosen
manually. If not otherwise stated in the following of this work by referring to
SGD, we mean the algorithm of [Kingma and Ba, 2014].

2.1.4 Useful Properties from Linear Algebra

2.1.4.1 Inversion and Determinant Lemma

Consider invertible matrices A 2 RB⇥B , C 2 RM⇥M and matrices U 2 RB⇥M ,
V 2 RM⇥B. In this case, we can compute the inverse

(A+UCV)−1
= A−1 − A−1U

�

C−1 + VA−1U
�−1

VA−1 (2.16)
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and the determinant

|A+UCV |= |C−1 + VA−1U||C ||A|. (2.17)

2.1.4.2 Inversion and Determinant of Block Matrices

Given an invertible and symmetric block matrix

M =



A B
BT D

�

.

The inverse M−1 can be computed as

M−1 =



A−1 + A−1BZ−1BT A−1 −A−1BZ−1

−Z−1BT A−1 Z−1

�

(2.18)

with Z = D − BT A−1B. Moreover, the determinant |M | can be computed as

|M |= |A| |D − BT A−1B|= |D| |A− BD−1BT |. (2.19)

2.2 Linear Basis Function Model

In statistics and machine learning, often mappings f : X ! Y from some input
domain X to some output domain Y are modelled. In the supervised setting, that
is, given N observed data samples D = {yi, x i}Ni=1 with x i 2 X and yi 2 Y , the
task is to learn the unknown function f (x ) for each x 2 X so that the observed
output values are close to the function values of the inputs, that is yi ⇡ f (x i).
If Y = R, the task is also known as regression, if Y is categorical, it is called
classification. In this thesis, we mainly focus on the regression case, therefore,
we assume Y = R if not otherwise stated. Moreover, we assume X = RD for the
sake of simplicity, however, the most concepts can be adapted to a more general
space.

In this section, we introduce a parametric linear model with basis functions, in
particular, we consider the following model f : RD! R,

f (x ) =
M
X

j=1

wjφ j(x ) = φ(x )
T w , (2.20)

involving the input vector x = [x1, . . . , xD]
T 2 RD, the weight vector w =

[w1, . . . , wM]
T 2 RM and the basis function vectorφ(x ) = [φ1(x ), . . . ,φM(x )]

T 2
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RM with the jth basis function φ j(x ) : RD! R. Importantly, this model is linear
in the weights w and not in the input x , which is illustrated in Figure 2.3 for
different basis functions φ(x ).

Figure 2.3. Examples of basis functionsφ(x) in one and two dimension which illustrates
that the linear basis function model in (2.20) represent a very broad class of complicated
functions (for instance also neural networks).

2.2.1 Additive Gaussian Noise

We further assume that the observed values y1, . . . , yN are perturbed observations
of the underlying function values f (x 1), . . . , f (x N ). In particular, an additive
noise model is assumed, that is,

yi = y(x i) = f (x i) + "i, (2.21)

where "i ⇠ N
�

0,σ2
n

�

are independent Gaussian variables with zero mean and
noise variance σ2

n. These assumptions give rise to the likelihood function

p(yi|w ) =N
�

yi

�

�φ(x i)
T w ,σ2

n

�

,

which describes the probability of the output observation yi 2 R given the pa-
rameters w 2 RM . Due to the independence assumption of the noise, the joint
likelihood factorizes over the N output samples y = [y1, . . . , yN] 2 RN . There-
fore, the joint likelihood can be written as

p(y |w ) =
N
Y

i=1

p(yi|w ) =
N
Y

i=1

N
�

yi

�

�φ(x i)
T w ,σ2

n

�

=N
�

y
�

�ΦX w ,σ2
nI
�

, (2.22)
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where the input matrix is denoted as X = [x 1, . . . , x N]
T 2 RN⇥D and the basis

function matrix ΦX = [φ(x 1), . . . ,φ(x N )]
T , which is particularly defined as

ΦX =

2

6

6

4

φ1(x 1) φ2(x 1) · · · φM(x 1)

φ1(x 2) φ2(x 2) · · · φM(x 2)
...

...
. . .

...
φ1(x N ) φ2(x N ) · · · φM(x N )

3

7

7

5

2 RN⇥M .

Note that, there are many other choices for the noise model resulting in different
likelihood distributions. For instance, if we assume a Bernoulli likelihood leads
to logistic regression, which corresponds to linear classification [Murphy, 2012,
Section 1.4.6].

2.2.2 Point Estimation for Regression

2.2.2.1 Least-Squares Approach

The least-squares (LS) approach tries to find a solution for y ⇡ f (X) by minimiz-
ing the difference between the observed outputs y with the function evaluations
f (X) of the input X in the L2-norm sense. This can be formulated as

w LS = argmin
w2RM

||y − f (X)||22 = arg min
w2RM

||y −ΦX w ||22
= (ΦT

XΦX)
−1
Φ

T
X y ,

(2.23)

where the solution can be obtained by setting the derivative w.r.t. w to zero.
Since the least-squares approach is prone to overfitting or the matrix ΦT

XΦX could
even be singular (for instance if there are many correlated features or even M >

N), a common approach is to introduce a regularization term in the objective
function to balance between fit and regularity. This leads to regularized least-
squares or ridge regression

w rid ge = argmin
w2RM

||y −ΦX w ||22 +λ||w ||22
= (ΦT

XΦX +λI)
−1
Φ

T
X y ,

(2.24)

where λ controls the influence of the regularization and is added in the solution
to the diagonal of ΦT

XΦX , which has the effect that all eigenvalues of the matrix
Φ

T
XΦX are shifted away from 0. Regularization allows training of complex models

without severe over-fitting, essentially by limiting the effective model complexity.
However, finding the optimal λ in ridge regression is crucial and not an easy
task. Ideally, we would like to find the λ which gives a minimal error on an
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additional validation dataset Dval = {yj, x j}Vj=1, which is different to the training
data D = {yi, x i}Ni=1. Thereby, the size V should be as large as possible, however,
large validation sets are often not realistic in practice, so that the most common
approach is to select λ via cross-validation based on different splits of the training
dataset. We refer to [Bishop, 2006, Ch. 3] for more details.

Example 2.1 (Polynomial Regression) For input space D = 1 and thus x 2 R,
we consider the polynomial regression model

fP(x) =
P
X

j=0

wj x
j = φ(x)T w ,

which is an instance of the linear basis function model (2.20) with the polynomial
basis function

φ(x) = [1, x , x2 . . . , x P]T 2 RM

for some degree P = M − 1. The basis function matrix can be computed by

ΦX =

2

6

6

4

1 x1 · · · x P
1

1 x2 · · · x P
2

...
... . . . ...

1 xN · · · x P
N

3

7

7

5

2 RN⇥M .

We want to compare the solution w LS for least-squares in (2.23) and the regular-
ized version w rid ge in (2.24) for the models fP(x) for P = 1, . . . , 10. We generated
N = 14 training data samples from a sine function with additive Gaussian noise.
The results are illustrated in Figure 2.4 for w LS in blue and w rid ge in orange. We
can observe, that for increasing P both estimates can represent more complex func-
tions, however, for the regularized version, there is a smoothing effect compared to
the unregularized. The numbers in the bottom left corner indicate the root-mean-

squared-error (RMSE), which is defined as
q

1
N

PN
i=1(yi − f (x i))

2 for the training

data D = {yi, x i}Ni=1 and
«

1
M

PM
j=1(yj − f (x j))

2 for an additional validation data
set Dval = {yj, x j}Mj=1. In this example, we generated M = 100 validation data
samples, so that the validation error is a very good estimate for the true general-
ization error. Note that, such a big validation set is not realistic for real data, we
use it here just for illustration purposes. For each order P, the optimal λ⇤ is chosen
such that the RMSE error is minimized on the validation set. We notice, that the
training error for ordinary least-squares is minimal for P = 10, however, the vali-
dation error is best for P = 5. On the other hand, for regularized least-squares, the
training error is minimal for P = 7 and validation error for P = 5. Note that for
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ridge regression, the training error is a much better estimate for the validation error,
which means that a better trade-off between fitting the data and generalization is
achieved. Consider also Example 2.2 and Figure 2.5.

Figure 2.4. Polynomial regression with least-squares (blue) and ridge regression (or-
ange) for Example 2.1.

2.2.2.2 Probabilistic Interpretation of Least-Squares

The point estimates for the weights in the previous section can also be derived
with a probabilistic interpretation. In particular, we can maximize the likelihood
function p(y |w ) (2.22), leading to

w M L = argmax
w2RM

p(y |w ) = arg max
w2RM

log p(y |w )

= argmax
w2RM

logN
�

y
�

�ΦX w ,σ2
nI
�

= argmax
w2RM

−
1

2σ2
n

(y −ΦX w )T (y −ΦX w )

= arg min
w2RM

||y −ΦX w ||22 = w LS.
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Therefore, we can understand the least-squares approach as maximum likelihood
(ML) estimation.

Definition 2.4 (Maximum Likelihood I (ML-I)) Maximizing the likelihood dis-
tribution p(y |w ) as a function of the parameter w , i.e.

w ⇤ = argmax
w2RM

p(y |w )

is called the maximum likelihood approach. For reasons which will be clear later, we
denote this type of approach maximum likelihood inference of level I, abbreviated
as ML-I.

The probabilistic analog of regularization is to incorporate some additional as-
sumptions of the parameters by specifying a distribution prior to seeing the data.
For instance, we could assume a Gaussian distribution for the weights w ⇠
N
�

0,σ2
0I
�

with mean zero and isotropic covariance with variance σ2
0, which

corresponds to the assumption that all parameter are pairwise independent and
they are most likely around zero with some standard deviationσ0, however, large
values are unlikely. Instead maximizing only the likelihood as above, we can in-
stead maximize the likelihood times the distribution of the weights, consider for
instance [Bishop, 2006, Ch. 3].

Definition 2.5 (Maximum a Posteriori I (MAP-I)) Maximizing the product of the
likelihood p(y |w ) times a prior distribution p(w ) as a function of the parameter
w , that is,

w ⇤ = arg max
w2RM

p(y |w ) p(w )

is called the maximum-a-posteriori approach, here abbreviated as MAP-I.

Note that we will thoroughly discuss prior distributions in the next sections. We
continue here to show that the solution of MAP for the weights correspond ex-
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actly to the solution obtained by ridge regression.

w MAP = argmax
w2RM

p(y |w )p(w )

= argmax
w2RM

log p(y |w ) + log p(w )

= argmax
w2RM

logN
�

y
�

�ΦX w ,σ2
nI
�

+ logN
�

0,σ2
0I
�

= argmax
w2RM

−
1

2σ2
n

(y −ΦX w )T (y −ΦX w )−
1

2σ2
0

w T w

= argmin
w2RM

1
σ2

n

||y −ΦX w ||22 +
1
σ2

0

||w ||22

= argmin
w2RM

||y −ΦX w ||22 +
σ2

n

σ2
0

||w ||22

= w rid ge.

We note that MAP-I for a Gaussian likelihood with noise variance σ2
n and a Gaus-

sian prior with variance σ2
0 correspond to ridge regression with λ =

σ2
n

σ2
0
. In the

case σ0 = 1, which is reasonable when the output data is standardized, finding
the regularization parameter λ in ridge regression correspond to estimating the
noise in the data. For σ2

0 !1, the regularization term λ ! 0 vanish, which
means no constraints for the weights. In this case, the prior converges to an
uniform distribution and we can note that ML/LS estimation correspond to MAP
with uniform prior.

Example 2.2 (Generalization Capacity and Model Selection) For the Example
2.1 with Figure 2.4, the generalization capacity of the two models ordinary least
squares and ridges regression are compared for choosing the optimal model com-
plexity. In Figure 2.5, the RMSE of the training and validation data is depicted for
least-squares and ridge regression for increasing polynomial order P. We observe
that the training error for least-squares decreases for increasing order P, however,
the validation error becomes very bad, which means that this model has severe dif-
ficulties with overfitting the data. On the other hand, the training error for ridge
regression is a good estimate for the validation error, which means that this model
can generalize its learned pattern well to new data points. For both models, the opti-
mal model according to the validation error is for P = 5, but according the training
error it is P = 10 and P = 7, respectively. In particular, the training error for least-
squares is always minimal for the highest considered P. Note that the performance
of ridge regression depends strongly on the size and quality of the validation set. In
this toy example, the validation set represents basically the truth, so that it is clear,
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that the training error correlates strongly with the validation error when choosing
the optimal λ⇤ with the validation set.

Figure 2.5. Generalization capacity for least-squares (blue) and ridge regression (or-
ange) for increasing polynomial order P in Example 2.2. The training error for least-
squares is not a good estimate for the validation error, whereas the training error corre-
lates strongly with the validation of ridge-regression.

2.2.2.3 Limitations of Non-Bayesian Approaches

Many classical machine learning approaches for finding the optimal parameters
of a model are based on optimizing a loss function, as for instance illustrated by
the L2 norm in the least-squares case. This approach constitutes a well-founded
and flexible tool for inference of many models, however, the generalization ca-
pacity is intrinsically limited. In particular, when only a small number of training
data samples are available compared to the complexity of the model (e.g. num-
ber of parameters), they might suffer from severe overfitting issues. Adding a
regularization term to the loss function as illustrated for ridge regression par-
tially solves the generalization problem. However, finding the regularization
parameter via validation-based approaches (e.g. cross-validation) is computa-
tionally expensive and wasteful of valuable data. In Section 2.2.2.2, we have
seen that regularization can be understood as incorporating probabilistically ad-
ditional knowledge about the solution before seeing the data. Bayesian proba-
bilistic inference generalize this approach, which will be discussed in the next
Section 2.3.
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2.3 Bayesian Probabilistic Inference

In this section, we briefly discuss the main concepts of Bayesian inference and
Bayesian model selection. The description is general but with a focus on aspects
which will be important for GPs. In particular, we discuss Bayes’ rule in Section
2.3.1, Bayesian hierarchical models in Section 2.3.2, practical consideration in
Section 2.3.3, and the Bayesian treatment of the linear basis function model in
Section 2.3.4. This section is solely based on [Murphy, 2012, 5.4-5.6], [Ras-
mussen and Williams, 2006, Ch. 5], and [Bishop, 2006, Ch. 3].

2.3.1 Bayes’ Rule

In a nutshell, Bayes’ rule can be seen as transforming the belief about a param-
eter z before and after seeing the data D. In particular, it allows to combine
prior information about the parameter z with the observed data D to a distri-
bution representing the information of the parameter incorporating the data. In
mathematical terms, this can be formulated as

p(z|D) = p(D|z) p(z)
p(D)

, (2.25)

where we assume p(D)> 0 and p(z) is the prior distribution encoding our prior
information or assumptions about the parameter z before seeing the data. On
the other hand, the term p(z|D) on the left in (2.25) is the posterior distribution
including the information from the data, which encodes useful knowledge about
the data summarized by the parameter. The prior and the posterior distributions
are connected by the likelihood distribution p(D|z), which describes how likely
the data is for a given parameter and is used to probabilistically describe the
data generating process. Note that the posterior distribution is proportional to
the product of the likelihood and the prior

p(z|D)/ p(D|z) p(z),

since the denominator p(D) in (2.25) is independent of the parameter z. The
denominator is acting as a normalization constant and can thus be computed by
integrating over the nominator in (2.25)

p(D) =

Z

p(D|z) p(z)dz. (2.26)

This quantity is called marginal likelihood (or also evidence) and describes the
probability distribution of the data.
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2.3.2 Bayesian Hierarchical Model

Usually, a Bayesian model is specified as a hierarchical model of parameters. In
our case, we assume that the main parameter w are at the first level. For in-
stance in the linear basis function model in Section 2.2, all weights for the basis
functions correspond to the main parameters. At the second level are the hyper-
parameters ✓ , which control the distribution of the parameters at the first level.
For instance, the noise variance σ2

n or the prior variance σ2
0 discussed in Section

2.2.2.2 in the prior distribution for w belongs to this category. At the bottom
level, there is usually a (discrete) set of possible models M under consideration.
In the linear basis function model this might correspond to the models with dif-
ferent number of basis functions.

Bayesian inference corresponds to repetitively applying Bayes’ rule (2.25) to each
parameter at each level of the hierarchical model. This is shown in the fol-
lowing for the model with three levels with parameters w , ✓ and M and data
D = {y , X}, where we assume that the input data X is deterministic and fixed.
First, we have to specify all prior distributions, that is, we have to encode our
prior assumptions of the model p(M), the hyperparameters p(✓ |M) in a given
model and the parameters p(w |✓ ,M) for a given model and fixed hyperparam-
eters, respectively. Note that those choices strongly depend on the particular
application, however, in this section they are assumed to be general and will
be specified in the subsequent sections. Additionally to the priors, we have to
specify the likelihood on the first level

p(y |X , w ,✓ ,M) (2.27)

determining the data generating process for a fixed model, fixed input data and
given parameter and hyperparameter. For instance in the linear basis function
model, we have discussed the likelihood p(y |w ) with Gaussian additive noise
in Section 2.2.1. In a Bayesian setting, the likelihood can be always implicitly
understood as the likelihood in (2.27), that is, conditioned on the input data, the
hyperparameters in a fixed model; and similarly for the prior distributions.

Remark 2.1 In the rest of this thesis - except this section - when discussing Bayesian
inference on the first level in a Bayesian model, we usually omit the explicit depen-
dencies on the parameters on the lower levels for the sake of simplicity. Concretely,
if it is clear from the context and not otherwise stated, we assume that the hyperpa-
rameters ✓ , the input data X and the model M are already known or fixed.
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variable posterior likelihood prior marginal lik. equation

I parameter w p(w |y , X ,✓ ,M) p(y |X , w ,✓ ,M) p(w |✓ ,M) p(y |X ,✓ ,M) (2.28), (2.29)

II hyperpar. ✓ p(✓ |y , X ,M) p(y |X ,✓ ,M) p(✓ |M) p(y |X ,M) (2.30), (2.31)

III model M p(M|y , X) p(y |X ,M) p(M) p(y |X) (2.32), (2.33)

Table 2.1. Summary of Bayesian inference in an hierarchical model depicted for three
variables w , ✓ and M. Every prior on each level and the likelihood on the first level has
to be specified, then the posterior for each parameter can be computed (if it is tractable)
by repetitively applying Bayes’ rule (2.25). Note that the marginal likelihood of the
previous level acts as likelihood in the next level.

Generally, the posterior in a Bayesian model on the first level can be computed
by applying Bayes’ rule (2.25) the first time yielding

p(w |y , X ,✓ ,M) =
p(y |X , w ,✓ ,M) p(w |✓ ,M)

p(y |X ,✓ ,M)
. (2.28)

Thereby, the prior over the parameter p(w |✓ ,M) is combined with the speci-
fied likelihood (2.27). The denominator, which is called marginal likelihood of
the first level, can be obtained by computing the integral over the numerator in
(2.28)

p(y |X ,✓ ,M) =

Z

p(y |X , w ,✓ ,M) p(w |✓ ,M)dw . (2.29)

Note that this is usually meant by "the" marginal likelihood in a Bayesian model,
however, there is a marginal likelihood at each level. At the second level, we
analogously express the posterior over the hyperparameters by combining the
prior distribution p(✓ |M) and the previous marginal likelihood (2.29) leading
to the posterior

p(✓ |y , X ,M) =
p(y |X ,✓ ,M) p(✓ |M)

p(y |X ,M)
. (2.30)

Note that the prior over the hyperparameters is also called hyper-prior distribu-
tion and we want to emphasize that the previous marginal likelihood on the level
of the weights plays the role of the likelihood for the hyperparameters.

Remark 2.2 In a Bayesian hierarchical model, the marginal likelihood of the pre-
vious level acts as the likelihood for the current level.
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Again, the marginal likelihood (2.26) for the second level can be obtained by

p(y |X ,M) =

Z

p(y |X ,✓ ,M) p(✓ |M)d✓ . (2.31)

At the third level of the model, the posterior for the model can be formulated as

p(M|y , X) =
p(y |X ,M) p(M)

p(y |X) , (2.32)

where again the previous marginal likelihood (2.31) is combined with the prior.
Assuming that the models M is a discrete random variable with range M 2
{M1, . . . , MJ}, the normalization in the denominator can be computed as

p(y |X) =
J
X

j=1

p
�

y |X ,M = Mj

�

p
�

M = Mj

�

. (2.33)

This is known as Bayesian model selection, as described for instance in [Bishop,
2006, Chapter 3].

2.3.3 Bayesian Inference in Practice

Computing the marginal likelihood requires, in general, the computation of mul-
tivariate integrals. Depending on the particular model, these integrals might not
be analytically tractable and we have to resort either to analytical approxima-
tions (e.g. variational approach) [Bishop, 2006, Ch. 10] or Markov chain Monte
Carlo (MCMC) methods [Bishop, 2006, Ch. 11]. We focus in this work on an an-
alytic approach based on the marginal likelihood from the previous level, which
is called empirical Bayes [Murphy, 2012, Section 5.6].

2.3.3.1 Level II Inference: Hyperparameters

In particular, the computation of the integral in (2.31) might be difficult, since the
marginal likelihood p(y |X ,✓ ,M) of the hyperparameters are often a highly non-
linear function in ✓ . Therefore, instead of computing the full posterior (2.30) of
the second level, a common approach is to maximize the marginal likelihood in
(2.29) with respect to the hyperparameters.

Definition 2.6 (Maximum Likelihood II (ML-II)) Maximizing the marginal like-
lihood p(y |X ,✓ ,M) of the hyperparameters ✓ in the second level of a Bayesian
model, that is,

✓ ⇤ = arg max
✓

p(y |X ,✓ ,M)
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is called maximum likelihood approach at level II or also just maximum marginal
likelihood [Murphy, 2012, Ch. 5].

Maximizing the marginal likelihood constitutes a cheap and often effective al-
ternative for computing the intractable full posterior p(✓ |y , X ,M). However,
of course, one should be careful with such an optimization step, since it opens
up the possibility of overfitting, in particular if there are many hyperparameters.
Note that in principle similar arguments can be made as in the discussion around
the usual maximum likelihood approach of type I, as highlighted in Section 2.2.2.
However, compared to ML-I or MAP-I treatment of the hyperparameters, an ad-
ditional level of uncertainty is taken into account and the risk of overfitting is
less severe for the second level, since the marginal likelihood has an interesting
regularization property.

Remark 2.3 (Regularization Effect of ML-II) The maximum likelihood type II
approach, obtained by maximizing the marginal likelihood for the hyperparameters,
has the property that it automatically incorporates a trade-off between model fit and
model complexity. This can be explained by Eq. (2.29), which shows that the ML-
II objective p(y |X ,✓ ,M) is the expectation of the ML-I objective p(y |X , w ,✓ ,M)
under the prior distribution p(y |X , w ,✓ ,M), that is,

p(y |X ,✓ ,M) = Ep(w |✓ ,M) [p(y |X , w ,✓ ,M)] .

Thus, due to the expectation over w , the ML-II is less prone to overfitting than the
ML-I and incorporates implicitly the model complexity.

Therefore, using the maximum marginal likelihood for finding the hyperparame-
ters automatically prevents overfitting up to some degree and constitutes a valu-
able approach in many situations. This property is also illustrated in Example
2.4 and 2.5.
Alternatively, a further improvement to the ML-II approach is to still use priors on
level II, but to only compute the maximizer of the posterior distribution instead
the whole intractable posterior distribution in (2.30). This is based on the fact
that it is easier in the most cases to only find the maximizer of a distribution than
computing the whole distribution. In particular, the maximizer is independent
of the normalization, which corresponds to compute an hard integral (2.31).

Definition 2.7 (Maximum a Posteriori II (MAP-II)) Using the hyperparameters,
which correspond to the maximum of the posterior distribution, is called the maximum-
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a-posterior type II (MAP-II) approach [Murphy, 2012, Ch. 5.6]. In particular, max-
imizing the posterior can be written as

✓ ⇤ = arg max
✓

p(✓ |y , X ,M)

= arg max
✓

p(y |X ,✓ ,M) p(✓ |M),

where we exploited the fact, that for computing the maximizer, the integral in (2.31)
is not needed.

The MAP-II approach constitutes often a cheap and effective alternative for com-
puting the intractable full posterior p(✓ |y , X ,M) but using some prior knowl-
edge about the hyperparameters, as we will see in Example 2.4.

2.3.3.2 Level III Inference: Model Selection

Approximate inference at level II by a point estimate, and in particular not com-
puting the normalization (2.31), has also consequences for inference at level III
corresponding to model selection. We have seen that we can circumvent the
computation of the normalization or marginal likelihood at level II (2.31) by a
point estimate either by the ML-II or MAP-II approach and get still valuable infor-
mation for the hyperparameters. However, this marginal likelihood p(y |X ,M)
at level II acts as likelihood at level III, which is needed for inference. A solution
for approximate inference for the model M in the third level can be obtained by
plugging the maximizer ✓ ⇤ into the marginal likelihood p(y |X ,✓ ⇤,M) and us-
ing a local expansion (e.g. Laplace approximation [Bishop, 2006, Chapter 10])
around ✓ ⇤ for computing the integral p(y |X ,M) (2.31). The prior over the
model p(M) in (2.32) is often taken to be flat, so that no model is preferred
over another a-priori. In this case, the probability for the model is proportional
p(M|y , X)/ p(y |X ,M) to the approximated marginal likelihood in (2.31) and
can be used for model selection [Bishop, 2006, Chapter 3] as illustrated in Ex-
ample 2.5.

2.3.4 Bayesian Linear Model

In this section, we discuss Bayesian inference for the linear basis function model
introduced in Section 2.2, which is also known as Bayesian linear regression
[Bishop, 2006, Ch. 3]. Note that, in this section we focus on Bayesian inference
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of the weights, so that by likelihood, prior or posterior we refer to the correspond-
ing distribution on the first level in a Bayesian hierarchical model. For the sake
of simplicity, we omit the explicit conditioning on the input data and the chosen
model as noted in Remark 2.1. The discussion about approaches for inference
on the second level is provided in Section 2.3.4.6.

2.3.4.1 Likelihood

We briefly recall the assumptions of the linear regression model in Section 2.2
with basis functions and Gaussian additive noise as introduced in Section 2.2.1.
The model can be summarized by

y(x) = f (x ) + ",
f (x ) = φ(x )T w ,
" ⇠N

�

0,σ2
�

,

which give rise to the Gaussian regression likelihood

p(y |w ) =N
�

y
�

�ΦX w ,σ2
nI
�

. (2.34)

2.3.4.2 Prior

In a Bayesian setting, a prior distribution is specified over the parameters w ,
expressing our beliefs about the parameters before considering the data. We put
a zero mean Gaussian prior with prior covariance ⌃0 2 RM⇥M on the weights

p(w ) =N
�

w
�

�0,⌃0

�

, (2.35)

so that Bayesian inference can be applied.

2.3.4.3 Posterior

Bayes’ theorem (2.25) for computing the posterior of the weights w given the
data y can be formulated as

p(w |y) = p(y |w )p(w )
p(y)

/ p(y |w )p(w ), (2.36)

where the likelihood (2.34) and the prior (2.35) are combined to compute the
posterior knowledge. Since both distributions are Gaussian, the product is again
Gaussian

N
�

w
�

�µ,⌃
�

=N
�

y
�

�ΦX w ,σ2
nI
�

N
�

w
�

�0,⌃0

�

, (2.37)
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where the posterior mean µ and posterior covariance ⌃ of the weights w can be
analytically computed by (2.6), yielding

µ=
1
σ2

n

⌃Φ
T
X y and ⌃ =

✓

⌃
−1
0 +

1
σ2

n

Φ
T
XΦX

◆−1

. (2.38)

Note that the mean µ has the same structure as the point estimate of ridge regres-
sion in (2.24), however, here we have additional information due to the posterior
covariance. By applying the inversion lemma (2.16) to ⌃, we can alternatively
write for the posterior moments

µ = ⌃0Φ
T
X P−1y and ⌃ = ⌃0 −⌃0Φ

T
X P−1

ΦX⌃0, (2.39)

where we introduce the covariance matrix

P = ΦX⌃0Φ
T
X +σ

2
nI. (2.40)

Remark 2.4 (Efficient Inversion) Note that computing the posterior moments in
(2.39) requires the inversion P−1 2 RN⇥N which is in O(N 3), whereas computing
the posterior covariance ⌃ 2 RM⇥M in (2.38) is O(M3). Which one is preferable
from a computational point of view depends whether the number of basis functions
M or the number of data samples N is larger.

2.3.4.4 Prediction

For a new query point x ⇤ 2 RD, we can find the predictive posterior distribution
p(y(x ⇤)|y) by averaging over all possible parameter values, weighted by their
posterior probability, that is,

p(y(x ⇤)|y) =
Z

p(y(x ⇤)|w )p(w |y)dw

=

Z

N
�

y(x ⇤)
�

�φ(x ⇤)
T w ,σ2

n

�

N
�

w
�

�µ,⌃
�

dw

=N
�

y(x ⇤)
�

�φ(x ⇤)
Tµ,φ(x ⇤)

T
⌃φ(x ⇤) +σ

2
n

�

,

(2.41)

where the integral of two Gaussians can be computed by (2.5). Using µ in Eq.
(2.39) and introducing φ⇤ = φ(x ⇤)

T 2 R1⇥M to ease notation, the mean of the
posterior predictive distribution (2.41) can be written as

µ(x ⇤) = φ⇤µ= φ⇤⌃0Φ
T
X P−1y (2.42)
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and similarly for the variance with ⌃ in Eq. (2.39)

σ2(x ⇤) = φ⇤⌃φ
T
⇤
+σ2

n = φ⇤⌃0φ
T
⇤
−φ⇤⌃0Φ

T
X P−1

ΦX⌃0φ
T
⇤
+σ2

n. (2.43)

In order to summarize the predictive posterior distribution, we can compute the
100(1−↵)%-credible interval, denoted as C I1−↵, with limits [c0, c1] satisfying

Z c1

c0

p (y(x ⇤) | y)dy(x ⇤) = 1−↵.

Since the predictive posterior distribution is Gaussian, the 95%-credible interval
for instance can be computed as

C I0.95(x ⇤) = µ(x ⇤)± 1.96
∆

σ2(x ⇤) (2.44)

involving the mean and the variance of the predictive posterior distribution.

2.3.4.5 Marginal Likelihood

Note that the denominator p(y) in (2.36) is independent of the weights w and
thus acting as a normalization constant. It can be computed for the linear Gaus-
sian model by marginalizing or integrating out the weights from the product of
the likelihood p(y |w ) in (2.22) times the prior p(w ) in (2.35), that is,

p(y) =

Z

p(y |w )p(w )dw

=

Z

N
�

y
�

�ΦX w ,σ2
nI
�

N
�

w
�

�0,⌃0

�

dw

=N
�

y
�

�0,ΦX⌃0Φ
T
X +σ

2
nI
�

=N
�

y
�

�0, P
�

,

(2.45)

where we used (2.5) to compute the integral and we can recognize again the
covariance matrix P in (2.40).

Example 2.3 (Bayesian Linear Regression, Level I) Assume the polynomial map-
ping φ(x ) = [1, x (1), . . . , x (P)] for the model in (2.20) with P = 1 and thus

f (x) = w0 + w1 x = [1, x][w0, w1]
T = φ(x)T w . (2.46)

We assume a zero-mean isotropic Gaussian prior over the parameters p(w ) =
N
�

w
�

�0,σ2
0I
�

together with the Gaussian likelihood p(yi|w ) =N
�

yi

�

�φ(x i)
T w ,σ2

n

�

of N training data samples with inputs X = [x1, . . . , xN]
T 2 RN⇥1 and the corre-

sponding outputs y = [y1, . . . , yN]
T 2 RN . We generated N = 40 data samples
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from the true model in (2.46) with w0 = −0.2, w1 = 0.5 and fixed variances
σ2

0 = 0.3, σ2
n = 0.03. In the top row of Figure 2.6, the likelihoods p(yi|w ) =

N
�

yi

�

�φ(x i)
T w ,σ2

n

�

are shown for some samples i as a function in the weights w ,
where the yellow areas indicate the most likely parameters w which are consistent
with the data sample (yi, x i). Defining the augmented input matrix ΦX = [1, X] 2
RN⇥2 and using (2.38), the posterior over the weights p(w |y) = N

�

w
�

�µ,⌃
�

can
be computed by

µ= σ−2
n ⌃Φ

T
X y 2 R2 and ⌃

−1 = σ−2
0 I+σ

−2
n Φ

T
XΦX 2 R2⇥2.

In the second row in Figure 2.6, the prior p(w ) and several cumulative posteri-
ors p(w |y1:i) are shown, where the latter is obtained by combining the prior and
all previous likelihoods including the ith. We can observe that the yellow area for
posterior i, corresponding to the most likely weights given all previous seen data
y1:i , shrinks as the more data is included in the model, meaning that the confidence
about the inferred estimate increases. For a query point x ⇤ 2 R and φ⇤ = [1, x ⇤] 2
R1⇥2, the predictive distribution p(y(x ⇤)|w ) with mean µ(x ⇤) = φ⇤µ and variance
σ2(x ⇤) = φ⇤⌃φ

T
⇤
+σ2

n as given in Eqs. (2.42) and (2.43), respectively, can be used
to compute the 95%-credible interval

C I0.95(x ⇤) = µ(x ⇤)± 1.96
∆

σ2(x ⇤).

In the third row in Figure 2.6, the µ(x ⇤) (green solid line) as well as the credible
interval C I0.95(x ⇤) (shaded area) are shown for a range of query points x ⇤ on the
x-axis. We can observe that for increasing number of samples, the mean gets closer
to the true function (dotted red line) and the size of the shaded area decreases, cor-
responding to the higher confidence of the predictive distribution. Consider Example
2.4 for the continuation of this example for level II inference.

2.3.4.6 Level II Inference: Hyperparameters

In this section we discuss level II inference for the hyperparameters ✓ . In the
previous section, the prior covariance ⌃0, the noise variance σ2

n and possible hy-
perparameters for the basis functions φ are treated as known or fixed. However,
in practice these hyperparameters are usually unknown and have to be inferred
as well. As discussed in Section 2.3.3, in particular the normalization constant of
the posterior at level II is in general analytically intractable due to the non-linear
relationship. Here we focus on the empirical Bayesian approach as introduced
in Section 2.3.3.
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Figure 2.6. Illustration of Example 2.3 of Bayesian inference level II for linear regression.

Maximum Likelihood II
According to Definition 2.6, we use the marginal likelihood p(y) = p(y |✓ ) of the
first level in (2.45) as the objective function, which yields

✓ ⇤ = argmax
✓

p(y |✓ )

= argmax
✓

log p(y |✓ )

= argmax
✓

−
1
2

�

y T P−1
✓

y + log |P✓ |+ N log2⇡
�

= argmin
✓

y T P−1
✓

y + log |P✓ |,

(2.47)

where the marginal likelihood covariance in (2.40) is explicitly parametrized by
✓ , that is, P✓ = ΦX⌃0Φ

T
X + σ

2
nI. Note that, the maximizer in (2.47) might not

be unique and the solution may consist of several values. However, in practice,
the goal is often only to find a local maximizer via gradient-based techniques as
discussed in Section 2.1.3.

Maximum a Posterior II
Alternatively to the maximum likelihood II approach, we can use the approach
in Definition 2.7. This means, we introduce some hyper-priors p(✓ ) on the hy-
perparameters ✓ and use the (intractable) posterior p(✓ |y) / p(y |✓ )p(✓ ) as
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the objective function, that is,

✓ ⇤ = argmax
✓

p(✓ |y)

= argmax
✓

p(y |✓ ) p(✓ )

= argmax
✓

log p(y |✓ ) + log p(✓ )

= argmin
✓

y T P−1
✓

y + log |P✓ |− 2 log p(✓ ).

(2.48)

Since the most hyperparameters ✓ j 2 ✓ in probabilistic models correspond to
some variances σ2

j 2 R+, we use in this work Log-Normal hyper-priors for all
hyperparameters as not otherwise stated. Thereby, we use the transformation
with the natural logarithm ✓ j = logσ j, which is often very appropriate in order
to get a clear picture for small variances and leads to smooth objective functions.
Using a Log-Normal prior distribution for the variable σ j = exp(✓ j), that is,

p(σ j) = logN
�

σ j

�

�⌘ j,⌫ j

�

for some means ⌘ j and variances ⌫ j, leads to a Gaussian prior in the transformed
space

p(✓ j) =N
�

✓ j

�

�⌘ j,⌫ j

�

.

In the following we assume that the hyper-priors are pairwise independent, yield-
ing the joint hyper-prior

p(✓ ) =
|✓ |
Y

j=1

p(✓ j) =N
�

✓
�

�⌘,V
�

, (2.49)

where ⌘ is the vector containing all ⌘ j and V the diagonal matrix with ⌫ j on the
diagonal. For this kind of hyper-priors, the MAP-II in (2.48) becomes

✓ ⇤ = argmax
✓

log p(y |✓ ) + log p(✓ )

= argmin
✓

y T P−1
✓

y + log |P✓ |+ (✓ −⌘)TV−1(✓ −⌘)
(2.50)

which can be numerically optimized with respect to each hyperparameter ✓ j 2 ✓ .

Note that it is important to implement the minimization in (2.47) and (2.50)
efficiently, therefore it is beneficial to provide also the derivatives with respect
to ✓ analytically, as described in Section 2.1.3. Moreover, depending on the size
of M and N , it might be more efficient to apply the inversion (2.16) and deter-
minant lemma (2.17), respectively, to P✓ and directly work with the Cholesky
decomposition of P✓ .
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method likelihood function p(y |✓ ) prior function p(✓ ) definition

ML-I p(y |X , w ,✓ ,M) Def. 2.4, Eq. (2.34)
MAP-I p(y |X , w ,✓ ,M) p(✓ |w ,M) Def. 2.5
ML-II p(y |X ,✓ ,M) Def. 2.6, Eq. (2.47)
MAP-II p(y |X ,✓ ,M) p(✓ |M) Def. 2.7, Eq. (2.50)

Table 2.2. Summary of different approaches for level II inference for hyperparameters.

Example 2.4 (Bayesian Linear Regression, Level II) For the Example 2.3, we
have the hyperparameters ✓ = [logσ0, logσn]

T = [✓ 1,✓ 2]
T . In this example, we

compare the different inference approaches ML-I, MAP-I, ML-II and MAP-II for the
treatment of the hyperparameters ✓ , summarized in Table 2.2. The correspond-
ing objective functions are depicted in Figure 2.7. For ML-I, the objective function
becomes

✓ ⇤ = arg max
✓

p(y |w ,✓ ) = argmin
✓

1
σ2

n

(y −ΦX w )T (y −ΦX w ),

which is completely independent of σ0 and thus it cannot be estimated, which can
also be validated in the second row of Figure 2.7. Note that the weights w for ML-I
(and also MAP-I), are set to the true weights which are used for generating the data
(see Example 2.3). In practice, the weights and the hyperparameters have to be
estimated jointly. For MAP-I, we also use the hyper-priors as described in (2.49), in
particular, we use Log-Normal hyper-priors with zero mean and variances equal to
1 on the hyperparameters ✓ = [logσ0, logσn]

T , that is,

p(✓ ) =N

✓

logσn

logσ0

� �

�

�

�



0
0

�

,



1 0
0 1

�◆

. (2.51)

In the transformed space, this corresponds to an hyper-prior meanE[σn] = E[σ0] =

exp
�

1
2

�

⇡ 1.65 and hyper-prior varianceVar[σn] = Var[σ0] = exp(1)2−exp(1)⇡
4.67 corresponding to a standard deviation of around 2.16. Note that these hyper-
priors are quite flat or uninformative compared to the true values used to generate
the data σ2

0 = 0.3, σ2
n = 0.03 and thus σ0 ⇡ 0.55 and σn ⇡ 0.17. Using these

hyper-priors, the optimization problem for MAP-I becomes

✓ ⇤ = arg max
✓

p(y |w ,✓ )p(✓ ) = arg min
✓

1
σ2

n

(y −ΦX w )T (y −ΦX w ) + ✓ T✓ .

Note that the optimal estimate for σ0 correspond exactly to the hyper-prior mean
⇡ 1.65 as depicted in the third row of Figure 2.7. On the other hand, for a small
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number of observed samples, the prior on the noise σn has a significant effect com-
pared to the ML-I estimate, however, for large observed samples, it converges to ML-I.
In both cases, the true noise level, depicted with the red cross, cannot be recovered.

Figure 2.7. Inference at level II for hyperparameters ✓ = [logσ0, logσn] with different
methods as summarized in Table 2.2 and discussed in Example 2.4. In each row from the
left to the right, more observed data samples are available to train the models. Note that
in the first row, the true weights and true hyperparameters are used. We can observe that
the influence of the hyper-prior has only a significant (but positive) effect for small num-
ber of samples and vanishes for large number of data. Moreover, the two approaches in
the bottom based on the marginal likelihood recover the true hyperparameters depicted
as red crosses.

Next, we use empirical Bayes for the hyperparameters, which involves the marginal
likelihood in (2.45) given as p(y |✓ ) = logN

�

y
�

�0, P✓
�

with P✓ = σ
2
0ΦXφ

T
X +σ

2
nI.

The ML-II in (2.47) becomes therefore

✓ ⇤ = argmax
✓

p(y |✓ ) = arg min
✓

y T P−1
✓

y + log |P✓ |,
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which is depicted in the fourth row in Figure 2.7. For small number of samples, it
still has some identifiable issues for both hyperparameters, which can be overcome
for larger number of samples and recovers basically the true hyperparamaters. Sim-
ilarly, for MAP-II, we use again the hyper-priors in (2.51), yielding the objective
function

✓ ⇤ = arg max
✓

p(y |✓ )p(✓ ) = argmin
✓

y T P−1
✓

y + log |P✓ |+ ✓ T✓ ,

which is depicted in the bottom row of Figure 2.7. We notice that for a small number
of samples, the prior has a significant effect which makes the optimization problem
well-defined. However, for large number of samples, the influence of the hyper-
prior vanish and it recovers the ML-II solution corresponding basically to the true
hyperparameters. Note that the objective function for MAP-II corresponds to the
exact Bayesian posterior, which is infeasible to compute including the normalization,
however, computing (numerically) the maximizer is tractable. The mechanism for
level II inference in Gaussian processes are exactly the same and an example will be
given in Figure 3.4.

2.3.4.7 Level III Inference: Model Selection

Example 2.5 (Bayesian Linear Regression, Level III) In this example we illus-
trate the automatic trade-off between model fit and model complexity for Bayesian
model selection or level III inference based on the marginal likelihood for estimating
the optimal order P for polynomial regression in Example 2.1. For the purpose of
demonstration, we assume fixed and known hyperparameters σ2

0 = 1 and σ2
n = 0.1

on the second level in order to focus on level III inference. The models M under
consideration in this example correspond to the linear basis function models with
polynomial basis functions of degree P, that is, M 2 { f1, . . . , f10} similarly as in Ex-
ample 2.2. We assume a uniform prior distribution p

�

M = fp

�

= 1
10 which means

that we do not favor any of the models a priori. According to (2.32), the posterior
distribution of model fp given the data is

p
�

M = fp|y , X
�

=
p
�

y |X ,M = fp

�

p
�

M = fp

�

p(y |X) , (2.52)

where the normalization can be computed as (2.33), however, since the prior is
uniform, we already know that p(y |X) = 1 and thus the posterior probabilities
are just the likelihood divided by 10. The likelihood p

�

y |X ,M = fp

�

corresponds
to the marginal likelihood from the previous level, which is in this case just the
usual marginal likelihood by integrating over the weights w as already computed
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in (2.45). Note that there it is denoted as p(y) and only implicitly conditioned on
the input data and model, compare also Remark 2.1.

Figure 2.8. Bayesian model selection for polynomial regression.

In Figure 2.8 on the left, the log of the posterior probabilities log p
�

M = fp|y , X
�

against the degree P is depicted. We can observe that the log probabilities for the
model of degree 1 or 2 are very low, and are clearly peaked at order P = 5 corre-
sponding to the most probable model according to the data. Interestingly, we have
found similar results in Example 2.2, where we discussed validation strategies for
point estimates. In Figure 2.8 on the right, the log posterior probabilities and the
RMSE of a rather large validation set for ridge and least-squares regression are de-
picted. Note that for ridge⇤, we allowed to optimize the λ⇤ on the validation set.
The two curves for ridge regression with large validation set and the one obtained
with Bayesian model selection via marginal likelihood are very similar. This is re-
markable since this means that we can estimate the generalization error of a model
only with training data without any further validation data!

2.3.5 Advantages and Limitations

2.3.5.1 Advantages of Bayesian Inference

We briefly summarize the benefits of Bayesian inference with focus on the linear
basis function model for regression.

• Prior Knowledge: The Bayesian paradigm constitutes a clean way to in-
corporate a priori knowledge in a principled way in form of priors and thus
partially solves the regularization issue of non-Bayesian methods.

• Robust against Overfitting: Since the weights (or in general the whole
set of hypothesis) are integrated out, Bayesian methods are more robust
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against overfitting. This has the effect that also for a small number of data
the generalization capacity shows good performance.

• Analytic Inference: For given basis functions, the predictive posterior dis-
tribution of a Bayesian linear model can be computed analytically in closed
form for a Gaussian prior and Gaussian likelihood.

• Credible Intervals: Bayesian approaches provide a framework to model
uncertainty. As a consequence, the predictions correspond to a whole dis-
tribution, so that well-calibrated credible intervals for the predictions can
be computed.

• Model Selection: Since the marginal likelihood of the data given a model
can be analytically computed, Bayesian approaches provide a principled
way of comparing different models and to automatically trade-off between
data fit and complexity of the model (e.g. number of basis functions).

• Empirical Bayes: From a practical point of view, empirical Bayesian meth-
ods (ML-II and MAP-II) constitute a powerful tool to efficiently infer hyper-
parameters without the need of any further validation set.

Example 2.6 (Bayesian Linear Model with Basis Functions) In this example,
we compare the Bayesian solution of the linear regression task with 4 different
choices of basis functions for which the results are depicted in Figure 2.9. In partic-
ular, for the basis function model introduced in (2.20), we define the parametrized
basis function

φ✓ (x) = [φ1(x), . . . ,φM(x)]
T 2 RM

involving some parameters ✓ , so that the model becomes

f (x) =
M
X

j=1

wjφ j(x) = φ✓ (x)
T w

with x 2 R. For the individual basis φ j(x ), we use 4 different choices, in particular
a polynomial basis

φ j(x ) = (✓ j x + ✓M+ j)
j, (2.53)

a periodic basis

φ j(x ) = sin(✓ j x + ✓M+ j),
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a Gaussian basis

φ j(x ) = exp

✓

−
(x − ✓ j)

2

✓ 2
M+1

◆

, (2.54)

and a neural network basis

φ j(x ) = erf
�

✓ j x + ✓M+ j

�

, (2.55)

where erf is the error-function.

Figure 2.9. Bayesian linear regression with 4 different choices of basis functions (per
columns). In the first two rows, the x-range is [−1,1], whereas in the third and fourth
row [−4, 4]. We observe that the in-sample generalization is good for all choices of basis
functions, however, the out-of-sample generalization is intrinsically limited by the finite
number of basis functions.

We generated N = 20 data samples in the x−range [−1,1] and used M = 15
number of basis functions. We used for each model the ML-II approach to find opti-
mal hyperparameters ✓ , so that the Bayesian predictive distribution with moments
(2.42),(2.43) and the corresponding credible intervals (2.44) can be afterwards
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analytically computed. The resulting models are depicted in the first and third row
in Figure 2.9 for the x-range [−1, 1] and [−4,4], respectively. In the second and
fourth row, the weighted basis functions wjφ j(x ) are depicted. We can observe in
the first row, that each column show basically the same predictive posterior distri-
bution independent of the choice of the particular basis functions, which are shown
in the second row. It seems, that also the credible intervals are reliable. However, if
we zoom out of the x-range where training samples are available, we can observe
that the mean, and in particular the uncertainty estimates for the predictions, are
indeed not very reliable outside regions with training data. This means, for fixed
(and enough) number of basis functions, Bayesian regression can indeed achieve
a good generalization capacity in regions with enough training data, however, the
out-of-sample generalization is intrinsically limited by the finite number of basis
functions.

2.3.5.2 Limitations of Finite Basis Functions

Although Bayesian linear regression with arbitrary basis functions have many
advantages compared to non-Bayesian approaches, they are limited regarding
some aspects.

• Choice of Basis Functions: Finding suitable basis functions for given data
is often a hard task. On the one hand, the basis should be complex enough
to model the pattern in the data and on the other hand, the model should
not overfit with good generalization for new data. This problem is also
related to feature design or the choice of variables in statistical models.
A possible easier approach constitute so-called kernel based methods as
discussed in Section 2.4.

• Number of Basis Functions: Determining the right number of basis func-
tions often relies on heuristic approaches. If we choose too few of them,
the pattern in the data cannot described well, if it is chosen too large, the
danger of overfitting might be still there although Bayesian inference is
more robust compared to non-Bayesian approaches.

• Out-of-sample Generalization: For a fixed number of basis functions, in
particular when they are chosen depending on the training data, they al-
ways only model the function in regions where training data is available as
illustrated in Example 2.6. Of course, one can not expect that it can find
patterns without training data, but one can expect that at least the model
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knows that it does not know, which means that the provided uncertainty
information should be reliable.

The two latter mentioned limitations are both related to the fact that the number
of basis functions is finite. Gaussian processes can intuitively be understood as
the generalization of linear regression with infinitely many basis functions.

2.4 Kernels

In this section, we introduce the concept of kernels, for which we follow [Ras-
mussen and Williams, 2006, Chapter 4] and refer to [Smola and Schölkopf, 1998]
for a thorough discussion. A kernel function

k : X ⇥X ! R
x , x 0 7! k(x , x 0)

is a real-valued function for two arguments x , x 0 2 X in the input space. It is
assumed to be symmetric, i.e. k(x , x 0) = k(x 0, x ), so that it can be interpreted
as a similarity measure between two points x and x 0. In this work, we focus
on the case X = RD, however, the concept of kernels is more general and the
input space can also include for instance graphs or strings [Smola and Schölkopf,
1998].

2.4.1 Definitions and Properties

Definition 2.8 (Kernel Matrix) For a kernel k, we define the kernel matrix

K AB = k(A, B) =

2

6

6

4

k(a1, b1) k(a1, b2) · · · k(a1, bM)

k(a2, b1) k(a2, b2) · · · k(a2, bM)
...

... . . . ...
k(aN , b1) k(aN , b2) · · · k(aN , bM)

3

7

7

5

2 RN⇥M (2.56)

for input matrices A= [a1, . . . , aN]
T 2 RN⇥D and B = [b1, . . . , bM]

T 2 RM⇥D.

For the case A = B, the kernel matrix K AA = k(A, A) 2 RN⇥N is called Gram
matrix. If the Gram matrix is positive semi-definite, i.e. aT K AAa ≥ 0 for any
input A 2 RN⇥D and any vector a 2 RN , the corresponding kernel k is called
positive semi-definite kernel (or also Mercer kernel). In the following of this thesis,
we assume that the kernel is always positive semi-definite, as not otherwise stated.



43 2.4 Kernels

Definition 2.9 (Stationary and Isotropic Kernels) If the kernel function k(x , x 0)
is a function in the difference x − x 0, it is called a stationary kernel. This means
that it is invariant to translations in the input space. Further, if the kernel is a
function of |x − x 0|, it is called isotropic kernel, and it is thus invariant to all rigid
motions.

Kernels are related to basis functions as introduced in previous sections. For
instance, for any finite basis functions φ(x ) 2 RM , the inner product φ(x )Tφ(x )
is a valid kernel function k(x , x 0).

Example 2.7 (From Basis Functions to Kernels) Consider for example the 6- di-
mensional basis function

φ(x ) = [1,
p

2x1,
p

2x2,
p

2x1 x2, x2
1, x2

2]
T 2 R6

for a two dimensional input point x = [x1, x2]
T 2 RD, where the scaling factor

p
2

will become clear later. We can compute the inner product

φ(x )Tφ(x 0) = 1+ 2x1 x 01 + 2x2 x 02 + 2x1 x 01 x2 x 02 + (x1 x 01)
2 + (x2 x 02)

2

= (1+ x1 x 01 + x2 x 02)
2

= (1+ x T x 0)2 = k(x , x 0),

which is known as the quadratic polynomial kernel. This example illustrates also
that it might be beneficial to work directly with kernels, which implicitly correspond
to work in a possible high-dimensional basis function space.

Note, also the opposite is true under some circumstances. In particular, for any
continuous kernel on a compact domain, there exist corresponding basis func-
tions. In particular, any positive semi-definite kernel can be decomposed into
(possible) infinite number of basis functions.

Definition 2.10 (Mercer’s Theorem) Any continuous positive definite kernel k
on a compact domain can be decomposed as an infinite sum

k(x , x 0) =
1
X

i=1

λiφi(x )φi(x
0), (2.57)

where λi correspond to the ith eigenvalue corresponding to the eigenfunction
φi(x ) of the kernel k.
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We refer for the general case and for more details to [Rasmussen and Williams,
2006, Theorem 4.2]. From an intuitive point of view, Mercer’s theorem is just the
infinite-dimensional generalization of the diagonalization of a positive definitive
kernel matrix. For instance, consider the diagonalization of the Gram matrix
K AA = UDU T 2 RN⇥N with the N eigenvectors in the columns of U as the finite
eigenfunctions and the N eigenvalues on the diagonal of D. However, Mercer’s
theorem is more general as it holds also for the infinite dimensional Gram matrix
for N !1.

Definition 2.11 (Degenerate Kernel) A kernel k with finite number of non-zero
eigenvalues in the Mercer decompositon (2.57) is called a degenerate kernel. On
the contrary, a kernel with infinite number of non-zero eigenvalues is called non-
degenerate kernel.

For instance, any kernel resulting from finite basis functions φ(x ) 2 RM like in
Example 2.7 have at most M non-zeros eigenvalues and thus correspond to de-
generate kernels.

Note that, symmetric positive definite functions are also called covariances in the
statistics literature, hence, kernels can also be interpreted as covariance func-
tions. For instance, the kernel specified by the two input data points x , x 0 2 RD

can be used to model the covariance

k(x , x 0) = Cov
�

f (x ), f (x 0)
�

between the outputs f (x ), f (x 0) 2 R of a latent function f , which will be used
for Gaussian processes in the next Chapter. Thereby, we will see that the choice
of the kernel determines the properties of the function f , as it will be illustrated
in Figure 3.3.

2.4.2 Examples

In the following, we provide some examples of kernels which will be used in
subsequent chapters. For more details about kernels and examples we refer to
[Smola and Schölkopf, 1998] and [Rasmussen and Williams, 2006].

2.4.2.1 Polynomial Kernel

For the bias σ0 2 R and polynomial order P 2 N+, we define the polynomial
kernel

k(x , x 0) = (σ2
0 + x T x 0)P .
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This kernel corresponds to the basis functions defined in (2.53) in a Bayesian
linear model. In the case P = 1, the polynomial kernel simplifies to a linear
kernel σ2

0 + x T x 0.

2.4.2.2 Squared-Exponential Kernel

A general squared-exponential (SE) kernel is defined as

k(x , x 0) = exp
Å

−
(x − x 0)T⇤−1(x − x 0)

2

ã

,

where ⇤ 2 RD⇥D is a diagonal matrix with individual lengthscales l2
1, . . . , l2

D per
dimension. In the case that all lengthscales are equal, the SE kernel becomes

k(x , x 0) = exp

✓

−
||x − x 0||22

2l2

◆

.

As we will see in the next chapter, this kernel corresponds to infinite many basis
functions of (2.54).

2.4.2.3 Matérn Kernel

The Matérn class of covariance functions has the following form

k(x , x 0) =
21−⌫

Γ (⌫)

✓p
2⌫ |x − x 0|

l

◆⌫

K⌫

✓p
2⌫ |x − x 0|

l

◆

,

where ⌫> 0, l > 0 and K⌫ is the modified Bessel function. As ⌫!1, the Matérn
kernel converges to the SE kernel. In the case ⌫= 1

2 , the kernel simplifies to the
exponential covariance function

k(x , x 0) = exp
Å

−|x − x 0|
l

ã

,

where the GP with this kernel is also known as the Ornstein-Uhlenbekck process
for D = 1.

2.4.2.4 Neural Network Kernel

There is also an interesting relationship between neural networks and kernels.
Neal [1995] showed, when the number M of the basis function in (2.55) goes to
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infinity, where the bias and the weights are normally distributed with mean zero
and variances σ2

b, σ2
w, then this correspond to the following kernel

k(x , y) = σ2 2
⇡

asin

Ç

σ2
w x> y +σ2

b
∆

σ2
w x>x +σ2

b + 1
∆

σ2
w y> y +σ2

b + 1

å

.

Note that, this corresponds to a neural network with one hidden layer and infinite
many nodes. Recent work shows also that a huge class of neural networks (for
instance also deep convolutional neural networks) with infinite many nodes can
be formulated as a kernel [Lee et al., 2017].

2.4.2.5 Composed Kernels

Kernels can also be constructed from other kernels. For instance the addition or
the multiplication of two kernels

k(x , x 0) = k1(x , x 0) + k2(x , x 0),

k(x , x 0) = k1(x , x 0)k2(x , x 0)

are again valid kernels. Note also that both kernels might be even defined over
a different space, which results into direct sum and tensor product kernels. There
are many more valid operations for constructing valid kernels, we refer to [Bishop,
2006, Ch. 6] and [Duvenaud, 2014]. In Section 7.3.1, we will see an example
with several composed kernels.



Chapter 3

Gaussian Processes

In this chapter, we introduce Gaussian processes (GPs) tailored to the need for
machine learning and in particular for this thesis. Specifically, we first compare
GPs with Bayesian linear regression models as discussed in the previous chap-
ter. Thereby, we pointed out that they are limited to represent arbitrary complex
functions due to the finite number of basis functions. In particular, we explain
that GPs can be seen as Bayesian linear models extended to possible infinite num-
ber of basis functions by the so-called kernel trick in Section 3.1. An alternative
view is provided in Section 3.2, where we show that GPs can be seen as the gen-
eralization of performing Bayesian inference for a finite parameter to Bayesian
inference direct in the space of functions. Moreover, the treatment of the hy-
perparameters of GPs are discussed in Section 3.3, the Bayesian linear model
is revisited in Section 3.4, where the differences to GPs are explained in detail.
Finally, the advantages and limitations of full GPs are summarized in Section 3.5.

The content of Sections 3.1-3.3 is based on the standard introduction of GPs from
the book by Rasmussen and Williams [2006], however, extended by several illus-
trative examples and connections. On the other hand, the comparisons between
GPs and Bayesian linear models in Section 3.4 cannot be found explicitly in the
literature about GPs to the best of our knowledge. In particular, we compare the
predictive posterior distribution of GPs and Bayesian linear models and explain
in detail the reasons why GPs represent richer models. Specifically, we demon-
strate that the predictive posterior mean of a GP can be modeled as particular
basis functions, however, the predictive posterior variance of a GP is more flex-
ible due to an additional noise term. These insights are helpful to understand
GPs and will be exploited in the subsequent Chapters 5 and 7, where we present
novel GP approximation algorithms.

47
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3.1 From Bayesian Linear Models to GPs

We start the discussion about GPs informally by highlighting the connection to
Bayesian linear models with a finite number M of basis functions, for which
we have discussed several limitations in Section 2.3.5.2. On the one hand, we
would like to have as many as possible basis functions to represent arbitrary
complex functions, on the other hand, we aim for a mechanism that prevents
overfitting for this large basis and provides a good generalization. We recon-

sider the basis function (2.54) in Example 2.6, that is, φ j(x ) = exp
⇣

−
(x−✓ j)

2

✓2
0

⌘

with hyperparameters ✓ = [✓1, . . . ,✓M]
T 2 RM and ✓0 2 R, so that the M -

dimensional basis is given as φ✓ (x) = [φ1(x), . . . ,φM(x)]
T 2 RM . We now de-

fine the infinite dimensional analogue basis for M ! 1, that is, φR(x) =
[. . . ,φ1(x), . . . ,φM(x), . . .]T 2 R1 with the infinite dimensional hyperparame-
ters ✓ = R, so that a Gaussian basis function is placed at every position ✓ j on the
real line R. Of course, direct inference in a Bayesian linear model as discussed
in Section 2.3.4 cannot be applied to this infinite basis, however, this exactly
corresponds to inference with a Gaussian process as illustrated in Figure 3.1.

Figure 3.1. From finite Bayesian linear basis function models to Gaussian processes
(GPs). For increasing number M of Gaussian basis functions as depicted in the second
row, the corresponding Bayesian linear model and the induced (degenerate) covariance
function is depicted in the first and third row, respectively.
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Remark 3.1 Intuitively, a Gaussian process corresponds to a Bayesian linear basis
function model with possibly infinitely many basis functions.

In order to work with an infinite dimensional basis, the computations are never
explicitly performed. Instead, the implicit infinite computations can be achieved
by using kernels as discussed in Section 2.4. In particular, we can observe that
in the predictive posterior distribution p(y(x ⇤)|y) = N

�

µ(x ⇤),σ
2(x ⇤)

�

of the
Bayesian linear regression model with mean and covariance given in Equations
(2.42) and (2.43), the basis functionsφ only appear in the form of inner products
φ⇤⌃0φ

T
⇤

, φ⇤⌃0Φ
T
X and ΦX⌃0Φ

T
X . Computing these products explicitly involves the

computation of the possible high-dimensional basis function matrix ΦX 2 RN⇥M ,
which might be expensive or even impossible for M ! 1. However, since φ
never appears alone but only in the form of inner products, we can kernelize
these expressions by introducing a kernel

k(x , x 0) = φ(x )T⌃0φ(x
0) = Cov

�

f (x ), f (x 0)
�

. (3.1)

Note that the kernel is specified by the inputs x , x 0, however, it can be used to
model the covariance of the outputs f (x ), f (x 0) of a latent function f . Using a
kernel means that we never explicitly compute the inner products of the basis
functions with a possible infinite large inner dimension M ! 1. We instead
directly compute the cheap kernel evaluations corresponding implicitly to the
same inner product in the possible infinite dimensional space. This is the so-
called kernel-trick, which is illustrated in Figure 3.2.

φ⇤

⌃0 Φ
T

Xφ⇤

⌃0
φT
⇤ ⌃0 Φ

T

X
ΦX

k(x⇤, x⇤) k(x⇤, X) k(X,X)

M
!

1

M ! 1

M ! 1

M ! 1

M ! 1

M ! 1

M ! 1

M
!

1

M
!

1

Figure 3.2. Illustration of kernel trick. Instead of computing the inner products with a
possible infinite large inner dimension M !1 as indicated above the equality sign, we
can instead compute the small kernel evaluations in the bottom part, which implicitly
correspond to the same inner products in a possible infinite dimensional space.

Replacing all terms in (2.42) and (2.43) involving the basis functions φ by the
corresponding expressions based on the kernel (3.1), leads to the mean and vari-
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ance of the posterior predictive distribution p(y(x ⇤)|y) =N
�

y(x ⇤)
�

�µ(x ⇤),σ
2(x ⇤)

�

µ(x ⇤) = K x ⇤X

�

K XX +σ
2
nI
�−1

y;

σ2(x ⇤) = K x ⇤x ⇤ − K x ⇤X

�

K XX +σ
2
nI
�−1

K X x ⇤ +σ
2
n.

(3.2)

Note that these predictive moments in (3.2) correspond exactly to the mean and
variance of the predictive posterior of a Gaussian process (which will be precisely
defined in Definition 3.1) with zero mean and covariance with kernel in Eq. (3.1).
However, the kernel in (3.1) induced by a Bayesian linear model with finite basis
functions always corresponds to a GP with a degenerate kernel.

Remark 3.2 The kernel in (3.1) corresponding to a Bayesian linear model is a
degenerate covariance function as defined in Definition 2.11, which means that it
has a finite number of non-zero eigenvalues.

From an intuitive point of view, this reflects the fact that the model can only rep-
resent a finite number M of basis functions. This can lead to underfitting, since
the model is not flexible enough to capture the data. What might be even worse,
it can result in addition to overconfidence of the predictive posterior variance in
regions without training data and basis functions as illustrated in Figures 2.9 and
3.1. A possible solution constitutes full Gaussian processes with general kernels.

3.2 Function Space View

In this section, we introduce GPs more formally, where the content is based on
[Rasmussen and Williams, 2006, Ch. 2].

Definition 3.1 (Gaussian Process) A Gaussian process (GP)

f (x )⇠ GP(m(x ), k(x , x 0)),

with mean and covariance function

m(x ) = E[ f (x )],

k(x , x 0) = E[( f (x )−m(x ))T
�

f (x 0)−m(x 0)
�

],

is a collection of infinitely many random variables, where any finite number of which
have a joint Gaussian distribution. In particular, for any finite index set X 2 RN⇥D,
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the marginal distribution p ( f (X)) =N
�

f
�

�mX , K XX

�

is

p ( f (X)) =N

0

B

B

@

2

6

6

4

f (x 1)

f (x 2)
...

f (x N )

3

7

7

5

�

�

�

�

�

�

�

�

�

2

6

6

4

m(x 1)

m(x 2)
...

m(x N )

3

7

7

5

,

2

6

6

4

k(x 1, x 1) · · · k(x 1, x N )

k(x 2, x 1) · · · k(x 2, x N )
... . . . ...

k(x N , x 1) · · · k(x N , x N )

3

7

7

5

1

C

C

A

.

For the sake of simplicity, we assume in the following the mean function m(x )
to be zero, although it is straightforward to include a general mean function
[Rasmussen and Williams, 2006, Ch. 2.7].

Remark 3.3 (Marginalization Property) Note that a GP is consistent regarding
marginalization (2.2), which means that marginalizing a subset of the variables in
a joint distribution implied by a GP yields the true marginal distribution. That is,
for f ⇠ GP and for any two variables A 2 RNa⇥D and B 2 RNb⇥D, it holds

p ( f (A)) =

Z

p ( f (A), f (B)) d f (B). (3.3)

This marginalization property is essential for the Definition 3.1, which uses the
Kolmogorov extension theorem [Oksendal, 2013].

3.2.1 Prior Distribution

Assume a GP prior on f , therefore all finite function value evaluations follow a
joint Gaussian distribution. In particular, the latent function values f = f (X) 2
RN and f⇤ = f (x ⇤) 2 R of the training inputs X 2 RN⇥D and test input x ⇤ 2 RD,
respectively, follow a joint Gaussian distribution

p( f , f⇤) =N

✓

f
f⇤

� �

�

�

�



0
0

�

,



K XX K X x ⇤
K x ⇤X K x ⇤x ⇤

�◆

, (3.4)

where the kernel matrices K XX 2 RN⇥N , K X x ⇤ 2 R
N⇥1 and K x ⇤x ⇤ 2 R are de-

fined according to (2.56). Combining p( f , f⇤) with the likelihood with Gaussian
additive noise in (2.21), that is,

p(y | f ) =N
�

y
�

� f ,σ2
nI
�

, (3.5)

yields the full joint distribution p( f , f⇤, y) = p(y | f )p( f , f⇤) of the GP regression
model

p( f , f⇤, y) =N

0

@

2

4

f
f⇤
y

3

5

�

�

�

�

�

�

2

4

0
0
0

3

5 ,

2

4

K XX K X x ⇤ K XX

K x ⇤X K x ⇤x ⇤ K x ⇤X

K XX K X x ⇤ K XX +σ
2
nI

3

5

1

A . (3.6)
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density mean covariance
R

d f
R

d f⇤
R

dy 1
p( f )

1
p(y)

marginal likelihood p(y) 0 P x x
marginal prior p( f ) 0 K XX x x
predictive prior p( f⇤) 0 K x ⇤x ⇤ x x

likelihood p(y | f ) f σ2
nI x x

predictive conditional p( f⇤| f ) H⇤ f V⇤ x x

posterior p( f |y) µ ⌃ x x
predictive posterior p( f⇤|y) µ f (x ⇤) σ2

f (x ⇤) x x

Table 3.1. Overview of inference with GPs, which corresponds to marginalization and
conditioning of the joint multivariate Gaussian distribution p( f , f⇤, y). In particular, the
quantities in each row can be obtained by the corresponding operations indicated by the
crosses, where

R

dz means marginalization (2.2) and 1
p(z) means conditioning (2.3) of

the variable z in the joint distribution p( f , f⇤, y).

3.2.2 Inference

Inference with a GP corresponds to conditioning and marginalization of multi-
variate Gaussian distributions as defined in Equations (2.3) and (2.2). In par-
ticular, manipulating the joint distribution p( f , f⇤, y) according to the indicated
operations in Table 3.1 leads to different useful quantities. We start by condi-
tioning the joint distribution p( f , f⇤, y) on the observed data p(y) > 0 yielding
the joint posterior over both the training and test latent function values

p( f , f⇤|y) =
p(y | f )p( f , f⇤)

p(y)
=

p( f , f⇤, y)
p(y)

, (3.7)

which results via (2.3) into the Gaussian distribution

N

✓

f
f⇤

� �

�

�

�



K XX

K x ⇤X

�

P−1y ,



K XX K X x ⇤
K x ⇤X K x ⇤x ⇤

�

−



K XX

K x ⇤X

�

P−1
⇥

K XX , K x ⇤X

⇤

◆

,

where we introduced the covariance matrix

P = K XX +σ
2
nI. (3.8)

3.2.2.1 Predictive Posterior

Prediction in a GP is straight forward, by marginalizing out f in p( f , f⇤|y) in
(3.7) yielding the predictive posterior distribution

p( f⇤|y) =
Z

p( f , f⇤|y)d f =N
�

f⇤
�

�µ f (x ⇤),σ f (x ⇤)
�

, (3.9)
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with predictive mean and variance of the latent function value f⇤

µ f (x ⇤) = K x ⇤X P−1y;

σ2
f (x ⇤) = K x ⇤x ⇤ − K x ⇤X P−1K X x ⇤ .

(3.10)

3.2.2.2 Predictive Posterior of Outputs

From the predictive posterior distribution (3.9) of the latent function value f⇤,
the predictive distribution p(y(x ⇤)|y) of the outputs y(x ⇤) can be obtained by
computing

p(y(x ⇤)|y) =
Z

p(y(x ⇤)| f⇤)p( f⇤|y)d f⇤ =N
�

y(x ⇤)
�

�µ(x ⇤),σ
2(x ⇤)

�

, (3.11)

involving the likelihood p(y(x ⇤)| f⇤) = N
�

y(x ⇤)
�

� f⇤,σ
2
n

�

and the predictive pos-
terior in (3.9). The integral can be explicitly computed (2.2), yielding the pre-
dictive mean and variance

µ(x ⇤) = µ f (x ⇤) = K x ⇤X P−1y;

σ2(x ⇤) = σ f (x ⇤) +σ
2
n = K x ⇤x ⇤ − K x ⇤X P−1K X x ⇤ +σ

2
n.

We can observe that those predictive moments exactly recover the ones of the
kernelized Bayesian linear model in (3.2).

3.2.2.3 Posterior

Marginalizing out f⇤ instead of f in p( f , f⇤|y) (3.7) leads via (2.2) to the posterior
distribution of the latent function values

p( f |y) =
Z

p( f , f⇤|y)d f⇤ =N
�

f
�

�K XX P−1y , K XX − K XX P−1K XX

�

(3.12)

with posterior mean µ= K XX P−1y and covariance ⌃= K XX−K XX P−1K XX . Note
that these posterior moments have the same structure as those from a Bayesian
linear model in (2.39) and can be exactly recovered when inserting for instance
ΦX = I and ⌃0 = K XX which will be further discussed in Section 3.4.

3.2.2.4 Predictive Conditional

From the joint prior in (3.4), we can derive via Gaussian conditioning (2.3) the
conditional predictive distribution

p( f⇤| f ) =N
�

f⇤
�

�K x ⇤X K−1
XX f , K x ⇤x ⇤ − K x ⇤X K−1

XX K X x ⇤

�

, (3.13)
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where we define the projection vector H⇤ = K x ⇤X K−1
XX and projection variance

V⇤ = K x ⇤x ⇤ − K x ⇤X K−1
XX K X x ⇤ . This conditional predictive distribution can be used

for instance in a two stage procedure to compute predictions in a GP, as discussed
in the next section.

3.2.2.5 Prediction via Posterior

Instead using the joint prior p( f , f⇤) directly for inference in (3.7), we can split
it into p( f⇤| f )p( f ) as the product of the marginal prior p( f ) = N

�

f
�

�0, K XX

�

over the latent function values and the conditional distribution (3.13). The joint
posterior (3.7) can be equivalently written as

p( f , f⇤|y) =
p(y | f )p( f⇤| f )p( f )

p(y)
= p( f⇤| f )

p(y | f )p( f )
p(y)

, (3.14)

which can be understood as to first compute the posterior over the latent function
values

p( f |y) = p(y | f )p( f )
p(y)

.

Note that, this step is independent of the test data and can be done in advance
only with the training data. Finally, the predictive posterior distribution can be
computed by marginalizing f out via (2.2)

p( f⇤|y) =
Z

p( f , f⇤|y)d f

Z

p( f⇤| f )p( f |y)d f ,

resulting into the same predictive posterior as in (3.9).

3.2.2.6 Noise Free Prediction

For making predictions without noise, that is interpolation, we could set σ2
n = 0

which has the effect that P = K XX in (3.8). Plugging this into (3.9) leads to the
predictive moments

µ f (x ⇤) = K x ⇤X K−1
XX y ,

σ2
f (x ⇤) = K x ⇤x ⇤ − K x ⇤X K−1

XX K X x ⇤ .

Note that this correspond exactly to the conditional distribution p( f⇤| f ) obtained
directly from the joint distribution p( f , f⇤) in (3.4) via Gaussian conditioning
(2.3).
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Figure 3.3. Illustration of inference in a GP with different kernels (per rows) and dif-
ferent number of training samples in the posterior (per columns). In particular, the first
column shows the prior without any observed data. In each case, on the top row, the
predictive distribution is indicated together with three samples functions drawn of it,
whereas in the bottom row, the induced prior/posterior kernel is shown. We can ob-
serve, as more data is available, the possible functions are constrained such they are
conform with the training samples.
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3.2.2.7 Marginal Likelihood

Direct marginalization of f and f⇤ in p( f , f⇤, y) in (3.6) yields the marginal like-
lihood distribution

p(y) =

Z

p( f , f⇤, y)d f d f⇤ =N
�

y
�

�0, P
�

(3.15)

with covariance P = K XX +σ
2
nI already defined in (3.8).

3.2.2.8 Predictive Posterior Covariance and Induced Kernel

Note that, the predictive distribution in (3.9) is formulated for a single test point
x ⇤ 2 RD leading to a scalar predictive mean and variance, which can be used
for instance to compute credible intervals as formulated in (2.44). However, the
predictive distribution of a GP is not limited to pointwise predictions. When x ⇤
is replaced by a general matrix of test inputs X⇤ 2 RNtest⇥D, the joint predictive
distribution p( f ⇤|y) of the vector f ⇤ 2 RNNest of test latent function values can be
analogously computed to (3.9) as

µ f (X⇤) = K X⇤X P−1y ,

⌃ f (X⇤) = K X⇤X⇤ − K X⇤X P−1K XX⇤

(3.16)

with σ2
f (x ⇤) on the diagonal of ⌃ f (X⇤) and the off-diagonal entries correspond-

ing to the posterior covariance. Indeed, these predictive posterior moments in-
duce a (degenerate) posterior GP

f̄ (x ) = f (x ) | y ⇠ GP(m̄(x ), k̄(x , x 0))

with mean function corresponding to

m̄(x ) = E[ f (x ) | y] = E[ f̄ (x )] = k(x , X)P−1y

and induced posterior kernel

k̄(x , x 0) = E[( f (x )−E[ f (x ) | y])T
�

f (x 0)−E[ f (x 0) | y]
�

| y]

= E[
�

f̄ (x )− m̄(x )
�T �

f̄ (x 0)− m̄(x 0)
�

]

= k(x , x 0)− k(x , X)P−1k(X , x 0).

Note that these posterior mean and covariance functions can be used for sampling
posterior functions as illustrated in Figure 3.3.
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3.3 Inference of Hyperparameters

In this section, we discuss level II inference for the hyperparameters ✓ including
all kernel parameters and the noise variance σ2

n. In the previous section, we as-
sumed that these hyperparameters are known and all distributions are implicitly
conditioned on the hyperparameters as discussed in Section 2.3.2 for Bayesian
hierarchical models. Since the marginal likelihood (3.15) depends non-linearly
on the hyperparameters, their posterior distribution cannot in general be ana-
lytically computed. The most common approach for inferring those hyperpa-
rameters in a GP is based on empirical Bayes as thoroughly discussed in Section
2.3.3.1 for the Bayesian linear model. In particular, we can either use the ML-II
based approach by optimizing the marginal likelihood (3.15), that is,

✓ ⇤ = argmax
✓

p(y |✓ ) = arg min
✓

y T P−1
✓

y + log |P✓ |,

with covariance matrix P✓ = K XX +σ
2
nI, or the MAP-II approach also involving

some suitable hyper-priors (2.49) leading to

✓ ⇤ = arg max
✓

log p(y |✓ ) + log p(✓ )

= arg min
✓

y T P−1
✓

y + log |P✓ |+ (✓ −⌘)TV−1(✓ −⌘).

These two approaches are illustrated in Figure 3.4, where we generated N = 20
training data samples with a squared-exponential kernel with true hyperparam-
eters σ0 = 1, l = 0.3, σn = 0.1. We fixed the prior variance σ0 = 1 to the true
value for illustration purposes and estimated the lengthscale l and the noise vari-
ance σ2

n via ML-II and MAP-II, respectively, where we used the same hyper-priors
as in (2.51) for the latter. Note that in practice, those hyper-priors can be learned
for instance from a large collection of datasets as proposed by [Corani et al.,
2021] for time series. We can observe that the marginal likelihood as well as
the posterior for the hyperparameters correspond to non-Gaussian distributions,
which might be even multi-modal. We can observe that the estimated values
(blue cross) for both methods converge to the true hyperparameters (red cross)
for enough data samples. Further, we see that for a small number of samples,
ML-II has some identifiable issues, which can be corrected by suitable priors.

3.4 Linear Basis Function Models Revisited

In this section, we briefly compare GPs again with linear basis function models in
order to understand the similarities and differences which will be important for
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Figure 3.4. Level II inference for the hyperparameters ✓ in GPs with ML-II and MAP-II
for increasing number of training samples.

sparse and sequential approximations of GPs. As we have discussed in Section
3.1, a linear Bayesian model with basis functionφ and prior covariance⌃0 induce
a GP with a degenerate kernel.

Proposition 3.1 (Bayesian Linear Model and GP) Inference in a Bayesian lin-
ear model with given basis functions φ and prior covariance ⌃0

f (x ) = φ(x )T w
w ⇠N (0,⌃0)

, f (x )⇠ GP
�

0,φ(x )T⌃0φ(x
0)
�

.

is equivalent to exact inference of a GP with a degenerate kernel

k(x , x 0) = φ(x )T⌃0φ(x
0).

Importantly, the contrary is not true for a GP with a non-degenerate kernel. In
fact, Mercer’s theorem (2.57) shows that any kernel can be represented by pos-
sible infinite many basis functions. As a consequence, a zero mean GP prior with
general kernel corresponds to a Gaussian prior with infinite-dimensional covari-
ance ⌃0 in a Bayesian linear model, which is clearly not feasible. However, in
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practice, the prior is not of particular interest, the focus lies mainly on the pos-
terior GP conditioned on a finite number data points.

Remark 3.4 Even though the GP prior corresponds to infinite many basis func-
tions, the posterior conditioned on finite number of data samples N can be repre-
sented by a N-variate multivariate Gaussian.

In the following, we compare the posterior of a GP with the posterior of a Bayesian
linear model and try to understand the effect of the infinite dimensional prior on
the posterior. We first compare the predictive mean for a Bayesian linear model
in (2.42)

µL(x ⇤) = φ⇤µ= φ⇤⌃0Φ
T
X P−1

L y ,

to the predictive posterior mean of a GP in (3.11)

µGP(x ⇤) = K x ⇤X P−1
GP y ,

where P L = ΦX⌃0Φ
T
X +σ

2
nI and PGP = K XX +σ

2
nI, respectively. Matching terms

so that µL(x ⇤) = µGP(x ⇤), yields the constraints

φ⇤⌃0Φ
T
X = K x ⇤X and ΦX⌃0Φ

T
X = K XX .

In fact, there are several possible choices for the basis functions and prior covari-
ance.

Proposition 3.2 (Equal Predictive Mean and Marginal Likelihood) A GP with
mean zero and non-degenerate kernel k(x , x 0) and a Bayesian linear model with
φ(x ) and ⌃0, which satisfies

φ(x )T⌃0φ(x
0) = k(x , X)k(X , X)−1k(X , x 0),

leads to the same predictive posterior mean µL(x ⇤) = µGP(x ⇤) of the Bayesian linear
model as defined in (2.42) and of GP (3.11). Further, also the marginal likelihood
covariances P L = PGP in (2.40) and (3.8) are equal.

Note that the choice for the φ and ⌃0 are not unique and the predictive posterior
mean can be decomposed into several ways into N basis functions φX(x ⇤) such
that

µ(x ⇤) = φX(x ⇤)
Tµ=

N
X

i=1

µi φX(x ⇤)i.
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In Table 3.2 and Figure 3.5, there are several interesting choices illustrated. For
instance, for the choice g X(x ⇤), the posterior correspond exactly to the output
training data y so that g X(x ⇤)i shows the influence of each data point, which
is also known as linear predictor or linear smoothers [Silverman, 1985]. Other
choices as summarized in Table 3.2 lead to cases, in which the basis functions
correspond exactly to the kernel or to the eigenfunctions, respectively, or that
the prior covariance is independent of the input data.

basis
function φX(x )

prior
covariance ⌃0

posterior
mean µ

comments

g X(x ) P−1 k(X , x ) P K−1
XX P y

posterior mean of weights
correspond to data;
linear predictor/smoother

kX(x ) k(X , x ) K−1
XX P−1y

basis function
correspond to kernel function;
representer theorem

lX(x ) L−1 k(X , x ) I LT P−1y
prior covariance correspond
to identity
via Cholesky

uX(x ) D−
1
2 U T k(X , x ) I D

1
2 U T P−1y

prior covariance correspond
to identity
via eigendecomposition

dX(x ) U T k(X , x ) D−1 U T P−1y
prior covariance = 1/eigenvalues;
basis function = eigenfunction;
Mercer’s theorem

hX(x ) K−1
XX k(X , x ) K XX K XX P−1y

posterior mean of weights
in the Bayesian linear model
correspond to posterior in GP

Table 3.2. Possible basis function decomposition so that the predictive posterior mean
µL(x ⇤) = φ(x ⇤)

Tµ correspond to them of full GP µGP(x ⇤). It holds LLT = K XX with
L the lower Cholesky matrix. Further, UDUT = K XX with U the eigenvector matrix
corresponding to the diagonal matrix D with the eigenvalues on the diagonal.

Lemma 3.1 (Equal Posterior Distribution) For the particular choice of basis func-
tions and prior covariance

φ(x ) = hX(x ) = K−1
XX k(X , x ) and ⌃0 = K XX

in Proposition 3.2 yields also to the equivalent posterior moments µ and⌃ in (2.39)
and (3.12), respectively.
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Figure 3.5. Four different basis function decomposition of the predictive mean corre-
sponding to four different kernels. Although the predictive mean is equal, the predictive
variance is different outside the training data.



62 3.4 Linear Basis Function Models Revisited

Therefore, the posterior distribution of the latent function values of a GP corre-
sponds exactly to the posterior of the weights of a Bayesian linear model with
choice of basis functions and prior covariance as in Lemma 3.1. Note that these
basis functions depend on the input data X and the number of basis functions
corresponds to the number of training data samples N . Although the predictive
mean, the posterior and marginal likelihood are equal, there is a main difference,
namely that the predictive variance is different.

Lemma 3.2 (Different Predictive Variance) Consider the same setting as in Propo-
sition 3.2. The predictive posterior variance defined in (2.43) and (3.11) differ by

σ2
GP(x ⇤)−σ

2
L(x ⇤) = K x ⇤x ⇤ − K x ⇤X K−1

XX K X ,x ⇤ . (3.17)

The difference of the predictive variance in (3.17) is illustrated in Figure 3.6 for
two squared-exponential kernels with different lengthscales per row. The addi-
tional variance term in (3.17) of the GP predictive variance has the effect that
outside the observed data the variance can fall back to the prior variance K x ⇤x ⇤
and solves the overconfidence in Bayesian linear models. What is missing in a
Bayesian linear model is the conditional variance p( f⇤| f ) as defined in (3.13).
This is the effect of the infinite dimensional prior in a GP so that the basis func-
tions cover all the space also outside of the training data.

Figure 3.6. Comparison of predictive variance of a Bayesian linear model and a GP.
We observe that the predictive posterior variance of a Bayesian linear model is overcon-
fident due to the missing variance outside the training data and the induced kernel is
degenerate.

We have seen that a Bayesian linear model leads to a GP with a degenerate ker-
nel, which has the effect that the predictive variance outside the training data
is missing. If the focus lies on the point-wise predictive distribution, there is an
easy way to correct for the missing predictive variance.
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Definition 3.2 (Degenerated and Augmented Kernel) Given a non-degenerate
kernel k(x , x 0) and a finite index set A 2 RM⇥D, a degenerated kernel of dimension
M can be constructed as

k̃A(x , x 0) = k(x , A)k(A, A)−1k(A, x 0). (3.18)

In order to correct for the missing variance, this kernel can be augmented to an
augmented kernel of dimension M by

k̄A(x , x 0) = k(x , A)k(A, A)−1k(A, x 0) +δx=x 0 v(x ), (3.19)

where the corrected variance is

v(x ) = k(x , x )− k(x , A)k(A, A)−1k(A, x ) (3.20)

and δx=x 0 is the Kronecker delta which is one iff x = x 0.

This kernel can be seen as a degenerated kernel by correcting the missing predic-
tive variance (3.17) of a Bayesian linear model compared to the one of a GP using
the input data for the finite index set A = X . Note that an augmented kernel is
technically non-degenerate since it has infinite many non-zero eigenvalues due
to the additional variance v(x ) for x = x 0, however, the covariance for x 6= x 0

correspond to the degenerate kernel induced by the finite index set. We denote
a GP with augmented kernel an augmented GP.

Proposition 3.3 (Inference with Full GPs and augmented GPs)
Consider a GP f (x ) ⇠ GP (0, k(x , x 0)) with a non-degenerate kernel k(x , x 0) and
a GP g(x )⇠ GP

�

0, k̄X(x , x 0)
�

with augmented kernel k̄X(x , x 0) as defined in Def-
inition 3.2 with index set A = X . Then the posterior distribution p( f (X)|y) =
p(g(X)|y) , the marginal likelihood pf (y) = pg(y) and the (pointwise) predictive
distribution p( f (x ⇤)|y) = pg(g(x ⇤)|y) of f and g are equivalent.

This means that GP inference with a non-degenerated kernel is equivalent to GP
inference using an augmented kernel with index set A= X from a pointwise pre-
diction point of view. Therefore, augmented GPs are not really interesting for
full GPs. However, in the next Chapter 4, we show that exact inference with an
augmented kernel with index set A 2 RM⇥D with M < N constitutes the starting
point for sparse inducing point GPs. Moreover, in Chapter 5, we establish a con-
nection with an extended Bayesian linear regression model with data-dependent
observation noise, so that sequential Bayesian inference is equal to exact infer-
ence in a GP with augmented kernel.
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Figure 3.7. Comparison of full GP, degenerated GP and augmented GP, where in the
latter the missing covariance on the diagonal is corrected. This has the effect, that the
predictive posterior distribution outside the data is also correct.

3.5 Advantages and Limitations of GPs

Gaussian processes have many benefits.

• Analytic Inference: Given a kernel function with known hyperparameters,
the predictive posterior distribution can be computed analytically in closed
form which is a rare property for nonparametric models.

• Expressivity: With the flexible choice of kernels as covariance functions,
GPs allow to express a wide range of arbitrary complex functions. Further,
they allow to incorporate the modeling assumptions in a principled way.

• Inference with Functions: Inference in a GP can be seen as inference
directly in the infinite dimensional space of functions, which is not possible
with traditional Bayesian finite dimensional models.

• Few Hyperparameters: Compared to parametric models (e.g. neural net-
works), GPs only have a few kernel hyperparameters which makes the
model easy to train and is less prone to overfitting.

• Credible Intervals: Since prediction in GPs does not correspond only to
point estimates but instead to a whole predictive posterior distribution,
also credible intervals and posterior samples are available.
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• Less Prone to Overfitting: Due to the Bayesian paradigm and that the
latent function values can be analytically integrated out, GPs are rather
robust against overfitting. As a consequence, the generalization capacity is
also good for a small number of data samples.

• Model Selection: Since the marginal likelihood of the data given a model
can be analytically computed for a GP, it provides a principled way of com-
paring different models.

However, they also have some drawbacks.

• Scalability: The main issue with GPs is the slow inference for large num-
ber of data sample N , basically due to the inversion of the kernel matrix
K XX . The time complexity for computing the predictive posterior and the
marginal likelihood is O(N 3) and the required space is O(N 2). There ex-
ist already several approaches as it will be discussed in Chapter 4 and we
propose new contributions in Chapters 5-7.

• Non-Gaussian Likelihoods: For non-Gaussian likelihoods (for instance
classification or heavy tails), the posterior is no longer analytically avail-
able and requires therefore approximate inference. Several approaches are
proposed and we refer to [Rasmussen and Williams, 2006, Ch. 3] and to
[Benavoli et al., 2020] for a discussion and a recent approach.

• Choice of Kernel: The flexibility of GPs with kernels come with the draw-
back that the kernel has to be specified. There are some approaches for au-
tomatically choose an optimal kernel [Abdessalem et al., 2017; Teng et al.,
2020], however, until recently, human experts are required to choose a
suitable kernel.



66 3.5 Advantages and Limitations of GPs



Chapter 4

Approximations for Gaussian Processes

In this section, we review existing approximations for Gaussian processes. As we
have seen in the previous chapter, full GPs have many advantages, however, they
suffer from one main limitation: the cubic time and quadratic space complexity in
the number of training samples. In order to scale GPs to larger datasets, several
approaches have been proposed in the literature, where we refer to Liu et al.
[2020] for a recent review.

In this chapter, we first provide an overview of different approaches for GP ap-
proximations in Section 4.1. Subsequently, we focus on two classes of GP ap-
proximations. On the one hand, we discuss sparse GP approximations based on
so-called inducing points, which are auxiliary points on the GP optimally sum-
marizing the dependencies among all training points globally. This will be dis-
cussed in Section 4.2. On the other hand, we review local approaches, where
independent and local GP models are combined with averaging methods, as we
will discuss in 4.3.

Compared to the standard way GP approximations are introduced in the litera-
ture, this chapter provides a unifying framework to present and review GP ap-
proximations. In particular, in Section 4.2, we unify several sparse GP models by
explaining that they differ only by the training and test conditional covariances,
which will also be exploited in Chapter 5. Further, we show that sparse GP mod-
els, obtained by exact inference with approximate priors and models obtained
via approximate inference, but keeping the exact priors, lead to the same poste-
rior distributions. Further, also in Section 4.3 about local approaches for GPs, we
unify many methods by introducing a link function for the predictive posterior
distribution of the local experts. Finally, we contrast the advantages and limi-
tations of global and local GP approximation approaches, which constitute the
starting points for the development of novel methods in Chapters 5-7.

67
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4.1 Overview of GP Approximations

As discussed in the previous chapter, the main limitation of GP regression is the
inversion of the matrix K XX +σ

2
nI 2 RN⇥N in (3.8), which is not feasible for large

number N of training samples. Consequently, GP approximations are based on
different assumptions about the kernel matrix K XX . In the following, we briefly
provide an overview and refer to Liu et al. [2020] for a recent review.

Sparse Kernel Matrices

There are several GP approximations approaches, which impose some kind of
sparsity directly in the kernel matrix. Some methods [Gneiting, 2002; Melkumyan
and Ramos, 2009] rely explicitly on sparse kernels, which guarantee that some
entries in the kernel matrix are zero. Structured sparse approximations exploit
other sparse structures in the kernel matrix and iteratively solve the correspond-
ing sparse linear system

�

K XX +σ
2
nI
�−1

y . The different assumed sparsity struc-
tures range from kd-trees [Shen et al., 2005], H2-matrices [Börm and Garcke,
2007] to Toeplitz-matrices [Cunningham et al., 2008], and Kronecker-structures
[Gilboa et al., 2013]. Exploiting these sparsity structures enables to scale these
methods to much larger datasets, however, they require grid data inputs. The
improved approaches by [Wilson and Nickisch, 2015; Wilson et al., 2015] can
deal with arbitrary datasets, by instead imposing the grid structure on auxiliary
points and use for the kernel evaluations of the data points local linear interpo-
lation schemes. These approaches can be combined with fast GPU computations
[Wang et al., 2019], leading to highly scalable approaches with good accuracy.

Low-Rank Kernel Matrices

A different research direction for GP approximations is based on a particular
low-rank approximation K XX ⇡ K XAK−1

AAK AX of the kernel matrix, known as Nys-
tröm approximation [Williams and Seeger, 2000]. It involves M so-called induc-
ing points A, that globally summarize the dependencies among the N data input
points X , with M ⌧ N . Using this low-rank kernel matrix improves the scalability
of GPs significantly [Williams and Seeger, 2000], however, it might produce neg-
ative and unreliable predictive variances. In order to overcome this issue, several
probabilistic models based on this Nyström approximation involving global in-
ducing points have been proposed. We refer for instance to [Quiñonero-Candela
and Rasmussen, 2005; Titsias, 2009; Bui et al., 2017b] and for an overview to
Table 4.1 in Section 4.2, where we will thoroughly discuss these approaches.
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Sparse Precision Kernel Matrices
Several GP approximations exploit sparsity in the precision matrix K−1

XX instead
of in the kernel matrix K XX . Sparsity in a Gaussian precision kernel matrix
corresponds to conditional independence of certain regions in the input space.
Thereby, the structure of these regions can range from band structures [Dur-
rande et al., 2019] to Voronoi-tessellations [Kim et al., 2005] and trees [Bui and
Turner, 2014], where the structure of the regions in the input space is static, and
in particular, independent of the test inputs. This is different in so-called trans-
ductive approaches [Gramacy and Apley, 2015; Datta et al., 2016; Katzfuss and
Guinness, 2021], where dynamic partitions of the input space are employed. All
those methods are highly scalable and well suited for spatial data, where inde-
pendent regions are meaningful and reasonable.

Block-Diagonal Kernel Matrices with Prediction Aggregation
A particular kind of sparse kernel matrices are block-diagonal matrices, corre-
sponding to mutually independent regions in the input space. However, directly
using this kind of kernel approximation is often a too strong assumption, unless
the regions are actually independent. In order to compensate for the missing
dependencies, probabilistic aggregation schemes of the predictions from the in-
dependent and local regions can be used. For aggregating these predictions,
there are mainly two research directions: mixture of experts (MoE) [Yuksel et al.,
2012; Masoudnia and Ebrahimpour, 2014] and product of experts (PoE) [Hinton,
2002; Fleet, 2014; Deisenroth and Ng, 2015]. Thereby, the predictive densities
are combined with a weighted sum and a weighted product in MoE and PoE,
respectively, resulting in efficient and highly scalable GP approximations. We
discuss PoEs thoroughly in Section 4.3.

State Space Approaches
In GP approximations approaches based on so-called state space models, the ker-
nel matrix is implicitly modeled. In particular, Hartikainen and Särkkä [2010];
Sarkka et al. [2013] established the connection between GPs and state space
models for spatio-temporal regression problems, which allows to apply sequen-
tial algorithm such as the Kalman Filter [Kalman et al., 1960]. Inspired by this
line of research, the authors in [Carron et al., 2016; Todescato et al., 2017; Be-
navoli and Zaffalon, 2016] focused on efficient implementation and extended
the methodology to varying sampling locations over time. These approaches are
highly scalable and well suited for spatio-temporal data, however, they rely on
particular kernels and are not applicable for higher-dimensional inputs.
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4.2 Sparse Global GPs

Sparse GP regression approximations based on global inducing points reduce the
computational complexity by introducing M ⌧ N inducing points {aj, A j}Mj=1,
that summarize the dependency of the whole training data {yi, X i}Ni=1 globally,
as illustrated in in Figure 4.1. Thereby, the inducing inputs Aj 2 RD are in the
D-dimensional input data space and the inducing outputs aj = f (A j) 2 R are the
corresponding latent function values on the GP f . We introduce the notation for
the inducing inputs A = [A1, . . . , AM]

T 2 RM⇥D and the corresponding inducing
outputs a = [a1, . . . , aM]

T 2 RM so that a = f (A). The main idea of sparse global
inducing point methods is to project the N latent function values f corresponding
to the N data points onto the M inducing points a, where we assume that M is
much smaller than N . This results in a clever chosen low-rank approximation of
K XX , so that an approximation for the intractable inverse K−1

XX can be efficiently
computed. This approach leads to a time O(N M2) and space O(N M) complexity,
instead of O(N 3) and space O(N 2) for full GP. In the first part of this chapter, we
solely follow [Quiñonero-Candela and Rasmussen, 2005], however, we present
it in a unifying way, including several works as summarized in Table 4.1.

4.2.1 Augmented Model via Inducing Points

In the following section, we describe the sparse GP model augmented with in-
ducing points a. In particular, the joint GP prior distribution p( f , f ⇤) (3.4) over
the latent function values of the training f 2 RN and test data f ⇤ 2 RNtest , can be
augmented by any other variable a = f (A) 2 RM on the GP f , that is, the exact
extended prior can be written as

p(a, f , f ⇤) =N

0

@

2

4

a
f
f ⇤

3

5

�

�

�

�

�

�

2

4

0
0
0

3

5 ,

2

4

K AA K AX K AX⇤
K XA K XX K XX⇤
K X⇤A K X⇤X K X⇤X⇤

3

5

1

A . (4.1)

Thereby, the original marginal distribution is not affected due to the marginal-
ization property (3.3) of a GP, so that the original prior (3.4) can be recovered
by marginalizing out the additional variable a

p( f , f ⇤) =

Z

p(a, f , f ⇤)da. (4.2)

Combining the prior in (4.1) with the Gaussian likelihood p(y | f ) =N
�

y
�

� f ,σ2
nI
�

in (3.5), the augmented joint prior

p(a, f , f ⇤, y) = p(y | f )p(a, f , f ⇤) (4.3)
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is induced similarly to (3.6). From (4.3), for instance the exact marginal likeli-
hood (3.15)

p(y) =

Z

p(a, f , f ⇤, y)d f d f ⇤ da (4.4)

and exact posterior distribution (3.12)

p( f |y) =
Z

p(a, f , f ⇤, y)
p(y)

d f ⇤ da (4.5)

can be recovered by just integrating also with respect to the inducing points.

yi

y2

f(X)

f(X2)

X2

y

X

f(Xi)

Xi AMX1

y1

A1 Aj

f(Aj)

f(A1)

f(AM )

f(X1)
aj = f(Aj)

fi = f(Xi)

XN

yN

f(XN )

Figure 4.1. Illustration of global inducing points with inducing inputs A 2 RM⇥D and
corresponding outputs a = f (A) 2 RM .

4.2.1.1 Conditional Independence of Training and Prediction

The sparse GP model including the inducing points a as described in the previous
section is still exact, however, also no computation benefits are achieved. In order
to obtain computational feasible models, some assumptions have to be made. We
first rewrite the joint distribution in (4.1) as

p(a, f , f ⇤) = p( f ⇤| f , a)p( f , a) = p( f ⇤| f , a)p( f |a)p(a) (4.6)

based on basic rules of probability theory. One fundamental assumption for
sparse GPs based on global inducing points is the conditional independence be-
tween the training and test latent function values given the inducing points.

Assumption 4.1 (Conditional Independence of Training and Prediction) The
latent function values f of the training data are assumed to be conditionally inde-
pendent of the test latent function values f ⇤ given the global inducing points a, that
is, f ?? f ⇤ | a. Therefore

p( f ⇤| f , a)⇡ q( f ⇤| f , a) = p( f ⇤|a),

where we use q to indicate that it is an approximate distribution.
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As a consequence from the assumption above, f and f ⇤ can only interact through
a, which induces implicit dependencies, thus the name inducing points. Plugging
these assumptions back into (4.6) , we get for the joint prior

q( f , f ⇤, a) = p( f ⇤|a)p( f , a),= p( f ⇤|a)p( f |a)p(a), (4.7)

where the joint distribution p( f , a) = p( f |a)p(a) of the training values and the
inducing points is still exact, only the prediction is affected by Assumption 4.1.

4.2.1.2 Inference Approaches

In the literature, there are at least 2 directions how to proceed next from here.
The first approach makes direct further assumptions about the intractable condi-
tional p( f |a) leading to an approximate prior q( f , a) = q( f |a)p(a) from which
exact inference can be applied, which will be discussed in Section 4.2.2. The
second approach retains the exact prior p( f , a) and directly tries to find a pos-
terior distribution via approximate inference techniques, as we will discuss in
Section 4.2.3. Interestingly, regarding level I inference, i.e. inferring the induc-
ing outputs, those two approaches yield the same models, they only differ how
they treat the hyperparameters on level II of the Bayesian hierarchical model.
This will be discussed in Section 4.2.4.

·
·
·

·
·
·

y1 yi

y⇤ yN

y3y2

f1 fi

f⇤ fN

f3f2

(a) Full GP

·
·
·

·
·
·

y1 yi

y⇤ yN

y3y2

f1 fi

f⇤ fN

f3f2

a

(b) Sparse Global GP

Figure 4.2. Graphical models of full GP and sparse GP with global inducing points a.
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4.2.2 Exact Inference with Approximate Prior

In this Section, we discuss approaches based on an approximate prior q( f , a) =
q( f |a)p(a) combined with exact inference. In particular, further assumptions on
the conditionals q( f ⇤|a) ⇡ p( f ⇤|a) and q( f |a) ⇡ p( f |a) in (4.7) are imposed,
leading to an approximate prior

q( f , f ⇤, a) = q( f ⇤|a)q( f |a)p(a), (4.8)

from which exact Bayesian inference can be applied to obtain an indirect posterior
approximation. The true training and test conditional distributions implied by a
GP are

p( f |a) =N
�

f
�

�K XAK−1
AAa, K XX −QXX

�

;

p( f ⇤|a) =N
�

f ⇤
�

�K X⇤AK−1
AAa, K X⇤X⇤ −QX⇤X⇤

�

,
(4.9)

where QXX and QX⇤X⇤ are defined as follows.

Definition 4.1 (Nyström Matrix) For a input matrix A 2 RM⇥D and degenerated
kernel k̃A(x , x 0) = k(x , A)k(A, A)−1k(A, x 0) induced by a non-degenerate kernel k
as defined in (3.18), we define the corresponding approximate kernel matrix as

QBC = k̃A(B,C) = k(B, A)k(A, A)−1k(A,C) 2 RM1⇥M2 (4.10)

for any B 2 RM1⇥D and C 2 RM2⇥D. This matrix is also called Nyström matrix, e.g.
Williams and Seeger [2000].

Note that, using the true conditionals (4.9) and input matrix A 6= X would lead
to a GP with exact distribution p(a, f ) (and thus also exact posterior distribution
p( f |y) ), but the predictive distribution would be still different compared to full
GP due to Assumption 4.1. We denote this model as indexed GP, compare also
Table 4.1. Note that, this model is still intractable and does not have any prac-
tical advantages, however, it allows interesting comparisons. For computational
tractable models, further assumptions about the covariances in the conditionals
(4.9) have to be made, where the matrix K X⇤X⇤ and in particular K XX lead to
intractable computations in the inference procedure.

Assumption 4.2 (Training and Test Conditional) The intractable full covariances
in the true conditionals in (4.9) are approximated by some generic training and
test projection covariances V̄ 2 RN⇥N and V̄⇤ 2 RNtest⇥Ntest , for which we assume
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the inverses V̄−1 and V̄−1
⇤

can be computed efficiently. Therefore, the approximate
conditionals have the following structure

q( f |a) =N
�

f
�

�Ha, V̄
�

q( f ⇤|a) =N
�

f ⇤
�

�H⇤a, V̄⇤
� (4.11)

with projection matrices H = K XAK−1
AA 2 RN⇥M and H⇤ = K X⇤AK−1

AA 2 RNtest⇥M, so
that the conditional means are correct (4.9).

In order to circumvent the intractable inverses of the covariances, the different
approaches in the literature differ basically only by their additional conditional
independence assumptions between the training and test latent function values
as summarized in Table 4.1. All of those assumptions lead either to a diagonal
or block diagonal structure for V̄ and V̄⇤. For a relatively small number of Ntest

points, V̄⇤ is even set to the exact covariance (4.9) in the most methods. However,
this has the effect that it cannot be seen as a GP, as it will be discussed in Section
4.2.2.7. Note that, when only considering pointwise predictions (for instance in
credible intervals), there is no difference whether using the full V̄⇤ or only the
diagonal of it.

Definition 4.2 (Sparse GP Model) The sparse GP model for regression based on
inducing points can be probabilistically summarized by

p (y | f ) =N
�

y
�

� f ,σ2
nI
�

;

p(a) =N (0,⌃0) ;

q ( f |a) =N
�

f
�

�Ha, V̄
�

;

q
�

f ⇤|a
�

=N
�

f ⇤
�

�H⇤a, V̄⇤
�

,

(4.12)

so that the approximate joint distribution becomes

q(a, f , f ⇤, y) = p (y | f ) q( f ⇤|a) q( f |a) p(a). (4.13)

The graphical model for a general sparse GP with global inducing points is de-
picted in Figure 4.2b together with the graphical model of full GP in Figure 4.2a.
We can observe, that in full GP, all latent function values f and f ⇤ are fully con-
nected, whereas in sparse GPs, those dependencies are replaced by the global
inducing variables with the assumptions that the latent function values are con-
ditionally independent. Note that, in the case of block-diagonal covariances, the
latent function variables in the graphical model can be grouped into blocks where
inside the block the full covariances are modeled.
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description
training conditional

covariance V̄
test conditional
covariance V̄⇤

GP? kernel

full GP 0 K X⇤X⇤ − K X⇤X K−1
XX K XX⇤ ÿ k

indexed GP K XX −QXX K X⇤X⇤ −QX⇤X⇤ ÿ kA

degenerated GP
SoR [Silverman, 1985],
DIC [Smola and Bartlett, 2001]

0 0 ÿ k̃A

augmented training Diag[K XX −QXX] 0 ⇥

augmented testing 0 Diag[K X⇤X⇤ −QX⇤X⇤] ⇥

augmented GP
FIC [Quiñonero-Candela and Rasmussen, 2005]

Diag[K XX −QXX] Diag[K X⇤X⇤ −QX⇤X⇤] ÿ k̄A

deterministic "GP"
PP [Csató and Opper, 2002],
DTC [Seeger et al., 2003],
VFE [Titsias, 2009]

0 K X⇤X⇤ −QX⇤X⇤ ⇥

augmented "GP"+
SSGP [Snelson and Ghahramani, 2006],
FITC [Quiñonero-Candela and Rasmussen, 2005],
EP [Bui et al., 2017b]

Diag[K XX −QXX] K X⇤X⇤ −QX⇤X⇤ ⇥

block augmented "GP"+
PITC [Quiñonero-Candela and Rasmussen, 2005]

BlkDiag[K XX −QXX] K X⇤X⇤ −QX⇤X⇤ ⇥

power "GP"
PEP [Bui et al., 2017b]

↵ Diag[K XX −QXX] K X⇤X⇤ −QX⇤X⇤ ⇥

block power "GP"
PEP-B [Bui et al., 2017b]

↵ BlkDiag[K XX −QXX] K X⇤X⇤ −QX⇤X⇤ ⇥

block augmented GP
PIC [Snelson and Ghahramani, 2007]

BlkDiag[K XX −QXX] BlkDiag[K X⇤X⇤ −QX⇤X⇤] ÿ k̂A

Table 4.1. Unifying view of sparse global GP approaches by different choices of the
training V̄ and test V̄⇤ conditional covariance approximations (4.11), where the Nyström
matrices QXX and QX⇤X⇤ are defined in Definition 4.1. The column GP? indicates whether
the corresponding sparse GP model can be seen as a GP according to Definition 3.1 with
a particular kernel (as indicated in the column kernel) as further discussed in Section
4.2.2.7 and Table 4.3.

4.2.2.1 Approximate Prior Distribution

Using the approximate training q( f |a) and test conditional q( f ⇤|a) in (4.11) to-
gether with the true prior p(a) =N

�

a
�

�0, K AA

�

of the inducing points as summa-
rized in (4.12), the joint induced approximate prior in (4.8) becomes q( f , f ⇤, a) =
q( f ⇤|a) q( f |a) p(a) which can be written as

q(a, f , f ⇤) =N

0

@

2

4

a
f
f ⇤

3

5

�

�

�

�

�

�

2

4

0
0
0

3

5 ,

2

4

K AA K AX K AX⇤
K XA QXX + V̄ QXX⇤
K X⇤A QX⇤X QX⇤X⇤ + V̄⇤

3

5

1

A . (4.14)
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density mean cov.
R

da
R

d f
R

d f ⇤
R

dy 1
p(a)

1
q( f )

1
q(y)

marginal likelihood q(y) 0 P x x x
prior p(a) 0 K AA x x x
induced prior q( f ) 0 QXX + V̄ x x x
predictive prior q( f ⇤) 0 QX⇤X⇤ + V̄⇤ x x

likelihood p(y | f ) f σ2
nI x x x

projection conditional q( f |a) Ha V̄ x x x
induced likelihood q(y |a) Ha V x x x
predictive conditional q( f ⇤|a) H⇤a V̄⇤ x x x

posterior q(a|y) µ ⌃ x x x
predictive posterior q( f ⇤|y) µ f (X⇤) ⌃ f (X⇤) x x x

Table 4.2. Derived densities from the joint distribution q(a, f , f ⇤, y) for sparse GPs by
marginalization and conditioning. Note that the prior p(a) and likelihood p(y | f ) are
exact.

Thereby, we used H K AA = K XA, H⇤K AA = K X⇤A, H K AAH⇤ = K XAK−1
AAK AX⇤ =

QXX⇤ as defined in (4.10) and similarly for H K AAH = QXX and H⇤K AAH⇤ = QX⇤X⇤ .
Comparing (4.14) with (4.1), we can observe directly the approximation on the
joint prior. Combining the joint induced prior q(a, f , f ⇤) with the Gaussian like-
lihood p(y | f ) = N

�

y
�

� f ,σ2
nI
�

in (3.5), yields the full joint distribution of the
approximate GP model q(a, f , f ⇤, y) = p(y | f )q(a, f , f ⇤) which can be analyti-
cally computed by

q(a, f , f ⇤, y) =N

0

B

B

@

2

6

6

4

a
f
f ⇤
y

3

7

7

5

�

�

�

�

�

�

�

�

2

6

6

4

0
0
0
0

3

7

7

5

,

2

6

6

4

K AA K AX K AX⇤ K AX

K XA QXX + V̄ QXX⇤ QXX + V̄
K X⇤A QX⇤X QX⇤X⇤ + V̄⇤ QXX⇤
K XA QXX + V̄ QXX⇤ QXX + V

3

7

7

5

1

C

C

A

,

(4.15)

where we define V = V̄ +σ2
nI. The analogue joint distribution in the full GP case

is formulated in (3.6). Note that from (4.15), exact inference with a sparse GP
corresponds again to conditioning and marginalization as summarized in Table
4.2. For instance, the predictive posterior can be derived as described in the next
section.
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4.2.2.2 Predictive Posterior

The predictive posterior distribution q( f ⇤|y) of a sparse GP can be obtained by
conditioning on y and marginalization of f and a in (4.15), that is,

q( f ⇤|y) =
Z

q(a, f , f ⇤, y)
q(y)

d f da, (4.16)

which can be obtained with (2.2) and (2.3) leading to the predictive posterior
distribution of a sparse GP q( f ⇤|y) =N

Ä

f ⇤
�

�µ f (X⇤),⌃
2
f (X⇤)

ä

with moments

µ f (X⇤) = QX⇤X P−1y ,

⌃ f (X⇤) = QX⇤X⇤ + V̄⇤ −QX⇤X P−1QXX⇤ ,
(4.17)

where we define the covariance matrix

P = QXX + V̄ +σ2
nI= QXX + V 2 RN⇥N . (4.18)

Note that (4.17) and (4.18) have a very similar structure as in the full GP case
(3.10) and (3.8), respectively. The kernel matrices K XX , K X⇤X and K X⇤X⇤ are re-
placed by QXX , QX⇤X and QX⇤X⇤ and corrected by the additional training V̄ and
test covariance V̄⇤. Computing the inverse P−1 in (4.17) for the matrix P in
(4.18) requires still O(N 3). However, we can follow a two-stage procedure sim-
ilarly discussed in Section 4.2.2.4 for full GP which basically means applying the
inversion lemma (2.16) and is discussed in Section 4.2.2.4.
The noisy prediction of a sparse GP q(y(X⇤)|y) =N

�

y(X⇤)
�

�µ(X⇤),⌃(X⇤)
�

can be
similarly obtained as described in Section 3.2.2.2, accordingly, µ(X⇤) = µ f (X⇤)
and⌃(X⇤) = ⌃ f (X⇤)+σ

2
nI using the sparse predictive moments defined in (4.17).

4.2.2.3 Posterior of Inducing Points

The posterior distribution q(a|y) of the inducing points can be obtained by con-
ditioning on y and marginalization of f and f ⇤ in (4.15), that is,

q(a|y) =
Z

q(a, f , f ⇤, y)
q(y)

d f d f ⇤, (4.19)

which can be computed with (2.2) and (2.3) leading to

q(a|y) =N
�

a
�

�K AX P−1y , K AA − K AX P−1K XA

�

(4.20)

=N
�

a
�

�⌃H T V−1y ,⌃
�

, (4.21)
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where the posterior covariance is defined as ⌃ =
�

K−1
AA +H T V−1H

�−1
and H =

K XAK−1
AA defined in (4.11). The second version in (4.21) can be obtained by

applying the inversion lemma (2.16) to P in the first version (4.20). From a
computation point of view, the second version in (4.21) is preferable since it only
requires the inversion for ⌃ 2 RM⇥M which needs O(M3) instead of P 2 RN⇥N

which is in O(N 3). Consider also the Remark 2.4 for linear basis function models.

4.2.2.4 Prediction via Posterior

Similarly as discussed in Section 3.2.2.5, predictions can be also obtained in a
two-stage procedure by first computing the posterior p(a|y) via (4.21) and then
combining it with the test conditional q( f ⇤|a) in (4.11), that is,

p( f ⇤|y) =
Z

p( f ⇤|a)p(a|y)da, (4.22)

which can be computed via (2.2) leading to

µ f (X⇤) = H⇤⌃H T V−1y ,

⌃ f (X⇤) = V̄⇤ +H⇤⌃H T
⇤
,

(4.23)

which correspond exactly to the predictive posterior in (4.17) but depending
on ⌃ instead P which is computationally less expensive. Further, precomputing
the posterior over the inducing points allows to make fast predictions for new
prediction input points.

4.2.2.5 Marginal Likelihood

We also formulate the marginal likelihood for sparse GPs, which will be thor-
oughly discussed in Section 4.2.4. Marginalization of all variables except y in
(4.15) yields the marginal likelihood distribution

q(y) =

Z

q(a, f , f ⇤, y)da d f d f ⇤ =N
�

y
�

�0, P
�

(4.24)

with covariance P = QXX + V already defined in (4.18).

4.2.2.6 Induced Prior Distribution

The induced prior distribution q( f ) of the training latent function values f can
be obtained from (4.15) by marginalization of all other variables, leading to

q( f ) =N
�

f
�

�0,QXX + V̄
�

.
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Comparing it with the intractable exact prior distribution p( f ) = N
�

f
�

�0, K XX

�

of a full GP shows

K XX ⇡ QXX + V̄ = K XAK−1
AAK AX + V̄ , (4.25)

which can be understood as a low-rank approximation plus a diagonal matrix,
so that the inverse can be efficiently computed. However, note that we never
explicitly compute the full induced covariance matrix in (4.25).

4.2.2.7 Induced Prior Kernel

In this section, we briefly discuss the induced prior kernel by the sparse GP model
with approximate priors. First, we assume that the covariances V̄ and V̄⇤ are set
to zero, that is, both conditionals in (4.11) are deterministic. In this case, the
approximated joint prior q( f , f ⇤) can be derived from (4.14) leading to

q( f , f ⇤) =N

✓

f
f ⇤

� �

�

�

�



0
0

�

,



QXX QXX⇤
QX⇤X QX⇤X⇤

�◆

, (4.26)

which corresponds exactly to a GP prior with degenerated kernel k̃A(x , x 0) =
k(x , A)k(A, A)−1k(A, x ) as defined in (3.18). This means, exact inference for full
GP with the degenerated kernel k̃A(x , x 0) is equal to a sparse GP model when
the conditional covariances vanish. This allows also to compare sparse GPs with
Bayesian linear basis function models.

Remark 4.1 (Fully Deterministic Sparse GP vs Bayesian Linear Model ) A fully
deterministic sparse GP with covariances V̄ = V̄⇤ = 0 is equivalent to a Bayesian
linear model of dimension M with basis function matrix ΦX = H = K XAK−1

AA and
prior covariance matrix ⌃0 = K AA.

Example 4.1 (Fully Independent Conditionals (FIC)) Assume that for any in-
put x , x 0 2 RD, the corresponding latent function values f (x ) and f (x 0) are condi-
tionally independent given the inducing points f (A) = a, that is,

f (x )? f (x 0) | f (A).

For a single input x 2 RD, the conditional distribution implied by the GP is thus
p( f (x )|a) =N

�

f (x )
�

�K x AK−1
AAa, K x x − K x AK−1

AAK Ax

�

leading to

p( f |a) =
N
Y

i=1

p( f (x i)|a) =N
�

f
�

�K XAK−1
AAa, V̄

�

,

p( f ⇤|a) =
NtestY

i=1

p( f (X⇤)|a) =N
�

f ⇤
�

�K X⇤AK−1
AAa, V̄⇤

�

,
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with approximated diagonal covariance matrices V̄ = Diag
⇥

K XX − K XAK−1
AAK AX

⇤

and V̄⇤ = Diag
⇥

K X⇤X⇤ − K X⇤AK−1
AAK AX⇤

⇤

which can be inverted efficiently. This
model was proposed by Quiñonero-Candela and Rasmussen [2005].

The choice of training and test covariances as defined in Example 4.1 with fully
independent conditionals V̄ = Diag[K XX −QXX] and V̄⇤ = Diag[K X⇤X⇤ −QX⇤X⇤],
leads to a joint approximate prior

q( f , f ⇤) =N

✓

f
f ⇤

� �

�

�

�



0
0

�

,



QXX + V̄ QXX⇤
QX⇤X QX⇤X⇤ + V̄⇤

�◆

. (4.27)

Bayesian inference based on this joint prior can be equivalently seen as inference
with a GP prior with augmented kernel k̄A(x , x 0) = k(x , A) k(A, A)−1 k(A, x 0) +
δx=x 0 v(x ) as defined in (3.19). Note that the most other approaches for sparse
global GPs summarized in Table 4.1 cannot be seen as a GP according to Defini-
tion 3.1 since the training f and test f ⇤ latent function values are treated differ-
ently and thus the joint covariance cannot be described by a kernel function. The
indexed GP, degenerated GP, the augmented GP and the block augmented version
of the latter, are exceptions, for which the corresponding kernels are summarized
in Table 4.3. However, this does not necessarily mean, that those are better GP
approximations, as we will see in Section 4.2.3.
In order to understand the effect of the training and test conditional covariances
V̄ and V̄⇤, we show in Figure 4.3 different combinations of no corrected vs diag-
onally corrected covariances for the training and testing, respectively. Thereby,
the fixed inducing points (black dots) are chosen as a subset of training data
points (red dots). In the first column, the corresponding models are depicted,
whereas in the second and third columns, the predictive means and the predic-
tive variances, respectively, are shown. In the last two columns, the prior kernels
for training and testing are indicated and show whether the variance on the di-
agonal is corrected or not. We can observe, that using the correction for the
test conditional is very important, otherwise the model underestimate the un-
certainty outside of training regions significantly. For the training covariance it
is less obvious. We can observe that without correction, the mean tries to fit all
training data points, with the consequence that all estimates are bad. On the
other hand, the diagonally corrected version tries to fit some points very good
and ignores point far away due to the additional variance. We will provide an-
other perspective for these observations in Section 4.2.3.
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Figure 4.3. Four different versions of sparse GPs which basically summarize the training
of all approaches based on inducing points (level I). Note that we indicated the opposite
predictive mean as an orange dashed line in the second column in the last four rows for
the sake comparison.
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model kernel function description

full GP k(x , x 0) exact

degenerated GP k̃A(x , x 0) = k(x , A)K−1
AAk(A, x 0) linear basis function model

augmented GP k̄A(x , x 0) = k̃A(x , x 0) +δx=x 0
⇥

k(x , x 0)− k̃A(x , x 0)
⇤ linear basis function model

with corrected variance on the diagonal

block augmented GP k̃A(x , x 0) = k̃A(x , x 0) + ⇠x ,x 0
⇥

k(x , x 0)− k̃A(x , x 0)
⇤ linear basis function model

with corrected block-covariance

indexed GP kA(x , x 0) = k̃A(x , x 0) +%x ,x 0
⇥

k(x , x 0)− k̃A(x , x 0)
⇤ linear basis function model

with fully corrected training and test covariance

Table 4.3. Different approximate kernel functions corresponding to approximated mod-
els of full GP. Although they are approxmated models, all of them can be seen as a proper
GP with a special structure of the kernel. We used δx=x 0 as the Kronecker delta which
is 1 if x = x 0 and 0 otherwise. Moreover, ⇠x ,x 0 is defined to be 1 if x and x 0 are in
the same block/region and 0 otherwise. Further, %x ,x 0 is 1 if x and x 0 are both in the
training inputs X or both in the test inputs X⇤ and 0 otherwise.

4.2.3 Approximate Inference with Exact Prior

In this section, we discuss approaches where the exact prior p(a, f ) is retained,
however, approximate inference techniques are employed to directly find an ap-
proximate posterior distribution as outlined in Section 4.2.1.2. We start from the
decomposition of the joint distribution in (4.7), that is,

q( f , f ⇤, a) = p( f ⇤|a)p( f |a)p(a) = p( f ⇤|a)p( f , a),

where we noted that the prior p( f , a) is still exact but is combined with the
conditional p( f ⇤|a) so that f ⇤ and f only interact via a. Instead directly imposing
assumptions on the prior p( f , a) as discussed in Section 4.2.2, the approach in
this section is to find an approximate distribution q( f , a) which is close to the
exact GP posterior distribution

q( f , a)⇡ p( f , a|y), (4.28)

where the exact posterior can be similarly derived as in (4.5), in particular with-
out integrating out a, that is

p( f , a|y) =
Z

p( f , f ⇤, a, y)
p(y)

d f ⇤ =
p(y | f )p( f , a)

p(y)
. (4.29)

The approaches in this section differ by two further choices. The first concerns
the additional structural assumptions of the approximate distribution q. Sec-
ondly, the closeness in (4.28) between the approximate distribution q and the
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true distribution p has to be specified. For the second point, in this section, we
use the minimization of the Kullback-Leibler (KL)-divergence as discussed in Sec-
tion 2.1.2.2. In particular, an approach is discussed in Section 4.2.3.1, where the
forward Kullback-Leibler-divergence

arg min
q( f ,a)

KL [q( f , a)||p( f , a|y)] (4.30)

is minimized, whereas Section 4.2.3.2 describes an approach where the goal is
to minimize the reverse KL

arg min
q( f ,a)

KL [p( f , a|y)||q( f , a)] . (4.31)

The former approach correspond to variational inference (VI) and the latter to
expectation propagation (EP). In Section 4.2.3.3, an approach is discussed which
unifies these two approaches, called power expectation propagation (PEP).

4.2.3.1 Variational Inference

In this section, the variational approach by Titsias [2009] for global sparse GPs
is discussed. The goal is to minimize the forward KL (4.30) between the approx-
imate distribution q( f , a) and the exact posterior distribution p( f , a|y), that is

arg min
q( f ,a)

KL [q( f , a)||p( f , a|y)] . (4.32)

Further, the author Titsias [2009] proposed the structure of the approximate
distribution

q( f , a) = p( f |a)q(a), (4.33)

where the true conditional p( f |a) is used so that q(a)⇡ p(a|y).
Instead directly minimize (4.32), in variational inference, the variational lower
bound can be maximized.

Proposition 4.1 (Variational Lower Bound Maximization) For a general joint
distribution p(z, y) with observed variable y and unobserved variable z, the goal is
to find an approximate posterior distribution q(z) for the intractable true posterior
distribution p(z|y) as well as an estimate of the intractable log marginal likelihood
log p(y). The variational solution is given by the following optimization,

q⇤(z) = argmin
q(z)

KL [q(z)||p(z|y)] = argmax
q(z)

L(q(z)), (4.34)
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which means that minimizing the forward KL is equivalent to maximizing the lower
bound

L(q(z)) =

Z

q(z) log
p(z, y)
q(z)

dz  log p(y) (4.35)

to the log of the marginal likelihood log p(y).

We directly provide the proof idea for Proposition 4.1. The equivalence in (4.34)
directly follows by manipulating the definition of the KL in (2.12), from which
the log of the marginal likelihood can be decomposed as

log p(y) = L(q(z))− KL [q(z)||p(z|y)] , (4.36)

and since the KL is always non-negative, it holds log p(y) ≥ L(q(z)). Since
log p(y) in Equation (4.36) is independent of q(z), it follows that minimizing the
KL is equivaltently to maximizing the lower bound, which concludes the state-
ment.

Using in Proposition 4.1 for the unobserved variable z = [ f , a]T , instead of min-
imizing (4.32), we can therefore equivalently maximize the lower bound

L(q( f , a)) =

Z

q( f , a) log
p( f , a, y)
q( f , a)

d f da. (4.37)

Plugging the structural assumption (4.33) into (4.37) yields

L(q( f , a)) =

Z

p( f |a)q(a) log
p(y | f )p( f |a)p(a)

p( f |a)q(a) d f da

which simplifies to

L(q(a)) =

Z

p( f |a)q(a) log
p(y | f )p(a)

q(a)
d f da. (4.38)

Posterior Distribution
The approximate posterior distribution q(a) ⇡ p(a|y) can be obtained by maxi-
mizing (4.38), that is,

q⇤(a) = argmax
q(a)

L(q(a)),
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where we refer to the supplementary material of Titsias [2009] for the complete
derivation. The optimal distribution can be analytically obtained

q⇤(a) =N

✓

a
�

�

1
σ2

n

⌃K−1
AAK AX y ,⌃

◆

(4.39)

with ⌃ =
Ä

K−1
AA +

1
σ2

n
K−1

AAK AX K XAK−1
AA

ä−1
. By comparing the optimal distribution

in (4.39) to the posterior distribtuion of the inducing points in (4.21) indirectly
obtained by a prior approximation and performing exact inference, we can no-
tice that H = K XAK−1

AA and V = 1
σ2

n
I and thus the training conditional covariance

in (4.11) vanish V̄ = 0. This means, regarding training or level I inference, the
optimal posterior distribution of the inducing points obtained by variational in-
ference is equivalent to the deterministic "GP" discussed in Section 4.2.2, compare
also Table 4.1.

Collapsed Lower Bound
Plugging the optimal distribution (4.39) into (4.38) yields the collapsed varia-
tional lower bound or the variational free energy (VFE)

LV F E(✓ ) = L(q⇤(a)) = logN
�

y
�

�0,QXX +σ
2
n

�

−
1
σ2

n

tr[K XX −QXX], (4.40)

which correspond to the log marginal likelihood of a deterministic "GP" as de-
fined in (4.24) minus an additional term which is the trace of the true training
conditional covariance (4.9). This additional term acts as a regularizer when
maximizing (4.40) with respect to the inducing inputs as discussed in Section
4.2.4

4.2.3.2 Expectation Propagation

In this section, the expectation propagation for sparse global GPs is discussed,
where we solely follow Csató and Opper [2002] and Bui et al. [2017b], but pro-
vide a different derivation. The goal is to minimize the forward KL (4.31) be-
tween the approximate distribution q( f , a) and the exact posterior distribution
p( f , a|y), that is

arg min
q( f ,a)

KL [p( f , a|y)||q( f , a)] . (4.41)
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Since the Gaussian likelihood p(y | f ) = N
�

y
�

� f ,σ2
nI
�

in (3.5) decomposes as a
product

p(y | f ) =
N
Y

i=1

p(yi| f i) =

N
Y

i=1

N
�

y i

�

� f i,σ
2
n

�

, (4.42)

the exact posterior distribution in (4.29) can be written as

p( f , a|y) = p(y | f )p( f , a)
p(y)

=

QN
i=1 p(yi| f i)p( f , a)

p(y)
. (4.43)

The product in (4.43) can be seen as a decomposition of N + 1 factors in the
variables f and a, that is,

p( f , a|y) = 1
p(y)

N
Y

i=0

pi( f , a), (4.44)

with exact individual factors p0( f , a) = p( f , a), pi( f , a) = p(yi| f i) for i > 0 and
normalization constant p(y) =

R QN
i=0 pi( f , a)d f da. By observing the structure

in (4.44) of the true posterior distribution, we assume the same structure for the
approximate distribution p( f , a|y)⇡ q( f , a), that is,

q( f , a) =
1
Z

N
Y

i=0

qi( f , a) (4.45)

with Z =
R QN

i=0 qi( f , a)d f da = q(y). The minimization problem in (4.41)
becomes then

argmin
q( f ,a)

KL

ñ

1
p(y)

N
Y

i=0

pi( f , a)
�

�

�

�

�

�

1
Z

N
Y

i=0

qi( f , a)

ô

. (4.46)

Note that minimizing (4.46) is equivalent to minimizing (4.41) with the con-
straint (4.45). Ideally we would like to determine the approximate factors qi( f , a)
by solving (4.46) exactly. However, the reverse KL minimization in general is
intractable since the KL-divergence involves averaging with respect to the true
distribution on the left in the KL. As a very rough approximation, we could in-
stead minimize the KL divergences between the corresponding pairs pi( f , a) and
qi( f , a) of factors. This leads to a much simpler minimization problem but the
overall approximation is not satisfying.
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Iterative Moment Matching
Expectation propagation (EP) makes a much better approximation by optimizing
iteratively each factor in the context of all of the remaining factors. It starts by
initializing the approximate posterior

q(t)( f , a) =
1
Zt

N
Y

i=0

q(t)i ( f , a)

for some initial factors q(0)i ( f , a). Afterwards it cycles through all factors so that
t % N = i (% is the modulo operator), by removing the previous approximate
factor q(t)i ( f , a) from the current posterior approximation q(t)( f , a) and updates
the true factor pi( f , a) leading to the so-called cavity distribution

p̄(t)( f , a|y) = 1
Zt

q(t)( f , a) pi( f , a)

q(t)i ( f , a)
.

Hence, EP solves iteratively the following minimization task

q(t+1) = argmin
q( f ,a)

KL
h

p̄(t)( f , a|y)
�

�

�

�

�

� q( f , a)
i

, (4.47)

Note that this procedure can be applied also to non-Gaussian distributions as
long as the multiplication, division and normalization in (4.47) can be computed
efficiently. For members of the exponential-family, the minimization problem in
(4.47) corresponds to matching the expected sufficient statistics of both distribu-
tions, see [Bishop, 2006, Section 10.7]. A common situation (e.g. for GP classi-
fication) is that the pi( f , a) correspond to a non-Gaussian likelihood and q( f , a)
is assumed to be Gaussian. In this case, the distribution on the left in (4.47) is
projected by its mean and covariance to the mean and covariance of a Gaussian
distribution as discussed in [Bishop, 2006, Section 10.7] and intuitively illus-
trated in in Figure 2.2.

Posterior Distribution
The setting of GP regression with Gaussian likelihood is even simpler since all in-
volved distributions are Gaussians, including pi( f , a). In this case, convergence
is guaranteed after two passes through the data, independent of the initialization
and the moments of the approximate solution q( f , a) can be even computed in
closed form solutions. In particular, the optimal approximate factors in (4.45)
are

q0( f , a) = p(a) and qi( f , a) = p(y i| f i)p( f i|a),
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so that the joint approximate posterior distribution becomes according to (4.45)

q( f , a) =
1
Z

N
Y

i=0

qi( f , a) =
1
Z

p(a)
N
Y

i=1

p(y i| f i)p( f i|a) =
p(y | f )q( f |a)p(a)

q(y)
(4.48)

with approximated training conditional

q( f |a) =
N
Y

i=1

p( f i|a) =
N
Y

i=1

N
�

f i

�

�K X i AK−1
AAa, K X i X i

− K X i AK−1
AAK AX i

�

=N
�

f
�

�K XAK−1
AAa, Diag[K XX − K XAK−1

AAK AX]
�

.

(4.49)

The approximate posterior distribution q(a) ⇡ p(a|y) over the inducing points
can be obtained by using the exact prior p(a) and exact likelihood p(y | f ) to-
gether with the approximated training conditional in (4.49) and integrating out
f in (4.48), yielding

q(a) =

Z

q( f , a)d f =N
�

a
�

�⌃K−1
AAK AX V−1y ,⌃

�

(4.50)

where the posterior covariance is ⌃ =
�

K−1
AA + K−1

AAK AX V−1K XAK−1
AA

�−1
with V =

V̄ +σ2
nI and V̄ = Diag[K XX − K XAK−1

AAK AX]. By comparing the optimal distribu-
tion in (4.50) to the posterior distribution of the inducing points in (4.21), we
can notice that it is equivalent when inserting H = K XAK−1

AA and V̄ correspond-
ing to the diagonal of training conditional covariance in (4.11). This means that
the optimal solution obtained by EP for the posterior distribution is equivalent
to the indirect posterior approximation via prior approximation as described in
the previous section with an augmented GP, compare Table 4.1.

Marginal Likelihood
The normalization or approximated marginal likelihood Z = q(y) in the approx-
imated posterior in (4.48) can be computed as

q(y) =

Z

p(y | f )q( f |a)p(a)d f da =N
�

y
�

�QXX + V̄ +σ2
nI
�

. (4.51)

Note that this correspond to the marginal likelihood of a augmented GP as de-
fined in (4.24). Compared to the lower bound of the variational approach in
(4.40), there is no additional term. We denote the log of this marginal likelihood
LEP(✓ ) = logq(y).



89 4.2 Sparse Global GPs

4.2.3.3 Power Expectation Propagation

The two approximate inference approaches for sparse GPs discussed in Sections
4.2.3.1 and 4.2.3.2 have been unified into one general approach by Bui et al.
[2017b]. The main idea is to replace the KL-divergence in (4.41) by the more
general alpha-divergence [Minka et al., 2005] parametrized by a scalar 0< ↵
1. For ↵ = 1, this divergence correspond to the reverse KL, for ↵ ! 0, it con-
verge to the forward KL. When minimising this alpha-divergence instead the KL
similarly to the derivations in Section 4.2.3.2 is also known as power expecta-
tion propagation (PEP) [Minka et al., 2005; Bui et al., 2017b]. It yields the ap-
proximated training conditional q( f |a) =N

�

f
�

� Ha, V̄
�

, with projection matrix
H = K XAK−1

AA and training covariance

V̄ = ↵ Diag[K XX − K XAK−1
AAK AX], (4.52)

where we refer to [Bui et al., 2017b] for the full derivation. We note that for
↵= 1, this correspond exactly to the training covariance in (4.49) and for ↵! 0
it becomes deterministic as in (4.39). Using this general approximate training
covariance in (4.52) together with the true test covariance V̄⇤ = K X⇤X⇤ − QX⇤X⇤
for (4.11) and apply exact Bayesian inference, lead for instance to the predictive
distribution

µ f (X⇤) = QX⇤X P−1y;

⌃ f (X⇤) = QX⇤X⇤ + V̄⇤ −QX⇤X P−1QXX⇤ ,

with covariance matrix P = QXX + V̄ +σ2
nI.

Remark 4.2 For sparse global GP models, approximate inference techniques retain-
ing the exact prior can be equivalently seen as modifying directly the prior and per-
forming exact Bayesian inference regarding level I inference.

However, approximate inference techniques provide different results for level II
inference. In particular, they provide a lower bound to the marginal likelihood
which will be important when choosing inducing inputs as it will be discussed in
Section 4.2.4. In particular, the corresponding lower bound q(y) ≥ L(✓ ) to the
marginal likelihood resulting from the PEP optimization can be written as

LPEP(✓ ) = logN
�

y
�

�QXX + V̄ +σ2
nI
�

−
1−↵
2↵

N
X

i=1

log

✓

1+
↵

σ2
n

V̄ ii

◆

, (4.53)

which can be seen as the log marginal likelihood of the corresponding basis func-
tion model minus a correction term which prevents overfitting as we will discuss
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in the next section. Note that for ↵= 1, the correction term vanish and the same
log marginal likelihood of EP (4.51) or an augmented GP is recovered. Similarly,
for ↵! 0, the correction term converges to the one in (4.40) corresponding to
variational inference.

4.2.4 Choosing Inducing Inputs and Hyperparameters

For global sparse GP models with M inducing points in D dimension, there are
the kernel hyperparameters, the noise variance and the input locations of the
inducing points A = [A1, . . . , AM]

T 2 RM⇥D to choose, so that M D additional pa-
rameters have to be estimated compared to full GP. Two efficient ways to choose
the inducing inputs A are either according to a space-filling design or to the
subset of data approach. In the former, the input points are regularly placed
in the input space, for instance on a regular grid. In the latter, a subset of M
training data inputs out of X 2 RN⇥D are randomly chosen for the inducing in-
puts A. For small dimension, i.e. D = 1, 2, and moderate complex underlying
functions, these two ideas constitute often efficient approaches with rather good
performance, since the M chosen inducing points can represent well the input
space, the computational time is minimal and there is no danger for overfitting.
For instance, the sparse GP model with the random subset approach becomes
monotonically more exact with respect to full GP, when increasing the number of
inducing points. However, for both approaches, the main disadvantages is that in
higher dimension D or for complex underlying functions (for instance fast vary-
ing patters, e.g. time series), fixed chosen inducing points cannot cover well the
input space for a fixed number M of inducing points. Moreover, increasing the
number of inducing points is limited to the fact, that the time complexity is still
cubic in the number of inducing points. As a consequence, optimizing the induc-
ing points become cheaper than increasing the number of fixed placed inducing
points. Therefore, in the context of sparse global GPs, the inducing inputs to-
gether with the kernel hyperparameters and the noise variance are summarized
by ✓ , for which we discuss some inference approaches in the following.
Level II inference for ✓ in sparse GPs can also be done based on empirical Bayes
from Section 2.3.3.1, similarly as for Bayesian linear models and full GPs as dis-
cussed in Sections 2.3.4.6 and 3.3, respectively. From the perspective of Section
4.2.2, where sparse GP models are discussed as exact inference with approxi-
mate prior, this is the consequent approach and has been proposed by the cor-
responding authors from SoR, DIC, FIC, PP, DTC, SSGP, FITC and PIC models as
indicated in Table 4.1. In particular, the ML-II approach based on the marginal
likelihood distribution q(y |✓ ) = q(y) = N

�

y
�

�0, P✓
�

in (4.24) with covariance
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Figure 4.4. Inducing input optimization for different methods (row-wise) and different
number M of inducing points (column-wise). In the rows with odd row numbers, the
corresponding objective function is depicted, whereas in rows with even row numbers,
the corresponding fit of the sparse GP model with the optimal inducing points is shown.
In the last column, all inducing points are placed to the training inputs, so that all sparse
GP methods correspond to full GP.



92 4.2 Sparse Global GPs

P✓ = QXX + V can be applied, that is,

✓ ⇤ = arg max
✓

q(y |✓ ) = arg min
✓

y T P−1
✓

y + log |P✓ |. (4.54)

For moderate number of inducing points M and dimension D compared to the
number of samples N , this approach works reasonable, however, due to the many
parameters in the model, there is the danger of overfitting. Moreover, what might
be even worse, there is no guarantee that the sparse GP model with optimized
inducing inputs is a good approximation of full GP.
The approaches discussed in Section 4.2.3 based on approximate inference with
exact priors constitute an interesting alternative. Although the predictive poste-
rior can be equivalently explained by exact inference with approximate prior as
discussed in Section 4.2.2, they provide a different approach for level II infer-
ence for ✓ . In particular, the lower bounds LV F E(✓ ) and LPEP(✓ ) in (4.40) and
(4.53), respectively, include a regularization term a(✓ ), so that the optimization
task becomes

✓ ⇤ = argmax
✓

L(✓ )

= argmax
✓

q(y |✓ )exp(a(✓ ))

= argmin
✓

y T P−1
✓

y + log |P✓ |+ a(✓ ).

(4.55)

By optimizing the lower bound (4.55) including the additional regularization
term a(✓ ) can be seen as introducing an unnormalized prior exp(a(✓ )), which is
combined with the marginal likelihood q(y |✓ ). It has the effect, that the posterior
distribution q( f , a|y ,✓ ⇤) of the sparse GP model with the optimized parameters
✓ ⇤ is guaranteed to be close to the posterior distribution p( f , a|y , ✓̄

⇤
) of full GP

as enforced by minimizing a divergence between these two distributions (4.28).
In particular, by optimizing the collapsed lower bound LV F E(✓ ) in (4.40), the
parameters ✓ including the inducing inputs are variationally safe and there is no
danger to overfit with respect to full GP. Moreover, when increasing the number
M of inducing points, the sparse GP posterior converges rigorously to full GP for
M ! N as demonstrated by Titsias [2009].
These two approaches are illustrated in Figure 4.4, where we generated N = 50
training data samples (red dots) with a squared-exponential kernel in D = 2
dimension. In particular, we show for each method (row-wise) and different
number M of inducing points (column-wise) the corresponding objective func-
tions (in rows with odd row numbers) and the corresponding obtained fit of
the sparse GP model with the optimal inducing points (in rows with even row
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numbers). We fixed the kernel hyperparameters and the noise variance to the
true values for illustration purposes and estimated the M inducing points with
two versions of each approach in (4.54) and (4.55), respectively. In particular,
for the pure ML-II approach (4.54), we use a training covariance V̄ = 0 and
V̄ = Diag[K XX −QXX] corresponding to the DTC [Seeger et al., 2003] and FITC
[Quiñonero-Candela and Rasmussen, 2005], respectively. The results are shown
in the upper part of Figure 4.4. For the lower bound approaches (4.55), we con-
sider the lower bounds LV F E and LPEP with ↵ = 0.5 proposed by Titsias [2009]
and Bui et al. [2017b], respectively, for which the results are shown in the bot-
tom part of Figure 4.4. Since the input dimension of the objective functions (in
rows with odd row numbers) is 2M , we only show the projection to one inducing
input (which is 2-dimensional), while the other inducing inputs are fixed to the
optimized values. Note that in the last column, the inducing points (black dots)
are fixed to the training inputs, so that all fits of the sparse GP models correspond
exactly to full GP.
We first note, that the investigated approaches work reasonable well, except the
DTC approach shown in the first two rows. Although, the DTC approach pro-
vides a decent estimate for the first three inducing inputs, it completely fails for
more inducing points since it place them outside the region with training inputs
and thus they are completely wasted, resulting in a poor approximation. The
differences for the other 3 methods are rather subtle, which will be discussed in
the following. The first 3 inducing inputs are placed by all three methods close to
the 3 local optima of the function fitted by full GP as depicted in the last column.
Thereby, the order which local optima is chosen first correspond to the absolute
value of the corresponding local optima. We can notice a small difference in the
places of the first inducing points. Whereas FITC tries to fit the function exactly
close to the inducing points and cares less about the approximation quality far
away from the inducing points. This can be explained by the additional training
variance, which has the effect that data points far away from inducing points are
treated as noise. On the other hand, the VFE approach makes a compromise, so
that all data points are explained relatively well, but no of them exactly. This has
the effect, that the method does not overfit with respect to full GP. However, it
can be sometimes observed for real data that this approach is over-regularized,
so that it has some difficulties to model the observed data well. Thus, in practice,
often a good choice constitutes the mix of both approaches, the PEP model with
↵⇡ 0.5, which corrects a fraction of the training covariance and adds also a frac-
tion of the regularization term. A similar observation is that the inducing points
for FITC are preferable placed to regions with many data samples, whereas the
VFE approach places the inducing points also in between the samples so that sev-
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eral data points can explained relatively well together. This has the effect, that
the inducing points for VFE cover better the region with training data and for
M ! N it converges to full GP which means that the inducing points are placed
at the training inputs.

4.2.5 Advantages and Disadvantages of SGPs

Global sparse GPs based on inducing points have several benefits.

• Time and Space Complexity: The cubic time O(N 3) and quadratic space
O(N 2) complexity of full GP can be reduced by sparse GP approximations
to O(N M2) and O(N M), respectively. This allows to scale GPs to a quite
large number of training data samples.

• Global Patterns: The probabilistic projection of the training points to the
global inducing points constitute a principled way to model the same global
pattern and dependencies as full GP.

• Consistent Uncertainty Information: With the additional test covariance,
the predictive variance of sparse GPs falls back to the prior predictive distri-
bution and can imitate the infinite-dimensional basis functions. This means
that in regions without inducing points, the credible intervals are conser-
vative and thus contain the credible intervals of full GP.

• Low Rank Approximation: Sparse GPs can be seen as a clever chosen
low-rank approximation to circumvent the inversion of the large kernel
data matrix so that the main patterns in the covariance can be retained.

• Convergence to Full GP: For inducing points chosen as subset of data or
by maximizing the variational lower bound [Titsias, 2009], the model con-
verges to full GP as the number M of inducing points tends to the number
of training points N .

But sparse GP approximations have also some disadvantages.

• Number of Inducing Points: The inducing inputs have to cover the re-
gions of the input space where training data is available, otherwise the
information of the data is lost. For a fixed number of inducing points, this
is particularly difficult for higher dimensional input spaces. Increasing the
number of inducing points is limited to the fact, that the time complexity
is still cubic in the number of inducing points.
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• Missing Local Patterns: Due to the finite number of inducing points, the
model is limited in modelling arbitrary complex patterns. In particular, fast
varying and local patterns are smoothed out and treated as noise.

• Parametric Approximation of Non-Parametric Method: The number of
additional parameters in the model of M inducing points in D dimension
is O(M D). Although these parameter can be treated as variational param-
eters and are thus variationally safe regarding overfitting, sparse GPs loose
the character of non-parameteric models since all those parameters have
to be estimated.

• Stochastic Training: Global sparse GPs as discussed in this section can-
not be trained stochastically with sequential mini-batches since the log
marginal likelihood does not decompose into a sum of terms. However, for
instance the work [Hensman et al., 2013] and the approaches proposed in
Chapter 5 make stochastic training for global sparse GPs possible.

4.3 Local Approaches

Local approaches for GP approximations are based on the divide & conquer prin-
ciple. In the context of local GPs, this means that the input space X is divided
into J regions and to each subregion, an independent full GP is applied. For the
combination from the individual subregions to the whole space, different aggre-
gation schemes based on probabilistic averaging techniques have been proposed.
In probabilistic aggregation methods, each model from the individual subregions
is often called an expert, described by some knowledge and uncertainty. The ag-
gregation or averaging is then based on the uncertainty of each expert result-
ing in a fused knowledge and uncertainty. Since for GP approximations, each
expert correspond to a local full GP trained on the training samples in the sub-
region, J different predictive distributions according to (3.10) with predictive
mean and variance are obtained, which can be used for the aggregation. This
basic approach reduces the time complexity drastically from O(N 3) = O(J3B3)

to O(JB3) =O(NB2), when assuming that each subregion has equal number of
data samples B = N

J [Liu et al., 2020].

4.3.1 Local Models with Single Prediction

In this section, we briefly discuss simple baseline models, where the prediction
depends only on a single subregion, without any aggregation step.
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4.3.1.1 Naive Local Expert

The most straight forward approach for local GP approximation - here denoted
as naive local expert (NLE) - is to divide the whole input space into J disjoint
regions or partitions ⌦ j, i.e. ⌦ j \⌦i = ? for all i 6= j, so that the regions cover
the whole space [J

j=1⌦ j = X . For given training data D = {yi, x i}Ni=1 = {y , X},
the training data of each expert is defined as

D j =
�

yi, x i : x i 2 ⌦ j

 

= {y j, X j}.
Each expert j fits locally an independent full GP on D j yielding the individual
predictive distributions according to (3.9)

p( f⇤ j|y j) =N
�

f⇤ j
�

�mj, vj

�

(4.56)

for the jth predictive latent function value f⇤ j = f (x ⇤) j with predictive mean
mj = µ(x ⇤) j and variance vj = σ

2(x ⇤) j in (3.10). The overall predictive distri-
bution is then simply the predictive distribution

q( f⇤|y) =N
�

f⇤
�

�µ(x ⇤),σ
2(x ⇤)

�

= p( f⇤k|y k) =N
�

f⇤k
�

�mk, vk

�

, (4.57)

of the kth expert for which x ⇤ 2 ⌦k. In practice, defining the partitions ⌦ j before
considering the training data is not straight forward and leads often to experts
with very different number of training samples.

4.3.1.2 Nearest Neighbor Expert

A similar method to NLE constitutes the nearest neighbor expert (NNE) approach,
where instead the training data D is directly split into individual datasets D j =

{y j, X j} for each expert according to a specified rule. As opposed to NLE, this
approach is input data depending, so that for instance clustering techniques (e.g.
kmeans, trees) for finding the partition of the training data can be used. The
training of each experts yields the individual predictive posterior as in (4.56),
however, the overall prediction is based on the training inputs. In particular, for
the overall prediction (4.57), the predictive distribution of expert k with closest
mean to the query point x ⇤ is used, that is,

k = arg min
j

||x ⇤ −Mj||,

where Mj =
1
B

PB
i=1 X i

j is the mean of inputs of the jth expert. Note that we
consider here only inductive approaches, where the partitions are static and in-
dependent of the test points so that the training of all experts can be performed
before testing. As opposed to transductive approaches [Liu et al., 2020, Section
IV], where the neighborhood can depend on other test points.



97 4.3 Local Approaches

4.3.1.3 Minimal Variance Expert

The variant in this section relies again on a partition of the training data D as
described for NNE, yielding individual datasets for each expert D j. However,
instead of using the expert which is closest to the query point x ⇤ as in NNE, the
minimal variance (minVar) approach uses the expert with minimal variance of the
predictive distribution p( f⇤ j|y j) =N

�

f⇤ j
�

�mj, vj

�

among the experts j = 1, . . . , J ,
that is,

k = arg min
j

vj.

Note that as opposed to NLE or NNE, which only use the input data for deter-
mining the optimal expert, the minVar approach uses also the uncertainty of the
local GP model. As a consequence, the minVar approach outperforms in the most
situations the NLE and NNE due to the use of the predictive variance, which we
observed in many experiments and is also confirmed by Rullière et al. [2018].
Therefore, we focus in this work on minVar as comparison for single local pre-
diction experts.

4.3.1.4 Limitations of Single Predictions

Models based on the predictions of a single expert provide often surprisingly good
performance in practice, in particular, for large enough partitions or relatively
small number of experts. However, they suffer from severe discontinuity issues
at the border of the partitions or between the experts. This can be observed for
instance in the first row of Figure 4.5, where the minVar approach is depicted for
J = 2,10, 50 experts. We notice that the approximation quality compared to full
GP is rather good for a small number of experts, since it corresponds locally to
the exact full GP model. However, for more experts, the predictive distribution
becomes very non-smooth, which is not a desirable behavior since a small change
in the input leads to a big change in the output. One approach to overcome these
issues are to smooth the predictive distributions of the individual experts, as it
will be discussed in the next section.

4.3.2 Product of Experts

In order to improve the local independent experts based on single predictions,
the product of expert (PoE) approach [Hinton, 2002] constitutes a powerful and
principled way to combine individual experts, by probabilistically averaging tech-
niques. In particular, it smooths the individual predictive distributions based on
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method
link function

g j

�

pj

�

predictive
mean µ⇤

predictive
variance σ2

⇤

remarks

naive local
expert

®

pk if j = k

1 else
σ2
⇤

mk

vk

1
vk

k = { j : x ⇤ 2 ⌦ j}
⌦ j \⌦i =?, [ j⌦ j = X

nearest neighbor
expert

®

pk if j = k

1 else
σ2
⇤

mk

vk

1
vk

k = argmin j ||x ⇤ −Mj||2
Mj =

1
B

PB
i=1 X i

j

minimal variance
expert

®

pk if j = k

1 else
σ2
⇤

mk

vk

1
vk

k = argmin j vj

PoE unnormalized
[Hinton, 2002]

pj σ2
⇤

J
X

j=1

mj

vj

J
X

j=1

1
vj

PoE normalized
[Deisenroth and Ng, 2015]

p
1
J
j

σ2
⇤

J

J
X

j=1

mj

vj

1
J

J
X

j=1

1
vj

GPoE unnormalized
[Fleet, 2014]

p
β̄ j

j σ2
⇤

J
X

j=1

β̄ j

mj

vj

J
X

j=1

β̄ j
1
vj

GPoE normalized
[Fleet, 2014]

p
β j

j σ2
⇤

J
X

j=1

β j

mj

vj

J
X

j=1

β j
1
vj

β j =
β̄ j

PJ
j=1 β̄ j

BCM
[Tresp, 2000]

pj

p
1− 1

J
0

σ2
⇤

J
X

j=1

mj

vj

1
v0
+

J
X

j=1

✓

1
vj
−

1
v0

◆

RBCM
[Deisenroth and Ng, 2015]

p
β̄ j

j

p
β̄ j−

1
J

0

σ2
⇤

J
X

j=1

β̄ j

mj

vj

1
v0
+

J
X

j=1

β̄ j

✓

1
vj
−

1
v0

◆

GRBCM
[Liu et al., 2018]

p̃
β̃ j

j

p̃
β̃ j−

1
J

0

σ2
⇤

ñ

m1

v1
+

J
X

j=2

β̃ j

✓

mj

vj
−

m1

v1

◆

ô

1
v1
+

J
X

j=2

β̃ j

✓

1
vj
−

1
v1

◆

β̃ j =

®

1 if j = 1,2

β̄ j else

Table 4.4. Different aggregation methods for q( f⇤|y) = N
�

f⇤
�

�µ⇤,σ
2
⇤

�

with aggregated
predictive mean µ⇤ = µ f (x ⇤) and σ2

⇤ = σ
2
f (x ⇤) variance, respectively. Thereby, the

individual predictive distributions are pj = p( f⇤ j |y j) = N
�

f⇤ j
�

�mj , vj

�

and p0 = p( f⇤) =
N
�

f⇤
�

�m0, v0

�

, except for GRBCM p̃ j = p( f⇤ j |y1, y j) =N
�

f⇤ j
�

�mj , vj

�

.

the estimated uncertainty of the predictive distribution, i.e. the variance of the
local GP.

4.3.2.1 Predictive Posterior

For PoEs, the individual predictive distributions p( f⇤ j|y j) = N
�

f⇤ j
�

�mj, vj

�

from
J experts corresponding to local GPs (3.9) based on the local data D j = {y j, X j},
are aggregated to the final approximate predictive distribution

q( f⇤|y j) =
1
Z

J
Y

j=1

g j

�

p( f⇤ j|y j)
�

, (4.58)

Thereby, we introduce the link function g j, which depends on the particular lo-
cal GP approximation method proposed in the literature as summarized in Table
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4.4 in the second column and discussed in Section 4.3.2.5. Note that (4.58) is
intractable for general link functions and predictive distributions pj = p( f⇤ j|y j),
particularly due to the normalization Z . However, for certain simple choices of
g j and Gaussian predictive distributions (and for most distributions in the ex-
ponential family), the product becomes feasible. Since the individual predictive
distributions correspond to local GPs and are thus Gaussian, the aggregated prod-
uct is again Gaussian distributed and can be explicitly computed as formulated
in Section 2.1.1.4.
We want to emphasize the particular choice g j

�

pj

�

= p
β j

j for some weights β j, so
that the product (4.58) becomes

q( f⇤|y j) =
1
Z

J
Y

j=1

p( f⇤ j|y j)
β j =

1
Z

J
Y

j=1

N
�

f⇤ j
�

�mj, vj

�β j

=N
�

f⇤
�

�µ(x ⇤),σ
2(x ⇤)

�

,

(4.59)

for which the aggregated predictive moments can be analytically obtained (2.11)

µ(x ⇤) = σ
2(x ⇤)

J
X

j=1

β j

mj

vj
and

1
σ2(x ⇤)

=

J
X

j=1

β j
1
vj

.

For other choices of the link function, the corresponding aggregated predictive
moments are summarized in Table 4.4 in the third and fourth column, respec-
tively.

4.3.2.2 Posterior

All choices of link functions have in common the same approximated posterior
distribution f |y over the latent functions values. In particular, the posterior can
be written as

q( f |y) = q( f , y)
q(y)

=
p(y | f ) q( f )

q(y)
=

1
q(y)

J
Y

j=1

p(y j| f j)p( f j), (4.60)

where the exact prior p( f ) ⇡ q( f ) is approximated by the product q( f ) =
QJ

j=1 p( f j) corresponding to the assumption that all latent function values of
the individual experts are mutually independent. Using the exact Gaussian like-
lihood p(y | f ), the posterior distribution in (4.60) can be formulated as

q( f |y) =
J

Y

j=1

N
�

f
�

�µ j,⌃ j

�

=N
�

f
�

�µ,⌃
�

, (4.61)
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Figure 4.5. Different local GP approaches (per rows in orange) and different number of
experts/partitions (per column) compared to full GP (blue).
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where the individual local posterior moments µ j and ⌃ j are given according to
a local full GP (3.12), that is, with posterior mean and covariance

µ j = K X j X j
P−1

j y j;

⌃ j = K X j X j
− K X j X j

P−1
j K X j X j

and marginal likelihood covariance

P j = K X j X j
+σ2

nI. (4.62)

Hence, the full posterior mean and covariance in (4.61) are µ = [µ1, . . . ,µJ]
T

and ⌃ a block-diagonal matrix with blocks ⌃1, . . . ,⌃J , respectively.

4.3.2.3 Marginal Likelihood

The marginal likelihood for independent PoEs can be written as

q(y) =

Z

q( f , y)d f =

Z

q(y | f ) q( f )d f

=

Z J
Y

j=1

q(y j| f j)p( f j)d f =
J

Y

j=1

Z

q(y j| f j)p( f j)d f j

=

J
Y

j=1

N
�

y j

�

�0, P j

�

(4.63)

with marginal likelihood covariance already given in (4.62). Note that also the
marginal likelihood decomposes into a product of the independent marginal like-
lihoods of local full GPs.

4.3.2.4 Level II inference

Using the approximate marginal likelihood q(y |✓ ) = q(y) in (4.63), inference for
the hyperparameters ✓ can be done as explained in Section 2.3.3.1. For instance,
the ML-II approach becomes

✓ ⇤ = arg max
✓

q(y |✓ ) = arg min
✓

J
X

j=1

y T
j P−1

j y j + log |P j|, (4.64)

where P j depends on ✓ through the kernel matrix in (4.62). Note that the ob-
jective function (4.64) decomposes as a sum of terms which can be straight-
forwardly used for stochastic optimization as introduced in Section 2.1.3.2 and
also exploited in Sections 6.3.3 and 6.3.7.
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4.3.2.5 Discussion about Different Methods

In this section, we briefly discuss several methods proposed in the literature
as summarized in Table 4.4 and depicted in Figure 4.5 for a toy data set with
N = 100 training samples and different number of experts J = 2, 10,50 with
corresponding sizes B = 50, 10,2 of the partition of each expert.

Product of Experts (PoEs)
PoEs with identity as the link function [Hinton, 2002] provide a continuous ag-
gregated predictive distribution and can be seen as a smoothed version of the
single prediction experts. However, the predictive variance is overconfident, in
particular outside the training data; as depicted in Figure 4.5 in the second row.
For large number of independent experts, the predictive distribution becomes
even inside the training data unreliable due to the many non-informative ex-
perts. In order to make the predictive variance conservative, Deisenroth and Ng
[2015] proposed to scale the predictive distribution by the number of experts J ,
which has the effect that the credible intervals of full GP are contained in the
provided credible intervals, as depicted in the third row in Figure 4.5. Note that,
the mean is not affected by this scaling, since the normalization cancels out. For
small number of experts (e.g. first column, third row), the predictive mean and
variance look close what we aim for, however, for more experts, the predictive
variance becomes very conservative and the mean estimate is not satisfying.

Generalized Product of Experts (GPoEs)
In order to improve the shortcomings of pure PoEs, Fleet [2014] proposed to
weight the predictions of the experts differently since the individual experts are
not equally reliable and many experts are non-informative for a particular query
point x ⇤ and destroy the overall aggregated distribution. In particular, Fleet
[2014] proposed to use some varying weights for each expert j and query point
x ⇤,

β̄⇤ j = β̄ j(x ⇤) = H [p ( f⇤)]− H
⇥

p
�

f⇤ j|y j

�⇤

=
1
2

log

✓

v⇤0
v⇤ j

◆

, (4.65)

which are set to the difference in entropy H (2.7) before and after seeing the data.
Thereby, the predictive prior is p( f⇤) =N (0, v0) with v0 = K x ⇤x ⇤ and the individ-
ual predictive posterior p

�

f⇤ j|y j

�

=N
�

mj, vj

�

defined above. The link function

is set to p( f⇤ j|y j)
β̄ j(x ⇤) which has the effect of increasing or decreasing the impor-

tance of the individual experts based on the corresponding prediction uncertainty
v0 and vj. As a result, the aggregated predictive distribution is sharper inside the
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training data, but produce very underconfident predictive variances outside the
training data, as depicted in the forth row of Figure 4.5. This can be corrected
by normalizing the weights, such that

PJ
j=C β̄⇤ j = 1, yielding the normalized

weights

β⇤ j = β j(x ⇤) =
1

PJ
j=C β̄⇤ j

β̄⇤ j. (4.66)

Using these normalized weights instead, the resulting model has again conserva-
tive credible intervals, however, they are sharper than the normalized PoE version
as depicted in the fifth row of Figure 4.5. With normalized weights, PoEs can be
seen as an instance of the covariance intersection method [Julier and Uhlmann,
1997], which is useful for combining several estimates of random variables with
known mean and variance but unknown correlation between them. This method
has some interesting properties, as for instance that the accuracy of the fused es-
timate outperforms each local one and provides consistent fused estimate, and
thus reliable confidence information.

Bayesian Committee Machine (BCM)
A slightly different approach constitutes the Bayesian Committee Machine (BCM,
Tresp [2000]), which is based on the following exact factorization of the predic-
tive distribution

p( f⇤|y) =
p( f⇤, y)

p(y)
=

p(y | f⇤)p( f⇤)
p(y)

=
p( f⇤)
p(y)

J
Y

j=1

p(y j|y1: j−1, f⇤), (4.67)

where we want to empathize the conditioning on the test latent function value
f⇤. Note that (4.67) still corresponds to the exact predictive distribution of full
GP in (3.9), however, p(y j|y1: j−1, f⇤) is intractable due to the conditioning on all
previous observations. Therefore, the approximate distribution q( f⇤|y)⇡ p( f⇤|y)
is introduced [Tresp, 2000]

q( f⇤|y) =
1
Z

p( f⇤)
J

Y

j=1

p(y j| f⇤) =
1
Z

p( f⇤)
J

Y

j=1

p( f⇤|y j) p(y j)

p( f⇤)

=
1

q(y)
p( f⇤)

1−J
J

Y

j=1

p( f⇤|y j),

(4.68)

where p(y j|y1: j−1, f⇤) ⇡ p(y j| f⇤) is assumed. We can again observe the product
over the individual predictive distributions p( f⇤|y j) as in (4.58), however, with
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the additional prior p( f⇤)
1−J in front of the product. Note that, we can see BCM

still as an variant of PoE (4.58) with link function

g j(pj) =
pj

p
1− 1

J
0

,

where p0 = p( f⇤). Deisenroth and Ng [2015] proposed a robust BCM version
(RBCM), which combines BCM with the unnormalized weights (4.65). [Liu et al.,
2018] generalized the RBCM further by introducing a global expert, so that some
communication between the local experts is possible, by an additional increase
of computational time. The corresponding link functions and the aggregated
predictive moments are summarized in Table 4.4 in the last two rows. The fit
of the three BCM versions discussed in this section are depicted in the last three
rows in Figure 4.5. We observe that for small and medium number of experts,
they have similar or slightly better performance than normalized GPoE, however,
they do not have the consistency properties induced by the covariance intersec-
tion method. Without these consistency guarantees, the uncertainty estimates of
these methods might be questionable, since the model is always slightly overcon-
fident resulting into too small credible intervals compared to full GP. Note that,
normalizing the weights in RBCM and GRBCM is meaningless, since then the
prior cancels out and GPoE is recovered. As a conclusive remark, the general-
ized PoE version is in the most situations preferable, since they provide as sharp
as possible but still conservative credible estimates, which makes the model a
reliable GP approximation approach.

4.3.2.6 Advantages and Disadvantages of PoE

Local GP approximation based on averaging the local predicions have several
benefits.

• Time and Space Complexity: The cubic time O(N 3) and quadratic space
O(N 2) complexity of full GP can be reduced by local averaging GP approx-
imations to O(NB2) and O(NB), respectively. This allows to scale these
methods to a rather large number of training data samples.

• Locally Exact: Each expert corresponds to a local GP, so that it is locally
exact. This allows to model quite complicated and fast varying patterns in
the data. In particular, many datasets in practice can be well described by
local approaches.
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• Smooth and Consistent Aggregation: PoEs with normalized weights pro-
vide a smooth and consistent predictive distribution, so that the confidence
information is reliable.

• Non-Parameteric Method: PoEs remain still non-parametric and have
only the same few hyperparameters as full GP. As opposed to inducing point
methods, where several additional parameters are introduced.

• Distributed Training: Since the experts are all independent, PoE allow to
distribute the training for each expert, followed by the centralized predic-
tion aggregation [Deisenroth and Ng, 2015].

• Stochastic Training: Since the log marginal likelihood in (4.64) decom-
poses as a sum, it can be used for fast stochastic training, which is a useful
way to train models for large number of data samples.

On the other hand, local GP approximation methods have some drawbacks.

• Missing Global Patterns: The main limitation of PoE is the intrinsic local
character. This means, global patterns in the data can not be modeled and
important long term dependencies are missing. Note that, whether a local
approach makes sense depends strongly on the particular kind of data.

• Complete Independent Experts: The complete independence of the ex-
perts is a rather strict assumption. Although the predictive distribution is
smooth at the borders of the expert, the biggest errors compared to full GP
are still between the experts. An novel version of PoEs is given in Chapter
7, where some correlations between the experts are modeled.

• Unreliable Uncertainty Information: For the PoE methods, which are
not based on the covariance intersection method (i.e. without normalized
weights), the provided uncertainty information is not reliable, which is not
ideal for a probabilistic method.

• Non-Informative Aggregation: The predictive variance for PoE methods
with normalized weights might become conservative for many experts. Al-
though it is desirable property that the model knows that it does not know,
however, at the same time it becomes also non-informative.
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Chapter 5

Recursive Estimation for Sparse
Gaussian Process Regression

In this chapter, we propose a novel unifying recursive model which allows to train
a range of existing sparse GP models in an online and distributed setting. In par-
ticular, we introduce an extended Bayesian linear model in Section 5.1, which uni-
fies sparse global GP models and explains the differences between sparse GPs and
ordinary Bayesian linear models. These connections can be exploited for apply-
ing recursive Bayesian inference in Section 5.2. In particular, recursive inference
for sparse GPs is discussed in detail in Sections 5.2.1- 5.2.5 and we show how
to analytically train sparse GPs in an online and distributed setting in Sections
5.2.6 and 5.2.7, respectively. Moreover, we apply recursive variational inference
in Sections 5.2.8, yielding a recursive collapsed lower bound, which constitutes
the fundamental for sequential hyperparamter training in the following Chapter
6. Furthermore, we present some examples and more details in Sections 5.2.9-
5.2.11, and finally, we summarize the scientific contributions of this chapter in
Section 5.3.

5.1 Extended Bayesian Linear Model

We recall the ordinary Bayesian linear regression model with basis functions
as discussed in Section 2.3.4. In particular, the observation model is given as
y(x ) = f (x ) + ", with Gaussian observation noise " ⇠ N

�

0,σ2
n

�

. The latent
function values are defined as f (x ) = φ(x )T w , where the weights have a Gaus-
sian prior w ⇠N (0,⌃0). In Proposition 3.1, we showed that Bayesian inference
with this model is equivalent to inference with a GP with degenerate kernel and
thus shows the limitations of this model.

107
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We now introduce an extended Bayesian linear model. In a nutshell, it corre-
sponds to the ordinary Bayesian linear model with an additional input-dependent
noise term γ(x ), leading to f (x ) = φ(x )T w + γ(x ). However, instead of con-
sidering univariate inputs x 2 RD, in following, we consider multivariate inputs
X 0 = [x 01, . . . , x 0Nb

]T 2 RNB⇥D for some NB ≥ 1. For instance, we split the N train-
ing dataD = {yi, x i}Ni=1 = {y , X} into J blocks of equal size B, i.e.D = {y j, X j}Jj=1

with inputs X j 2 RB⇥D and outputs y j 2 RB. Further, we consider test data
with inputs X⇤ 2 RNtest⇥D and outputs y⇤ 2 RNtest . Similarly, for an already de-
fined function g(x ) : RD! R, we adapt the notation for a multivariate function
g(X 0) = [g(x 01), . . . , g(x 0Nb

)]T : RNb⇥D! RNb .

Definition 5.1 (Extended Bayesian Linear Model) In the extended Bayesian lin-
ear model, the multivariate function f (X 0) 2 RNB is modeled as a linear combina-
tion of the basis functions φ(X 0) 2 RNB⇥M plus additional input-dependent noise
γ(X 0) 2 RNB , that is,

f (X 0) = φ(X 0)T w + γ(X 0),

where the involved weights w ⇠ N (0,⌃0) and the input-dependent noise γ(X 0) ⇠
N (0, V (X 0)) are both multivariate Gaussian distributed with zero mean and co-
variances ⌃0 2 RM⇥M and V (X 0) 2 RNB⇥NB , respectively.

The extended Bayesian model in Definition 5.1 can be combined with the Gaus-
sian additive data generation model y(X) = f (X) + " with " ⇠ N

�

0,σ2
nI
�

and
the two noise terms " and γ are assumed to be conditionally independent given
the weights.

5.1.1 Likelihood

In the extended Bayesian linear model with training block inputs X j 2 RB⇥D,
the training latent function values f j = f (X j) 2 RB can be formulated as f j =

φ(X j)
T w +γ(X j) together with the corresponding observations y j = y(X j) 2 RB

given as y j = f j+" j, with " j ⇠N
�

0,σ2
nI
�

. Hence, the likelihood for the observed
training samples y = [y1, . . . , y J]

T 2 RN can be written as

p(y |w ) =
J

Y

j=1

N
�

y j

�

�φ(X j)
T w , V (X j) +σ

2
nI
�

=N
�

y
�

�ΦX w , V̄X +σ
2
nI
�

,

where ΦX = [φ(x 1), . . . ,φ(x N )]
T already introduced in (2.22) and V̄X a block-

diagonal matrix with entries V (X1), . . . , V (X J) on the diagonal. Similarly, the
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test likelihood for a query input X⇤ 2 RNtest⇥D with corresponding output y⇤ =
y(X⇤) can be written as p(y⇤|w ) = N

�

y⇤
�

�Φ⇤w , V̄⇤ +σ
2
nI
�

, where we introduce
Φ⇤ = φ(X⇤)

T and V̄⇤ = V (X⇤). As comparison, the likelihood for the ordinary
Bayesian model is p(y |w ) =N

�

y
�

�ΦX w ,σ2
nI
�

with constant variance as defined
in (2.34).

5.1.2 Predictive Posterior

Multiplying the training p(y |w ) and test likelihood p(y⇤|w )with the prior p(w ) =
N
�

w
�

�0,⌃0

�

, yields the joint distribution p(w , y , y⇤)

N

0

@

2

4

w
y
y⇤

3

5

�

�

�

�

�

�

2

4

0
0
0

3

5 ,

2

4

⌃0 ⌃0Φ
T
X ⌃0Φ

T
⇤

ΦX⌃0 ΦX⌃0Φ
T
X + V̄X +σ

2
nI ΦX⌃0Φ

T
⇤

Φ⇤⌃0 Φ⇤⌃0Φ
T
X Φ⇤⌃0Φ

T
⇤
+ V̄⇤ +σ

2
nI

3

5

1

A .

(5.1)

Similarly as in the ordinary Bayesian model in (2.41), by conditioning (2.3) on
y and integrating out (2.2) the weights w , yields the predictive posterior distri-
bution

p(y⇤|y) =
Z

p(y⇤|w )p(y |w )p(w )
p(y)

dw =N
�

y⇤
�

�µ(X⇤),⌃(X⇤)
�

,

with predictive moments

µ(X⇤) = Φ⇤⌃0Φ
T
X P−1y ,

⌃(X⇤) = Φ⇤⌃0Φ
T
⇤
−Φ⇤⌃0Φ

T
X P−1

ΦX⌃0Φ
T
⇤
+ V̄⇤ +σ

2
nI,

(5.2)

and with marginal likelihood covariance P = ΦX⌃0Φ
T
X + V̄X +σ

2
nI. Compared to

the predictive mean (2.42) and variance (2.43) of the ordinary Bayesian linear
model, the only differences are the additional training V̄X and test V̄⇤ covari-
ances.

5.1.3 Sparse GPs Revisited

If we compare the predictive moments in (5.2) with the predictive moments of
a generic sparse GP model in (4.17), we can recognize the same structure. We
recall here the predictive distribution in (4.17), that is,

µ(X⇤) = QX⇤X P−1y ,

⌃(X⇤) = QX⇤X⇤ −QX⇤X P−1QXX⇤ + V̄⇤ +σ
2
nI,

(5.3)
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with covariance matrix P = QXX+ V̄+σ2
nI. By matching terms in (5.2) and (5.3),

the following proposition can be formulated.

Proposition 5.1 (Equal Predictive Posterior and Marginal Likelihood)
Consider a sparse GP model (4.12) as described in Section 4.2 with inducing points
A and kernel k and an extended Bayesian linear model in Definition 5.1 with prior
covariance ⌃0 and basis functions φ(X 0). For all choices of prior covariance and
basis functions, which satisfy

φ(X 0)T⌃0φ(X
00) = k(X 0, A)k(A, A)−1k(A, X 00),

the predictive distributions in (5.2) and (5.3) are equivalent. Moreover, the marginal
likelihood of both models are equal. Thereby, the input-dependent noise V (X 0) of
the extended Bayesian linear model depends on the particular version of the sparse
GP.

Modifying the input-dependent variance V (X 0) of an extended Bayesian linear
model in Proposition (5.1) correspond exactly to modifying the training V̄ and
test variance V̄⇤ as discussed in Section 4.2.2. This means, that all sparse GP mod-
els summarized in Table 4.1 can be equivalently modeled as a extended Bayesian
linear model by adapting V̄X and V̄⇤ accordingly.

basis
function φ(x )

prior
covariance ⌃0

posterior
mean µ

comments

g X ,A(x ) P−1 K XAK−1
AAk(A, x ) PQ−1

XX P y
posterior of weights correspond to data;
linear predictor/smoother

kA(x ) k(A, x ) K−1
AA K−1

AAK AX P−1y
basis function correspond to kernel;
representer theorem

lA(x ) L−1 k(A, x ) I L−1K AX P−1y
prior covariance correspond
to identity via Cholesky

uA(x ) D−
1
2 U T k(A, x ) I D−

1
2 U T K AX P−1y

prior covariance correspond
to identity via eigendecomposition

dA(x ) U T k(A, x ) D−1 D−1U T K AX P−1y
prior covariance = 1/eigenvalues;
basis function = eigenfunction;
Mercer’s theorem

hA(x ) K−1
AA k(A, x ) K AA K AX P−1y

posterior of weights in extended
Bayesian linear model correspond to
posterior of inducing points in SGP

Table 5.1. Possible choices for basis function and prior covariance in an extended
Bayesian linear model, so that the predictive distribution and the marginal likelihood
are equivalent to those of sparse GPs.
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If the focus lies only on the predictive distribution and marginal likelihood, the
choice for the basis functionφ and prior covariance⌃0 is not unique as illustrated
in Table 5.1, similar in Table 3.2 for full GP.

Proposition 5.2 (Equivalent Posterior) For the particular choice of prior covari-
ance ⌃0 = K AA and basis functions hA(X

0) in Table 5.1, which correspond to the
training H = K XAK−1

AA and test H⇤ = K X⇤AK−1
AA basis function matrices, the poste-

rior of the weights p(w |y) in an extended linear model is equivalent to the posterior
of the inducing points p(a|y) in a sparse GP.

Example 5.1 (Extended Bayesian Linear Model for GPs) In this example, we
illustrate the connection between GP models and extended Bayesian linear models.
We first empathize, that also full GPs can be explained by an extended Bayesian
model. In particular, the basis functions are chosen as φ(X 0) = K X 0X K−1

XX , which
yield identity φ(X) = I for training inputs and φ(X⇤) = K X⇤X K−1

XX for test in-
puts. Further, the prior covariance ⌃0 = K XX is set to the kernel matrix of the
input points, together with the additional input-dependent noise covariance func-
tion V (X 0) = K X 0X 0−K X 0X K−1

XX K XX 0 , leading to V (X) = V̄X = 0 for the training and
V (X⇤) = V̄⇤ = K X⇤X⇤ − K X⇤X K−1

XX K XX⇤ for the test inputs. These choices yield an ex-
tended Bayesian model with the same predictive posterior, marginal likelihood and
posterior distribution as full GP. The important difference to an ordinary Bayesian
linear model is the additional input-dependent noise for the test inputs, which im-
itate the infinite-dimensional basis functions. Note that, if only the predictive pos-
terior and marginal likelihood distributions of the extended Bayesian model and
full GP should match, then there are several choices for the basis function and prior
covariance as summarized in Table 3.2, for which some examples of basis functions
are given in Figure 5.1 in the first column.
Similarly, for sparse GPs, an extended Bayesian model with basis functionsφ(X 0) =
K X 0AK−1

AA and prior covariance ⌃0 = K AA, together with the additional noise covari-
ances V̄X and V̄⇤ according to Table 5.2, lead to an equivalent sparse GP model.
In particular, in Figure 5.1, we show 3 examples for different training covariances
V̄X = ↵ Diag[K XX − K XAK−1

AAK AX], with ↵ 2 {0, 0.5, 1} together with the test
covariance is set to V̄⇤ = K X⇤X⇤ −K X⇤AK−1

AAK AX⇤ . In the first row, we show the corre-
sponding predictive distribution indicated with the mean and 95%-credible interval.
In the second row, we show the mean alone, where we note that for ↵= 0, the mean
correspond somehow to an average between all data points, whereas for ↵= 1, the
data points far away from the inducing points are explained by the additional vari-
ance and do not have a big influence. On the other hand, the posterior mean of the
data points close to the inducing points are basically exact compared to them of full
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Figure 5.1. Extended Bayesian linear basis function model with additional input-varying
noise. Consider Example 5.1 for details.
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GP. In the third row, the predictive variance of an ordinary Bayesian linear model
(dotted orange line) together with the variance of an extended Bayesian linear
model (solid orange line) is depicted. We observe, that in regions, where no induc-
ing points are available, the predictive variance is rather conservative compared to
them of full GP, taking into account that it cannot model the function properly. In
the fourth row, we show the influence of each data point, by the corresponding basis
function, which is weighted by the observation (compare 1st row in Table 5.1). In
particular, the basis function corresponding to the two data points, where no induc-
ing point is placed, are indicated as solid lines, whereas the others are depicted as
dotted lines. We can observe that for full GP, the two data points have a significant
influence. On the other hand, for ↵= 1, they have basically no influence, since they
are treated completely as noise. For ↵= 0, they still have an influence, however, at
the same time, the influence of the others is decreased, resulting in an average-like
mean. In the last two rows, two choices for weighted basis functions are shown
(compare also Table 5.1 for more details), for which the predictive distributions of
the extended Bayesian linear model is equal to them of sparse GP.

5.2 Recursive Sparse GP Model

In the previous section, we established the connection between sparse GP models
and extended Bayesian linear models. These connections allow to exploit recur-
sive Bayesian inference techniques, so that we can train sparse GPs sequentially.
In particular, we consider an extended Bayesian linear model with basis functions
φ(X 0) = H (X 0) = K X 0AK−1

AA 2 RB⇥M and prior covariance ⌃0 = K AA 2 RM⇥M ,
which correspond to a generic sparse GP regression model with kernel k and
inducing inputs A 2 RM⇥D with inducing outputs a 2 RM as discussed in Proposi-
tion 5.2. For blocks of training inputs X j and test input X⇤, the extended Bayesian
linear model can be therefore formulated as

f (X j) = H(X j) a+ γ(X j) and y(X j) = f (X j) + " j;

f (X⇤) = H(X⇤) a+ γ(X⇤) and y(X⇤) = f (X⇤) + "⇤,

with input-varying noise γ(X j) ⇠ N
�

0, V̄ j

�

and γ(X⇤) ⇠ N
�

0, V̄⇤
�

, where the
approximate covariances V̄ j and V̄⇤ are given in Table 5.2 depending on the
particular model. Further, we have " j ⇠ "⇤ ⇠N

�

0,σ2
nI
�

, where we assume that
γ(X j) and " j, and similarly γ(X⇤) and "⇤, are conditionally independent given
the inducing points and we abbreviate f j = f (X j), f ⇤ = f (X⇤), y j = y(X j),
y⇤ = y(X⇤), H j = H(X j) and H⇤ = H(X⇤). Similarly to the batch case in (4.12),
this sparse recursive GP model can be probabilistically formulated:
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Prior:

p(a) =N (0,⌃0) (5.4)

Recursive Training:

q
�

f j|a
�

=N
�

f j

�

�H ja, V̄ j

�

p
�

y j| f j

�

=N
�

y j

�

� f j,σ
2
nI
� (5.5)

Recursive Prediction:

q
�

f ⇤|a
�

=N
�

f ⇤
�

�H⇤a, V̄⇤
�

p
�

y⇤| f ⇤
�

=N
�

y⇤
�

� f ⇤,σ
2
nI
� (5.6)

Note that the prior p(a) and the likelihoods p
�

y j| f j

�

, p
�

y⇤| f ⇤
�

are assumed to
be exact with respect to full GP, however, the covariance of the recursive condi-
tionals q

�

f j|a
�

and q
�

f ⇤|a
�

are approximated by the covariances V̄ j = V (X j)

and V̄⇤ = V (X⇤) according to Table 5.2, so that different sparse GP methods can
be recovered. This is similar to Section 4.2.2, where batch sparse GP models
with exact Bayesian inference together with approximate priors are discussed,
however, in this section, we discuss exact recursive Bayesian inference with ap-
proximate sequential conditional distributions.
The probabilistic equations (5.4), (5.5) and (5.6) give rise to the joint distribution
of the recursive sparse GP model

q(a, f , f ⇤, y , y⇤) = p(a) p
�

y⇤| f ⇤
�

q
�

f ⇤|a
�

J
Y

j=1

p
�

y j| f j

�

q
�

f j|a
�

, (5.7)

which is equivalent to the joint distribution for batch sparse GP in (4.13). Since
the latent function values f and f ⇤ are not of particular interest, they can be
integrated out leading to the induced likelihood conditioned on the inducing
points

q(y j|a) =
Z

p(y j| f j) q( f j|a)d f j =N
�

y j

�

�H ja, V j

�

,

with V j = V̄ j+σ
2
nI and similarly for the test case q(y⇤|a) =

R

p(y⇤| f ⇤) q( f ⇤|a)d f ⇤ =
N
�

y⇤
�

�H⇤a, V⇤
�

with V⇤ = V̄⇤+σ
2
nI. Hence, the joint distribution of the recursive

sparse GP model (5.7) simplifies to

q(a, y⇤, y) = p(a) q
�

y⇤|a
�

J
Y

j=1

q
�

y j|a
�

.
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description
training conditional

covariance V̄ j

test conditional
covariance V̄⇤

marginal likelihood
correction term aj

degenerated GP
SoR [Silverman, 1985],
DIC [Smola and Bartlett, 2001]

0 0 0

augmented GP
FIC [Quiñonero-Candela and Rasmussen, 2005]

Diag[K X j X j
−QX j X j

] Diag[K X⇤X⇤ −QX⇤X⇤] 0

deterministic "GP"

PP [Csató and Opper, 2002],
DTC [Seeger et al., 2003]

VFE [Titsias, 2009]

0 K X⇤X⇤ −QX⇤X⇤
0

1
2σ2

n
tr
î

K X j X j
−QX j X j

ó

augmented "GP"+
SSGP [Snelson and Ghahramani, 2006],
FITC [Quiñonero-Candela and Rasmussen, 2005],
EP [Bui et al., 2017b]

Diag[K X j X j
−QX j X j

] K X⇤X⇤ −QX⇤X⇤ 0

block augmented "GP"+
PITC [Quiñonero-Candela and Rasmussen, 2005]

K X j X j
−QX j X j

K X⇤X⇤ −QX⇤X⇤ 0

power "GP"
PEP [Bui et al., 2017b]

↵ Diag[K X j X j
−QX j X j

] K X⇤X⇤ −QX⇤X⇤
1−↵
2↵

PB
i=1 log

Ä

1+ ↵
σ2

n
(K X j X j

−QX j X j
)ii

ä

block power "GP"
PEP-B [Bui et al., 2017b]

↵ (K X j X j
−QX j X j

) K X⇤X⇤ −QX⇤X⇤
1−↵
2↵ log

�

�

�I+
↵
σ2

n
(K X j X j

−QX j X j
)

�

�

�

block augmented GP
PIC [Snelson and Ghahramani, 2007]

K X j X j
−QX j X j

K X⇤X⇤ −QX⇤X⇤ 0

Table 5.2. Summary of parameters for recursive sparse GP models. In particular, using
the indicated choices of recursive training V̄ j and test V̄⇤ covariances together with the
marginal likelihood correction term aj (which is discussed in Section 5.2.8.1), allows to
train a range of well-known sparse GP models in a recursive way, so that after considering
all J blocks of data, the corresponding batch sparse GP model, indicated in the first
column, is recovered (compare also Table 4.1).

5.2.1 Bayesian Recursive Updating

Instead directly computing the batch posterior q(a|y) of the inducing points con-
ditioned on all output variables y = [y1, . . . , y J]

T as in the batch case (4.15), we
propose here a recursive procedure based on Bayesian recursive updating. In this
first subsection, we provide an overview over the involved operations, which are
explained in detail in the subsequent sections. We assume by recursion that at
step j the previous posterior distribution, conditioned on the previous observa-
tions y1: j−1, is available

q(a|y1: j−1) =N
�

a
�

�µ j−1,⌃ j−1

�

.

The recursion starts from j = 1 with p(a|y1:0) = p(a) =N
�

a
�

�0,⌃0

�

. In general,
this previous posterior can be interpreted as prior for the current step, which can
be combined with the likelihood, yielding the joint prior at step j

q(a, y⇤, y j|y1: j−1) = p(y⇤|a) p(y j|a) q(a|y1: j−1).
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By conditioning on the current observations y j, the updated joint posterior j can
be computed by

q(a, y⇤|y1: j) =
q(a, y⇤, y j|y1: j−1)

p(y j)
,

which is conditioned on the data y1: j including the current observations y j. From
this distribution, the next posterior can be obtained by integrating out y⇤

q(a|y1: j) =

Z

q(a, y⇤|y1: j)dy⇤ =N
�

a
�

�µ j,⌃ j

�

,

which acts as prior in the next step. Moreover, the predictive distribution at step
j can be obtained by integrating out a, that is,

q(y⇤|y1: j) =

Z

q(a, y⇤|y1: j)da =N
�

y⇤
�

�µ j(X⇤),⌃ j(X⇤)
�

.

Since for sparse GPs, all these recursive distributions are Gaussian, they can be
analytically computed, which will be demonstrated in the following.

5.2.2 Recursive Joint Prior Distribution

The recursion is started involving the first output y1, that is, q(a, y⇤, y1) =

q
�

y⇤|a
�

p
�

y1|a
�

p(a). In the general case at step j, the previous posterior dis-
tribution p(a|y1: j−1) is interpreted as the next prior, so that the joint prior at
step j can be formulated as the product of the Gaussians q(a, y⇤, y j|y1: j−1) =

p(y⇤|a) p(y j|a) p(a|y1: j−1),=N
�

y⇤
�

�H⇤a, V⇤
�

N
�

y j

�

�H ja, V j

�

N
�

a
�

�µ j−1,⌃ j−1

�

,
which can be explicitly computed as

N

0

@

2

4

a
y⇤
y j

3

5

�

�

�

�

�

�

2

4

µ j−1

H⇤µ j−1

H jµ j−1

3

5 ,

2

4

⌃ j−1 ⌃ j−1H T
⇤ ⌃ j−1H T

j
H⇤⌃ j−1 H⇤⌃ j−1H T

⇤ + V⇤ H⇤⌃ j−1H T
j

H j⌃ j−1 H j⌃ j−1H T
⇤ H j⌃ j−1H T

j + V j

3

5

1

A . (5.8)

By comparing this joint recursive sparse GP prior in (5.8) to the batch sparse
GP prior in (4.14), we note that the recursive prior mean is no longer zero and
H j⌃ j−1H T

⇤
is the recursive analogous to the Nyström matrix QXX⇤ in the batch

case.
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5.2.3 Recursive Updated Posterior

The updated posterior distribution over the inducing points, conditioned on all
previous data p(y1: j), can be obtained by integrating out y⇤ in (5.8) via (2.2)
and conditioning (2.3) on the current observation y j, that is,

q(a|y1: j) =

Z

q(a, y⇤, y j|y1: j−1)

p(y j)
dy⇤ =N

�

a
�

�µ j,⌃ j

�

(5.9)

with recursive posterior mean and covariance

µ j = ⌃ j−1H T
j P−1

j

�

y j −H jµ j−1

�

,

⌃ j = ⌃ j−1 −⌃ j−1H T
j P−1

j H j⌃ j−1,
(5.10)

where P j = H j⌃ j−1H T
j + V j. The corresponding batch posterior moments are

formulated in (4.20). The matrix inversion lemma (2.16) can be applied to P j

(or directly applying (2.6) to (5.8)), leading to a second version of the recursive
posterior moments

µ j = ⌃ j

Ä

H T
j V−1

j y j +⌃
−1
j−1µ j−1

ä

,

⌃ j =
Ä

⌃
−1
j−1 +H T

j V−1
j H j

ä−1
,

(5.11)

which correspond to (4.21) in the batch case. This second version requires the
inversion for the posterior covariance ⌃ j 2 RM⇥M instead the inversion of P j 2
RB⇥B.

5.2.4 Recursive Predictive Posterior

The recursive predictive posterior can be obtained by instead integrating out a
via (2.2) and conditioning (2.3) on the current observation y j in the recursive
joint prior (5.8), that is,

q(y⇤|y1: j) =

Z

q(a, y⇤, y j|y1: j−1)

p(y j)
da =N

�

a
�

�µ j(X⇤),⌃ j(X⇤)
�

, (5.12)

with recursive predictive posterior mean and covariance

µ j(X⇤) = H⇤⌃ j−1H T
j P−1

j

�

y j −H jµ j−1

�

,

⌃ j(X⇤) = H⇤⌃ j−1H T
⇤
+ V⇤ −H⇤⌃ j−1H T

j P−1
j H j⌃ j−1H T

⇤
,

(5.13)
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which has a similar structure as the batch predictive distribution (4.17). Alterna-
tively, we can again follow a two-stage procedure based on the current updated
posterior q(a|y1: j) in (5.9), that is,

q(y⇤|y1: j) =

Z

p(y⇤|a)q(a|y1: j)da =N
�

a
�

�µ j(X⇤),⌃ j(X⇤)
�

, (5.14)

leading to the predictive moments µ j(X⇤) = H⇤µ j and ⌃ j(X⇤) = H⇤⌃ jH
T
⇤
+ V⇤,

which are equivalent to (5.13).

5.2.5 Recursive Marginal Likelihood

The recursive marginal likelihood for the current output y j, conditioned on all
previous observations y1: j−1, can be obtained by integrating out y⇤ and a via
(2.2) in the recursive joint prior (5.8), that is,

q(y j|y1: j−1) =

Z

q(a, y⇤, y j|y1: j−1)dy⇤ da =N
�

y j

�

�H jµ j−1, P j

�

, (5.15)

where the recursive marginal likelihood covariance P j = H j⌃ j−1H T
j +V j already

defined above. The product over this recursive marginal likelihood distribution
satisfies

q(y) =
J

Y

j=1

q(y j|y1: j−1) =

J
Y

j=1

N
�

y j

�

�H jµ j−1, P j

�

=N
�

y
�

�0, P
�

, (5.16)

with batch marginal likelihood P = H⌃0H T + V = QXX + V in (4.24).

Proposition 5.3 (Equivalence of Batch and Recursive Estimation) At step j =
J, the recursive posterior q(a|y1:J) in (5.9), the recursive predictive posterior q(y⇤|y1:J)

in (5.9) and the product of the recursive marginal likelihood
QJ

j=1 q(y j|y1: j−1) in
(5.16) formulated in this section for recursive sparse GPs are equivalent to the cor-
responding distributions for batch sparse GP as discussed in Section 4.2.2.

5.2.6 Kalman Filter Like Updating

By carefully inspecting the recursive posterior moments in (5.10) over the in-
ducing points and introducing the temporary variables r j and G j, lead to the
following efficient updates

r j = y j −H jµ j−1;

P j = H j⌃ j−1H T
j + V j;

G j = ⌃ j−1H T
j P−1

j ;

µ j = µ j−1 +G j r j;

⌃ j = ⌃ j−1 −G jP jG
T
j ,

(5.17)
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Figure 5.2. Recursive updating for sparse GP models. In the top row, the sequential
posterior model is illustrated with the predictive mean and the 95%-credible interval,
together with the used data points (dots) and inducing points (crosses). In the second
row, the recursive posterior credible intervals with each 3 posterior samples are depicted.
In the next row, the induced recursive posterior covariance is depicted together with
the training data points. In the bottom 3 rows, the sequential basis functions hX ,A(x ),
kA(x ) and g A(x ) are depicted, which are defined analogously to Table 5.1. We notice
that recursive sparse GPs can be explained by manipulating sequentially the weights of
certain basis functions.
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where the recursion starts with µ0 = 0 and ⌃0 = K AA. Computing the posterior
moments with these recursive equations in (5.17) yields the same posterior mo-
ments as in (5.10) and (5.11). At step j = J , they are again equivalent to the
batch posterior distribution of a sparse GP in (4.21), and the different versions
can be obtained by varying the additional noise V j = V̄ j +σ

2
nI.

Note that these equations are also known as the update equation of the Kalman
filter (KF) [Kalman et al., 1960], which is a Bayesian filter for estimating the op-
timal state distribution of a state space system. A state space system is a compact
representation for probabilistically modeling a dynamical system. It represents a
more general model as the extended Bayesian linear model by also incorporating
transitions as we will exploit in Chapter 7.

5.2.7 Information Filter Like Updating

Alternatively, by investigating the recursive posterior moments in (5.11) in more
detail, we notice that the corresponding natural moments of the Gaussian dis-
tribution reduce to a simply form. In particular, the precision matrix, that is the
inverse of the covariance matrix ⇤ j = ⌃

−1
j , can be formulated as

⇤ j = ⇤ j−1 +H T
j V−1

j H j

and similarly the natural mean ⌘ j = ⌃
−1
j µ j, which is the transformed mean by

the inverse covariance matrix, is given as

⌘ j = ⌘ j−1 +H T
j V−1

j y j.

Thus, the previous natural mean and previous precision matrix are updated by
the additive factors Δ⇤ j = H T

j V−1
j H j and Δ⌘ j = H T

j V−1
j y j, respectively, so that

⌘J = ⌘0 +

J
X

j=1

Δ⌘ j and ⇤J = ⇤0 +

J
X

j=1

Δ⇤ j.

The recursion starts with ⌘0 = 0 and ⇤0 = K−1
AA. At any step j, the equivalent

ordinary posterior moments (5.17) can be obtained by transforming back µ j =

⇤
−1
j ⌘ j and ⌃ j = ⇤

−1
j . These equations in the natural space are known as the

update equations of the information filter (IF) [Kalman et al., 1960], which can be
equivalently used as the KF for estimating the optimal filtered state distribution
of a state space system.
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5.2.8 Recursive Variational Inference

In this section, we provide a more theoretical perspective to the model presented
in the previous sections by applying recursive variational inference. This also
leads to a lower bound of the log marginal likelihood, which can be used for
stochastic training of the hyperparamters, as it will be discussed in Chapter 6.
In the previous section, the true recursive conditional distribution p( f j|a) is di-
rectly approximated by q( f j|a) = N

�

f j

�

�H ja, V̄ j

�

in (5.5) with covariance V̄ j

according to Table 5.2. This is then combined with exact Bayesian inference
as discussed in the previous sections. In this section instead, the exact recur-
sive training conditional p( f j|a) = N

Ä

f j

�

�H ja, K X j X j
−QX j X j

ä

is kept for which
approximate inference is applied. In particular, we use variational inference,
similarly discussed in Section 4.2.3.1 for the batch case, however, here we apply
it recursively. Concretely, the forward KL between a recursive approximate dis-
tribution qj( f j, a) and the exact recursive posterior distribution p( f j, a|y1: j) is
minimized, that is,

arg min
qj( f j ,a)

KL
⇥

q( f j, a)||p( f j, a|y1: j)
⇤

. (5.18)

Similar to Section 4.2.3.1, we assume the following structure of the approximate
variational distribution

qj( f j, a) = p( f j|a) qj(a), (5.19)

where the true conditional p( f j|a) =N
Ä

f j

�

�H ja, K X j X j
−QX j X j

ä

is used, so that
only the variational distribution over the inducing points qj(a) ⇡ p(a|y1: j) is
implicitly used. Instead minimizing (5.18) directly, a recursive variational lower
bound to the recursive marginal likelihood

logq(y j|y1: j−1)≥ L
�

qj( f j, a)
�

= L
�

qj(a)
�

(5.20)

can be maximized as discussed in Proposition 4.1 for the batch case. In the
recursive case, this can be analytically done as shown in the next Proposition
with Proof given in the Appendix B.1.

Proposition 5.4 (Recursive Variational Lower Bound Maximization; Pr. B.1)
Maximizing recursively a sequential lower bound to the recursive marginal likeli-
hood (5.20), that is,

q⇤j (a) = arg max
qj(a)

L
�

qj(a)
�

,
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lead to the optimal recursive distribution

q⇤j (a) =N

Ç

a
�

�

1
σ2

n

⌃ jH
T
j y j,

✓

⌃
−1
j−1 +

1
σ2

n

H T
j H j

◆−1å

=N
�

a
�

�µ j,⌃ j

�

.

Moreover, the corresponding optimal lower bound is given as

L
Ä

q⇤j (a)
ä

= logN
Ä

y j

�

�H jµ j−1, H j⌃ j−1H T
j +σ

2
nI

ä

−
1

2σ2
n

tr
î

K X j X j
−QX j X j

ó

.

A proof is given in Proof B.1.

This recursive lower bound has a similar structure as the fully collapsed lower
bound in (4.40). We recognize the log of the marginal likelihood in (5.15) with
an approximate training covariance V̄ j = 0 plus a correction term involving the
trace of the true training conditional covariance K X j X j

−QX j X j
. Differently to the

fully collapsed lower bound in (4.40), however, the recursive structure of the
recursive bound leads to a sum of J terms. In particular, using the factorization
of the log marginal likelihood in (5.16) together with (5.20), the overall log
marginal likelihood can be lower bounded by the sum of the J optimal variational
lower bounds.

Proposition 5.5 (Recursive Collapsed Lower Bound) The sum of the recursive
lower bounds in Proposition 5.4 is a lower bound to the overall log marginal likeli-
hood (5.16), that is,

logq(y)≥ LREC

�

q⇤1(a), . . . , q⇤J(a)
�

=

J
X

j=1

L
Ä

q⇤j (a)
ä

, (5.21)

which we call the recursive collapsed lower bound to the log marginal likelihood.

5.2.8.1 Generalized Recursive Collapsed Lower Bound

The recursive variational approach in the previous Section 5.2.8 can be gener-
alized to a range of sparse batch GP models. In particular, using the generic
training covariance V̄ j according to Table 5.2, yields the posterior distribution
p(a|y1: j) = N

�

a
�

�µ j,⌃ j

�

in (5.10). Further, the recursive log of the marginal
likelihood logq(y) in (5.15) can be adapted by a positive correction term aj 2 R+
as indicated in the first column of Table 5.2, that is,

 
(J) =

J
X

j=1

logq(y j|y1: j−1)− aj,=
J
X

j=1

logN
�

y j

�

�H jµ j−1, P j

�

− aj. (5.22)
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We refer to this as the generalized recursive collapsed bound and  (J) decomposes
into a sum of J terms j so that (J) =

PJ
j=1 j with j = logN

�

y j

�

�H jµ j−1, P j

�

−

aj. This recursive computation together with the model specific quantities V̄ j,
V̄⇤ and aj in Table 5.2 yields the equivalent posterior distribution, predictive dis-
tribution and marginal likelihood as the corresponding batch sparse models as
discussed in Section 4.2.

The main advantage of the application of recursive variational inference are the
recursive collapsed bounds in Proposition 5.4 and 5.5, which decompose into a
sum of additive terms. As a consequence, it can be used for stochastic training
of the hyperparamters as it will be discussed in Chapter 6.

5.2.9 Examples

In this Section, we discuss some examples to illustrate the connection between
the batch sparse GP model and the proposed recursive estimation approach,
which allows to train sparse GP models analytically either in online or distributed
setting for fixed hyperparameters.

Example 5.2 (Full Batch Setting) In this example, we consider an illustrative ex-
ample with N = 100 data samples in D = 1 for which the batch sparse GP solution
is discussed. In particular, we consider a PEP model with ↵ = 0.5 with M = 15 in-
ducing points as introduced in Section 4.2.3.3 with the corresponding lower bound
LPEP in (4.53). We assume that the data is available as full batch and the compu-
tational resources are large enough to fit this model. In Figure 5.3, the N = 100
data samples {x i, yi}Ji=1 with x j, yj 2 R (red dots), the predictive mean and 95%-
credible interval of full GP (black dotted lines) as well as the mean (blue solid line),
the 95%-credible interval (blue shaded area) together with the M = 15 equidis-
tantly placed inducing inputs A 2 R15 with corresponding outputs a 2 R15 (black
dots) of the sparse batch model are depicted. For illustration purposes, a slightly
smaller than optimal lengthscale was selected. The numbers in the left and right
corner indicate the lower bound to the marginal log likelihood in (4.53) and its
derivative with respect to the lengthscale, respectively.

Example 5.3 (Online Setting) We continue the Example 5.2, however, in this ex-
ample we assume that the data samples {x j, yj}Jj=1 with x j, yj 2 R arrive online in
a stream of J = 100 blocks with batch size B = 1. Therefore, we have the basis func-
tion matrix H j = K x j AK−1

AA 2 R1⇥15 and the prior covariance ⌃0 = K AA 2 R15⇥15.
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Figure 5.3. Full GP and batch sparse GP regression with PEP model (↵= 0.5).

The sparse GP model in the previous example corresponds to PEP with ↵= 0.5, thus
according to Table 5.2 the recursive training covariance is V̄ j = ↵(K x j x j

−Qx j x j
) 2 R

and test variance V̄⇤ = K X⇤X⇤ −QX⇤X⇤ together with the marginal likelihood correc-

tion aj =
1−↵
2↵ log

Ä

1+ ↵
σ2

n
(K x j x j

−Qx j x j
)
ä

2 R. We apply the KF like update equa-
tions (5.17), in particular, the initial state moments are initialized to µ0 = 0 2 R15

and ⌃0 = K AA 2 R15⇥15 and recursively updated. This is done by computing the
residual r j = y j − H jµ j−1 2 R, the variance P j = H j⌃ j−1H T

j + V j 2 R and the
Kalman gain G j = ⌃ j−1H T

j P−1
j 2 R15⇥1, followed by the recursive moment updates

µ j = µ j−1 +G j r j 2 R15

⌃ j = ⌃ j−1 −G jP jG
T
j 2 R15⇥15,

(5.23)

where the previous mean is updated by Δµ j = G j r j and the covariance reduced by
Δ⌃ j = −G jP jG

T
j . For test data X⇤, predictions at any time point can be obtained

by applying (5.14) with H⇤ = K X⇤AK−1
AA and V⇤ = K X⇤X⇤ −QX⇤X⇤ yielding the pre-

dictive mean and 95%-credible intervals as illustrated in 5.4 with the blue solid line
and blue shaded area, respectively. After processing all N samples, the predictive
distribution correspond to the batch version in Figure 5.3. Moreover, the value of
the generalized collapsed lower bound  ( j) in (5.22) is depicted in the lower left
corner (together with its derivatives in the right corner, which will be discussed in
Section 6.2.2). We note that also the cumulative lower bound at step j = 100 is
equal to the corresponding batch version in Figure 5.3.

Example 5.4 (Distributed Setting) We continue the Examples 5.2 and 5.3, how-
ever, here we assume that the data is available in a full batch, but we want to
distribute the computations among J = 4 computational nodes, thus we split the
data into four blocks of size B = 25 as illustrated in Figure 5.5. Note that the
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Figure 5.4. Online updating for the toy example in Example 5.3 with batch size B = 1.

samples are only sorted for illustration purposes but the splits of the data into the
blocks can be arbitrary. We consider the Information Filter like updates in Section
5.2.7, where the natural moments ⌘ j and ⇤ j are computed. In this example, we
have the sequential basis function matrix H j = K X j AK−1

AA 2 R25⇥15, the diagonal
training covariance V̄ j = ↵ Diag[K x j x j

−Qx j x j
] 2 R25⇥25 and the prior covariance

⌃0 = K AA 2 R15⇥15, leading to the initial precision matrix ⇤0 = K−1
AA. Each node

computes in parallel

Δ⌘ j = H T
j V−1

j y j 2 R15⇥1 and Δ⇤ j = H T
j V−1

j H j 2 R15⇥15.

Afterwards, the individual natural posterior moments are summed at a central node

⌘J =

4
X

j=1

Δ⌘ j and ⇤J = ⇤0 +

4
X

j=1

Δ⇤ j,

which can be transformed back to the original posterior moments ⌃J = ⇤
−1
J and

µJ = ⌃J⌘J . Prediction can be done according to (5.14) with H⇤ = K X⇤AK−1
AA and

V⇤ = K X⇤X⇤ − QX⇤X⇤ . This procedure is illustrated in Figure 5.5 and we note that
the aggregated posterior distribution in the end equals the batch sparse solution
depicted in Figure 5.3.

5.2.10 Transformed Basis Functions

If only the recursive predictive distribution (5.13) and the marginal likelihood
(5.15) are of particular interest and not the recursive posterior distribution of
the inducing points, there are several choices for the sequential basis function
matrices H j = K X j AK AA 2 RB⇥M , H⇤ = K X⇤AK AA and the prior covariance ⌃0 =

K AA 2 RM⇥M , as discussed in Proposition 5.1 and summarized in Table 5.1. For
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Figure 5.5. Distributed computation among J = 4 computational nodes for the toy
example 5.4 with block size B = 25.

instance, using the basis functions and prior covariance indicated in the second
row, that is, ⌃̃0 = K−1

AA and H̃ j = K X j A together with H̃⇤ = K X⇤A, leads to the
equivalent predictive distribution and marginal likelihood. Implicitly, thereby the
transformed posterior moments µ̃ j = K−1

AAµ j, ⌃̃ j = K−1
AA⌃ j K

−1
AA are computed with

reverse mapping µ j = K AAµ̃ j, ⌃ j = K AA⌃̃ j K AA, respectively. This parametriza-
tion constitutes a computational shortcut, since the basis functions are very easy
to interpret and do not include any matrix multiplication. Similarly, for other
choices of basis functions and prior covariance matrix as summarized in Table
5.1 lead to different transformed posterior moments.

5.2.11 Connection to Dynamical Systems

The extended Bayesian linear model with Gaussian observation noise as dis-
cussed in this chapter for sparse GPs, that is,

y j = f j + " j;

f j = H ja+ γ j,

shares similarities with a Gaussian dynamical state space systems. Thereby, the
state of the system corresponds to the global inducing points a. However, a
dynamical system can represent more general models by varying the state over
time described by a dynamic of the state. In the context of sparse GPs, this
corresponds to the following model

y j = f j + " j;

f j = H ja j + γ j;

a j = F ja j−1 + qj,
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where the next state a j depends on the previous state a j−1 by some transition
matrix F j and noise of the dynamics qj. The time varying inducing points a j can
represent either global inducing points but indexed with different hyperparame-
ters, which change over time (for which an approach is outlined in Section 8.2)
or local inducing points associated with the data D j, as thoroughly discussed
in Chapter 7, consider particularly Section 7.2.6. These connections open up a
range of new models for sparse GPs.

5.3 Summary of Contributions

This Chapter 5 is based on the first part of the paper "Recursive Estimation for
Sparse Gaussian Process Regression" [Schürch et al., 2020], with focus on Bayesian
recursive estimation for known hyperparameters. On the other hand, estimation
procedures for the hyperparameters as discussed in the second part of [Schürch
et al., 2020] are discussed in Chapter 6. Thereby, the content presented here
in this thesis is an extended and slightly adapted version from [Schürch et al.,
2020]. In particular, Section 5.1 about the "Extended Bayesian Linear Model" and
the subsections about the recursive inference in Section 5.2 "Recursive Sparse GP
Model" include many more explanations and details which make some connec-
tions more clearer without changing the main messages significantly. In the fol-
lowing, we summarize the novel scientific contributions contained in this chap-
ter:

• Extended Bayesian Linear Model: We extend the usual Bayesian linear
regression model by introducing an additional input-varying noise and es-
tablish a connection to a class of known sparse GP regression models as
formulated in Propositions 5.1 and 5.2. This unifying view explains the
difference between sparse GPs and Bayesian linear regression and the in-
sights can be used for applying recursive Bayesian inference.

• Recursive Bayesian Inference for Sparse GPs: Based on the extended
Bayesian linear model, we show how to analytically apply recursive Bayesian
inference for the inducing points. In particular, the posterior distribution
after considering all recursive updates equals the batch solution of sparse
GPs as stated in Proposition 5.3.

• Online Training: The recursive character of our model allows to train
sparse GP models in an online fashion for fixed hyperparameters. This
means, the posterior belief of the model can be analytically updated by a
new mini-batch of sequentially arriving data.
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• Distributed Training: The Gaussian posterior moments of the inducing
points in the natural parameter space decomposes into a sum of indepen-
dent terms, which can be efficiently used for parallel computations in a
distributed setting.

• Recursive Collapsed Bound: We apply recursive variational inference,
yielding the recursive collapsed bound (Proposition 5.4 and 5.5), which
decomposes into a sum of additive terms. As a consequence, it can be
used for stochastic training of the hyperparamters as it will be discussed in
Chapter 6.

• Connection to Dynamical State Space Systems: We show the connec-
tions between inference in sparse GPs and inference in state space systems,
for instance by using the Kalman Filter and Information Filter. These in-
sights can be further exploited in Chapter 7.



Chapter 6

Sequential Hyperparameter Learning
for Sparse Gaussian Processes

In this chapter, we propose two novel methods for sequential hyperparameter
learning for sparse GPs. They correspond to inference at level II in a Bayesian hi-
erarchical model, as opposed to the previous Chapter 5, where the focus was on
inference for the parameters on level I, that is, inference for the global inducing
points with fixed hyperparameters. In particular, we provide briefly the neces-
sary background including state-of-the-art methods for hyperparameter learning
for sparse GPs in Section 6.1. Subsequently, we present in Section 6.2 and 6.3
the two novel approaches for sequential hyperparameter learning for a range of
sparse GP models. The first approach is based on propagating analytically the
gradients, so that the correlations between the mini-batches are taken into ac-
count. On the other hand, the second approach, is based on an independence as-
sumptions for the mini-batches, resulting in a very efficient and scalable method
for hyperparameter learning. Both methods are extensively investigated on sev-
eral synthethic, as well as real worls datasets, and compared to the state-of-the-
art methods for sequantial hyperparameter learning for sparse GPs. In Section
6.4, we summarize our scientific contributions of the presented content of this
chapter in detail.

6.1 Background

In the previous Chapter 5, the focus was on inference for the parameters on level
I, that is, inference for the global inducing points with fixed hyperparameters.
In particular, we introduced algorithms based on recursive Bayesian inference,
which can be used to train a range of well known sparse GP regression models

129
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analytically either in an online or distributed setting based on mini-batches of
data D j, where the full data batch is D =

SJ
j=1 D j. In this chapter, however,

we propose novel approaches for inference at level II, that is, estimating the hy-
perparameters ✓ of sparse GP models. Beside full batch training, we distinguish
between the online, sequential and distributed setting for hyperparameter learn-
ing as illustrated in Figure 6.1. In the former two cases, we assume that the
data arrives as a stream of mini-batches D j. However, in the online setting, each
mini-batch can be only considered once, whereas in the sequential setting, it is
allowed to consider each block of data several times. In the distributed setting,
we assume that there is a central node and each mini-batch is associated with a
computational node working in parallel. In this section we focus on hyperparam-
eter estimation in the sequential setting, however, we outline also a distributed
and online approach.

D Dj

Batch Distributed

Dj

Sequential

Dj

Online

Figure 6.1. Different ways to train global sparse GP models.

In Table 6.1, we summarize different training approaches for level I and II in-
ference for global sparse GP regression models. As discussed in the previous
chapters, inference for the inducing points a can be performed analytically for
the full batch case (Section 4.2), as well as for the online and distributed set-
ting, discussed in Sections 5.2.6 and 5.2.7, respectively. However, for level II
inference of the hyperparameters ✓ , we have to resort even in the batch case to
numerical approximations as discussed in Sections 2.3.3.1 and 4.2.4. Thereby,
the inference is based on numerically optimizing a loss function, as described in
Section 2.1.3. In particular, in the full batch case, this is based on optimizing
deterministically a loss function involving the full batch of data D. However, for
big data, where the number of samples N = |D| can be in the order of a million,
keeping all data in memory is not possible or the data might even arrive sequen-
tially. In order to speed up the optimization part, the general idea is to update
the hyperparameters more frequently for a subset of data D j instead the whole
dataset D. This is often done by stochastic optimization, which can be applied if
the loss function can be decomposed into a sum of loss functions depending only
on the blocks of data D j, for which more details are given in Section 2.1.3.2.
In the remainder of this chapter, we first provide a brief summary of the state-of-
the-art for hyperparameter optimization of global sparse GPs in Section 6.1.1. In
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Batch Online Sequential Distributed

Level I a
analytic Bayesian inference

Section 4.2
analytic recursive Bayesian inference

Section 5.2.6
not needed;

same as online
analytic recursive Bayesian inference

Section 5.2.7

Level II ✓
deterministic optimization

Section 4.2.4
deterministic optimization
[Bui et al., 2017a]

stochastic optimization
Chapter 6

deterministic optimization
Section 6.3.7

Table 6.1. Overview of level I and II inference approaches for global sparse GP regression
models. In this Chapter, we focus on the sequential hyperparameters optimization with
stochastic optimization on level II. In Section 8.2, we outline also an approach for online
hyperparameter estimation.

the subsequent Sections 6.2 and 6.3, we propose two new sequential hyperpa-
rameter estimation approaches for sparse GPs and conclude the work in Section
8.2.

6.1.1 State of the Art

We briefly discuss the state-of-the-art for hyperparameter learning in sparse GPs.
Since the most stochastic approaches are based on the VFE model [Titsias, 2009],
as introduced in Section 4.2.3.1, we focus here on this model, however, our
method is more general and will be introduced for a range of sparse GP mod-
els. We first recall the corresponding batch method based on deterministic op-
timization, followed by the discussion about the state-of-the-art method using
sequential/stochastic optimization.

6.1.1.1 Deterministic Variational Inference

We recall the variational free energy (VFE) or the collapsed variational lower bound
in (4.40), that is,

LV F E(✓ ) = logN
�

y
�

�0,Q✓XX +σ
2
n

�

−
1
σ2

n

tr[K ✓XX −Q✓XX],

which corresponds to the log marginal likelihood of a deterministic "GP" with
training conditional V̄ = 0, as defined in (4.24), minus an additional term which
is the trace of the true training conditional covariance K ✓XX − Q✓XX . Note that,
this lower bound LV F E(✓ ) depends implicitly on the hyperparameters ✓ through
Q✓XX = K ✓XA

�

K ✓AA

�−1
K ✓AX and K ✓XX . This bound can be optimized deterministically

as described in Section 2.1.3.1, involving the full training dataset D = {y , X}.
This constitutes a principled way to obtain good estimates ✓ ⇤ for moderate sam-
ple size N = |D|, whereby, the order of training samples depends on the number
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of inducing points M and the available computational resources, but it is typ-
ically around N ⇡ 200000 − 500000. This bound is called collapsed variational
lower bound, since the optimal variational posterior distribution (4.39), which is
analytically available, is plugged into (4.38), which collapses the bound. This
has the effect, that global dependencies between all training data samples in D

are introduced, which makes this bound unsuitable for stochastic training.

6.1.1.2 Stochastic Variational Inference

The collapsed lower bound above requires to process the whole dataset D in a
batch sense, which is very inefficient and not feasible for large N . The aim is to
update the hyperparameters in the optimization more frequently based only on
a subset of data D j = {y j, X j}, known as stochastic optimization as discussed in
Section 2.1.3.2. However, this requires a loss function, which decomposes into
a sum of loss functions only depending on the mini-batch D j. For this setting,
an elegant solution is proposed by Hensman et al. [2013] with Stochastic Vari-
ational Gaussian Process (SVGP), where they applied stochastic optimization to
an uncollapsed lower bound to the log marginal likelihood, in particular,

LSV GP(µ,⌃,✓ ) =
J
X

j=1

Eq(a) p✓ ( f j |a)
⇥

p✓ (y j| f j)
⇤

− KL [q(a)||p✓ (a)] . (6.1)

Note that this bound is explicitly parametrized by the approximate posterior mo-
ments µ, ⌃ of the variational distribution q(a) = N

�

a
�

�µ,⌃
�

, which means that
there is no analytic solution for the Gaussian posterior distribution of the in-
ducing points a, instead all entries in the mean vector µ and the covariance
matrix ⌃ have to be estimated numerically. This uncollapsed bound satisfies
LSV GP(µ,⌃,✓ )  LV F E(✓ ), with equality when inserting the optimal mean and
covariance of the variational distribution of the batch VFE (4.39). The key prop-
erty of this bound is that it can be written as a sum of J terms, which allows
stochastic variational inference (SVI, [Hoffman et al., 2013]). Note that collaps-
ing the bound, i.e. inserting the optimal distribution, reintroduces dependencies
between the observations, and eliminates the global parameter a which is needed
for SVI. For this reason, all variational parameters are numerically estimated by
following the noisy gradients of a stochastic estimate of the lower bound LSV GP .
By passing through the training data a sufficient number of times, the variational
distribution converges to the batch solution of VFE method. It allows to apply ap-
proximate GP inference to training samples in the order of millions of data. How-
ever, this approach requires a large number of parameters: in addition to the T
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Method Symbol Equation Reference
Stochastic

Optimization
Analytic
Posterior

Number of
Hyperparameters

collapsed variational
lower bound

LV F E (4.40) Titsias [2009] ⇥ ÿ O(M D+ T )

uncollapsed variational
lower bound

LSV GP (6.1) Hensman et al. [2013] ÿ ⇥ O(M D+M2 + T )

recursive collapsed
lower bound

LREC (5.21) Schürch et al. [2020] ÿ ÿ O(M D+ T )

hybrid
lower bound

LIA! PP (6.9) Kania et al. [2021] ÿ ÿ O(M D+ T )

Table 6.2. Different methods for estimating the hyperparameters of sparse GP models.
The former two correspond to state-of-the-art methods, whereas the latter two are our
novel proposed algorithm described in Sections 6.2 and 6.3, respectively. As a reminder
about the notation, T is the number of kernel hyperparameters, M is the number of
inducing points, and D is the data dimension.

kernel hyperparameters, all entries in the mean vector µ and the covariance ma-
trix ⌃ have to be estimated numerically, which is in order O(M2+M D+T ). Note
that, in particular the quadratic number O(M2) of parameters to be numerically
optimized is limiting, and we will propose new methods with less parameters to
be optimized, as indicated in the last row of Table 6.2.
An improved version of this algorithm has been proposed by Shi et al. [2020]
with their work about sparse orthogonal variational GP inference (SOLVEGP),
which allows to use more inducing points at the same computational complexity.
The main idea is to decompose the prior as the sum of a low-rank approximation
using the global inducing points, and a full-rank residual process parametrized
by a second orthogonal set of inducing points. As a consequence, the method can
model richer functions and the resulting lower bound is tighter with respect to
the collapsed lower bound (4.40), which makes this method even more scalable
as the standard stochastic variational approach SVGP.
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6.2 Recursive Gradient Propagation

In the previous Chapter 5, we presented an analytic and online procedure for
training sparse GP models at inference level I, that is, inferring the posterior
distribution of the inducing points a with fixed hyperparameters ✓ . In this sec-
tion, we focus on sequential inference for the hyperparameters ✓ at level II, for
which we present a novel approach based on recursive gradient propagation. In
particular, we note that the recursive collapsed bound in (5.21)

LREC(✓ ) =

J
X

j=1

logN
Ä

y j

�

�H✓j µ
✓
j−1, P✓j

ä

−
1

2σ2
n

tr
î

K ✓X j X j
−Q✓X j X j

ó

,

decomposes into a recursive sum over the mini-batches D j = {y j, X j}, which al-
lows to optimize the hyperparameters ✓ sequentially as opposed to the collapsed
bound (4.40). Similarly to the uncollapsed bound of SVGP in (6.1), our recursive
collapsed bound (5.21) enables the application of stochastic optimization, how-
ever, due to the recursive character of our bound, the posterior distribution over
the inducing points is analytically available. As a consequence, the entries in the
posterior mean vector and covariance matrix do not have to be estimated nu-
merically, which reduces the number of parameters to be numerically estimated
drastically from O(M D + M2 + T ) to O(M D + T ) and makes the bound tighter
compared to the collapsed lower bound. Since the number M of inducing points
determines the quality of the approximation to full GP, this reduction in number
of parameters from M2 to M is crucial and results in more accurate and faster
convergence than state-of-the-art approaches such as SVGP. For example, in the
application to learn the input output behavior of a non-linear plant, as it will
be presented in Section 6.2.5.3, the number of parameters estimated by SVGP
is ⇡ 10500, while our approach only estimates ⇡ 500 parameters due to the
analytic updates.

6.2.1 Generalized Recursive Collapsed Bound

The above recursive collapsed bound corresponds to the VFE model, however,
it can be generalized to a range of well-known sparse GP models by varying the
training conditional V̄✓j in the marginal likelihood covariance P✓j = H✓j ⌃

✓
j−1(H

✓
j )

T+

V̄✓j +σ
2
nI and using the generalized correction term aj(✓ ) according to Table 5.2,

as discussed in Section 5.2. In particular, we recall the generalized recursive col-
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lapsed bound in (5.22), that is,

 
(J)(✓ ) =

J
X

j=1

logq✓ (y j|y1: j−1)− aj(✓ )

=

J
X
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logN
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logN
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�0, P✓j
ä

− aj(✓ ),

where we explicitly show the dependencies on ✓ . By introducing new notation
dj(✓ ) = logN

Ä

r ✓j
�

�0, P✓j
ä

and  j(✓ ) = dj(✓ ) − aj(✓ ), the recursive collapsed
lower bound can be written as

 
(J)(✓ ) =

J
X

j=1

dj(✓ )− aj(✓ ) =

J
X

j=1

 j(✓ ).

The important property of this recursive collapsed bound is that it decomposes
into a sum of J terms  j(✓ ) =  j(✓ ,D j), which only depends on mini-batch
D j = {y j, X j}, so that stochastic optimization can be applied as described in
Section 2.1.3.2. In particular, maximizing this bound with respect to the hyper-
parameters ✓ is equivalent to find a minimizer of the negative objective function,
that is,

✓ ⇤ = argmin
✓

− (J)(✓ ,D) = argmin
✓

−

J
X

j=1

 j(✓ ,D j),

where we show explicitly the dependency on the data. An iterative solution is
obtained by following the stochastic negative gradient direction (2.15), that is,

✓ (t+1) = ✓ (t) − γt

@ j(✓ ,D j)

@ ✓
�

�✓=✓ (t)
, (6.2)

with learning rate γt , for which we use in this section the particular stochastic
optimization method ADAM [Kingma and Ba, 2014]. Note that, usually more
than one pass over all mini-batches is required, whereby, we denote one pass
over all J mini-batches as an epoch. Therefore, we use the notation ✓ (e, j) = ✓ (t)

for t = J(e− 1) + j corresponding to the estimate of ✓ in epoch e for mini-batch
j.

6.2.2 Derivatives of Recursive Collapsed Bound

In order to apply SGD, the stochastic gradient is needed, which can be compute
by exploiting the chain rule of derivatives

@ j(✓ )

@ ✓
=
@ dj(✓ )

@ ✓
−
@ aj(✓ )

@ ✓
,
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where for instance the derivative of dj(✓ ) = logN
Ä

r ✓j
�

�0, P✓j
ä

can be further
rewritten as

@ dj(✓ )

@ ✓
= −

1
2

@ log |P✓j |
@ ✓

−
1
2

@ (r ✓j )
T (P✓j )

−1r ✓j
@ ✓

with r ✓j = y j − H✓j µ
✓
j−1 and P✓j = H✓j ⌃

✓
j−1(H

✓
j )

T + V✓j . Those derivatives can be
again computed by applying the chain rule for derivatives, for which more details
and efficient pseudo-code is given in the Appendix B.2. We want to emphasize
that ignoring naively the dependency of ✓ through the previous posterior mo-
ments µ✓j−1 and ⌃✓j−1 completely forgets the past and thus results in overfitting
the current mini-batch. In order to compute the derivatives of the posterior mo-
ments, we exploit the chain rule for derivatives recursively and propagate the
gradients of the mean and the covariance over time, that is

@ µ j

@ ✓
=
@ µ j−1

@ ✓
+
@G j

@ ✓
r j +G j

@ r j

@ ✓
, (6.3)

@⌃ j
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−
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P jG
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j −G j

@ P j

@ ✓
G j −GkP j

@GT
j

@ ✓
,

where
@G j

@ ✓
,
@ r j

@ ✓
and

@ P j

@ ✓
are computed recursively according to the definitions in

(5.17).

Proposition 6.1 (Recursive Gradient Propagation) By recursively propagating
the gradients, as described in this section, the batch gradient involving the whole
dataset D is equivalent to the cummulative gradients, only depending on the indi-
vidual mini-batch D j , that is,

@ (J)(✓ ,D)
@ ✓

=

J
X

j=1

@ j(✓ ,D j)

@ ✓
.

Since we know that the generalized recursively collapsed lower bound  (J)(✓ ,D) in
(5.22) corresponds to a range of sparse GP models, we can conclude that also the
recursive derivatives obtained by gradient propagation are equivalent to the batch
GP models after considering all mini-batches.

The toy example in Fig. 5.4 also shows this equivalence. The numbers in the
bottom left and right corners show the cumulative recursive collapsed bound
 
(k) and its cumulative derivative @ ( j)

@ l (abbreviated as  ̇( j)) with respect to the
lengthscale l. The lower bound of the marginal likelihood as well as its deriva-
tives are equivalent to the value of the corresponding batch counterpart in Fig.
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5.3. However, note that this requires that the hyperparameters are fixed for all
mini-batch updates. In the following, we describe an approach with varying hy-
perparameters for each mini-batch.

For Stochastic Recursive Gradient Propagation (SRGP), in each epoch e and mini-
batch j, we interleave the SGD update (6.2) of the parameters ✓ (e, j) and the
update step of the recursive posterior moments of the inducing points in (5.10),
that is, we compute

p
�

a|y1: j,✓
(e, j)
�

/ p
�

y j|a,✓ (e, j)
�

p
�

a|y1: j−1,✓ (e, j−1)
�

.

In particular, assume by recursion that the previous posterior p
�

a|y1: j−1,✓ (e, j−1)
�

and its gradient involving the old hyperparameters ✓ (e, j−1) are available. Those
quantities are used to compute the recursive gradients, so that the new hyperpa-
rameters ✓ (e, j) can be updated via (6.2). Afterwards, the analytic new posterior
p
�

a|y1: j,✓
(e, j)
�

is computed with (5.10) together with the gradient propagation
in (6.3), which then acts as prior information for the next mini-batch. Detailed
and efficient pseudo-code is given in Appendix B.2, where we exploited several
matrix derivative rules which simplify the computation significantly.

6.2.3 Computational Complexity

In the following, we assume that the mini-batch size B = |D j| is larger than the
number of inducing points M . For one mini-batch, the time complexity to update
the posterior (5.17) is dominated by matrix multiplications of size B and M , thus
O(B2M). In order to propagate the gradients of the posterior and to compute the
derivative of the bound needs O(BM2) for a mini-batch and a parameter ✓ . Thus,
updating a mini-batch including all O(M D) parameters costs O(BM3D + B2M)
for the SRGP method. Since SRGP stores the gradients of the posterior, it requires
O(M3D+ BM) storage.
On the other hand, SVGP (as discusses in Section 6.1.1.2) needs O(M2 + BM)
storage and O(BM3+B2M) time per mini-batch, where the latter can be broken
down into once O(B2M) and O(BM) for each of the O(M2) parameters. This
means, for moderate dimensions, our algorithm has the same time complexity
as state-of-the-art method SVGP. However, due to the analytic updates of the
posterior we achieve an higher accuracy and less epochs are needed as shown in
Fig. 6.2 and in Sect. 6.2.5 empirically. Figure 6.2 shows the convergence of SRGP
on a 1-D toy example with N = 1000 data samples and M = 15 inducing points.
The parameters are sequentially optimized with our recursive approach (blue)
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and as comparison with SVGP (green) with a mini-batch size of B = 100 over
several epochs. The root-mean-squared-error (RMSE) computed on test points,
the bound of the log marginal likelihood (LML) as well as the hyper-parameters
converge in a few iterations to the corresponding batch values of VFE (red). Due
to the analytic updates of the posterior, the accuracy is higher and SRGP needs
much less epochs until convergence.

Figure 6.2. Convergence of SRGP (blue) on a 1-D toy to batch version VFE (red). Com-
pared to SVGP (green), the convergence of the root-mean-squared-error (RMSE) of test
points, the bound of the log marginal likelihood (LML) as well as the hyper-parameters
is faster and more accurate.

6.2.4 Mini-batch size

The size B of the mini-batches has an impact on the speed of convergence of the
algorithm. Proposition 6.1 tells us that if we use a full batch, that is B = N , our
algorithm requires the same number of gradient updates as a full batch method
to converge. On the other hand smaller batches should require more updates
and should lead to a higher variance in the results. Fig. 6.3 shows a comparison
of different mini-batch sizes on a 1-D toy example with N = 100000 data samples
generated with the same parameters as in Sect. 6.2.5.1. The convergence to the
full batch value is slower as the batch size decreases. Moreover the variance
of the error, over the repetitions, is much larger for smaller batch sizes: in the
last 10 normalized gradient updates, the standard deviation of the error is on
average 3.8⇥ 10−3 for B = 100 and 8.1⇥ 10−4 for B = 50000, denoting a more
stable procedure for higher batch sizes. As the mini-batch size increases the
computational cost for each gradient update also increases. In this example one
gradient update requires on average 4.9⇥ 10−3 sec and 5.8⇥ 10−2 sec with B =
100 and B = 50000 respectively.1 These considerations suggest that a reasonable
choice is a large mini-batch size within the computational and time budgets.

1The times are measured on a laptop with a Intel i5-7300U CPU @ 2.6 GHz.
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Figure 6.3. Relative error in the bound of the log marginal likelihood between full batch
and SRGP. Average over 20 repetitions.

6.2.5 Experiments

We first benchmark our method with N = 1000000 synthetic data samples gener-
ated by a GP in several dimensions. Next, we apply our approach to the Airline
data used in Hensman et al. [2013] with a million of data samples. Finally a
more realistic setup is presented where we use up to a million data samples to
train a nonlinear plant. We compare our SRGP method to full GP and sparse
batch method VFE for a subset of data (using the implementation in GPy [since
2012]) and to the state-of-the-art stochastic parameter estimation method SVGP
implemented in GPflow [Matthews et al., 2017]. Our algorithm works also for
many other sparse models, however, only large-scale implementations of stan-
dard SVGP are available (corresponding to the VFE model), thus we restrict the
investigation to this model.

6.2.5.1 GP Simulation

In this section we test our proposed learning procedure on simulated GP data.
We generate N = 1000000 data samples from a zero-mean (sparse) GP with SE
covariance kernel with hyper-parameters σ0 = 1,σn = 0.1 and l = {0.1, 0.2,0.5}
in D = {1, 2,5} dimensions. The initial M = {20, 50,100} inducing points are
randomly selected points from the data and the hyper-parameters of a SE kernel
with individual lengthscales for each dimension are initialized to the same values
for both algorithms (σ0 = 1,σn = 1, l1, . . . , lD = 1). All parameters are sequen-
tially optimized with our recursive approach and with SVGP with a mini-batch
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size of B = 5000. The stochastic gradient descent method ADAM [Kingma and
Ba, 2014] is employed for both methods with learning rates {0.001, 0.005,0.005}
for SVGP and {0.0001, 0.001,0.005} for SRGP (based on some preliminary ex-
periments). Each experiment is replicated 10 times.

Fig. 6.4 shows the bound to the log marginal likelihood, the RMSE and the cov-
erage of 100000 test points for the data dimensions D = {1, 2,5} of both methods
over 50 epochs. The shaded lines indicates the 10 repetitions and the thick line
correspond to the mean. The recursive propagation of the gradients achieves
faster convergence and more accurate performance regarding mean RMSE and
smaller values for the log marginal likelihood. The higher accuracy and faster
convergence can possibly be explained by the analytic updates of the posterior
mean and covariance which leads to less parameters to be optimized numerically.

Figure 6.4. Results of simulation study. In particular, the convergence over 50 epochs
for N = 1000000 synthetic GP data samples in several dimensions obtained by SVGP and
our proposed method SRGP are depicted.
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6.2.5.2 Airline Data

For the second example we apply our recursive method to the Airline Data used
in Hensman et al. [2013]. It consists of flight arrival and departure times for
more than 2 millions flights in the USA from January 2008 and April 2008. We
preprocessed the data as similar as possible as described in Hensman et al. [2013]
resulting in 8 variables: age of the aircraft, distance that needs to be covered,
airtime, departure time, arrival time, day of the week, day of the month and
month. We trained our recursive method as well as SVGP with an SE kernel on
N = 100000000 data samples with M = 500 inducing points randomly selected
from the data and a mini-batch size of B = 100000. The ADAM learning rates are
set to 0.005 for both methods and the size of the test set is 500000. For 5 different
repetitions, the RMSE as a function of epochs is depicted in Fig. 6.5. The mean
coverage on test data (at 95%) is comparable for both methods with values of
0.92 and 0.97 for SVGP and SRGP respectively. The overall performance of SRGP
is superior to SVGP.

Figure 6.5. Convergence over several epochs of RMSE and bound to log marginal like-
lihood for N = 100000000 samples from the Airline data for SRGP and SVGP.

6.2.5.3 Non-Linear Plant

GPs are a powerful non-parametric model to describe complex functions, thus
they are suitable to learn the complex input output behavior of a non-linear plant.
However, with full or even sparse batch GP methods the use is restricted to a
few thousands of samples. With our sequential learning method, we are able
to exploit the huge amount of available data by training with up to a million of
samples. We consider a Continuous Stirred Tank Reactor (CSTR). The dynamic
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model of the plant is

d
d t h(t) = w1(t) + w2(t)− 0.2

∆

h(t)
d
d t Cb(t) = (Cb1 − Cb(t))

w1(t)
h(t) + (Cb2 − Cb(t))

w2(t)
h(t) −

k1Cb(t)
(1+k2Cb(t))2

,

where Cb(t) is the product concentration at the output of the process, h(t) is
the liquid level, w1(t) is the flow rate of concentrated feed Cb1, and w2(t) is
the flow rate of the diluted feed Cb2. The input concentrations are Cb1 = 24.9
and Cb2 = 0.1. The constants associated with the rate of consumption are k1 =

k2 = 1. The objective of the controller is to maintain the product concentration
by changing the flow w1(t). To simplify the example, we assume that w2(t) =
0.1 and that the level of the tank h(t) is not controlled. We denote the con-
trolled outputs Cb(t), Cb(t − 1), . . . , Cb(t − p) as ft , ft−1, . . . , ft−p and the con-
trol variables as wt , wt−1, . . . , wt−p. Therefore, the plant identification problem
can be shaped into the problem of estimating the non-linear function defined as
ft = g( ft−1, . . . , ft−p, wt , wt−1, . . . , wt−p), which depends on the p previous val-
ues as well as on the current and the p past control values w. However, we can

Figure 6.6. Training and prediction phases for non-linear plant.

only observe a noisy version of the controlled response, that is yt = ft + "t with
" ⇠ N

�

0,σ2
n

�

. Using a sampling rate of 0.2s, we have generated 102000000 ob-
servations (about 3 days of observations). The plant input is a series of steps, with
random height (in the interval [0, 4]), occurring at random intervals (in the inter-
val [5, 20]s). For different numbers Ntrain, we use the samples y106−Ntrain

, . . . , y106

for training and the last 2000000 are used as a test set. The goal is to learn a
model for the controlled response yt given x t = [yt−1, yt−2, wt , wt−1, wt−2]

T 2 R5

for the particular choice of p = 2. We model the non-linear function g with a GP
with a SE kernel. For comparison, we train full GP and sparse batch GP (with
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100 inducing points) on a time horizon Ntrain of up to 100000 and 500000 past
values, respectively. With the sequential version SVGP and our recursive gradient
propagation method SRGP (both with 100 inducing points and mini-batch size
of 10000), we use a time horizon of up to a million. Note that in this example,
the number of parameters numerically estimated by SVGP is ⇡ 10500, while our
approach only estimates ⇡ 500 parameters due to the analytic updates. This sit-
uation is depicted in Fig. 6.6, where for 1500 training samples yt (red dots), the
true (unknown) function ft (green) and the control input wt (grey) is shown to-
gether with the predicted values with full GP (red dotted) and recursive GP (blue
dotted) trained on a time horizon of 10000 and 100000, respectively. In Fig. 6.7,
the RMSE and the median computed on the test set (with 10 repetitions) is de-
picted for full GP, sparse GP (VFE), SVGP and SRGP trained with varying time
horizons. For small and medium training sizes, when the batch methods are
applicable, our recursive method achieves the same performance as the batch
counterpart (VFE) and is comparable to full GP. Due to the analytic updates of
the posterior, SRGP outperforms SVGP regarding both RMSE and median for all
training sizes. By exploiting more than several thousand past values, a signifi-
cant increase in performance of SRGP can be still observed, thus it constitutes an
approach to accurately scale GPs up to a million of past values.

Figure 6.7. RMSE and median for full GP, batch sparse GP (VFE), sequential SVGP, and
our recursive method (SRGP) trained on varying time horizons (logarithmic scale). The
grey dotted vertical lines at 100000 and 500000 indicate the maximal samples used for
training full GP and sparse batch GP (VFE), respectively.
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6.2.6 Conclusion

In this section, we introduced a recursive hyperparameter estimation method
called stochastic recursive Gaussian process (SRGP) for a general class of sparse
GP approximations. In particular, we proposed a recursive collapsed bound to
the log marginal likelihood that matches exactly the batch version, but can be
used for stochastic estimation. Due to the analytic updates of the posterior, our
method has much less parameters to be estimated numerically. For example,
in the application to learn the input output behavior of a non-linear plant, as
presented in Section 6.2.5.3, the number of parameters estimated by SVGP is ⇡
10500, while our approach only estimates ⇡ 500 parameters due to the analytic
updates. As a consequence, the experimental section showed that our recursive
method needs less epochs and has superior accuracy compared to state-of-the-art,
thus constitutes an efficient methodology for scaling GPs to big data problems.

6.3 Sparse Information Filter for Fast Sparse GPs

In this section, we propose a very efficient method for estimating the hyperpa-
rameters ✓ for a range of well-known sparse GPs, which enables to scale GP in-
ference up to several millions of training samples. As discussed in Section 6.1.1,
the state-of-the-art for hyperparameter optimization is based on variational infer-
ence. In particular the VFE method proposed by Titsias [2009] and discussed in
Section 6.1.1.1, which is based on deterministically optimizing a collapsed vari-
ational lower bound, constitutes a principled way to find the hyperparameters.
However, this approach is not appropriate for big data since the optimization
of the lower bound involves the whole training data and cannot be split into
mini-batches. In order to address this issue, Hensman et al. [2013] proposed a
stochastic variational method (SVGP), as discussed in Section 6.1.1.2, employ-
ing an uncollapsed version of the variational lower bound, which decomposes
into a sum over mini-batches and allows for stochastic optimization. Unfortu-
nately, this has the effect, that the posterior moments are no longer analytically
available, consequently, the bound is less tight and increases the size of the pa-
rameter space and can lead to unstable results. An improved stochastic varia-
tional inference algrotihm for sparse GPs has been proposed by Shi et al. [2020]
with their method SOLVEGP, which is based on two orthogonal sets of inducing
points, which has slightly better performance than the original method SVGP. In
Schürch et al. [2020] and Section 6.2, we proposed a recursive collapsed lower
bound that exploits analytic updates for the posterior distribution and decom-
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poses into a sum over mini-batches. Consequently, the method can be scaled
to millions of data points by stochastic optimization. This recursive approach
provides a performance competitive with SVGP both in terms of accuracy and
computational time, however, it requires to store the past gradients in memory.
When the input space dimension or the number of inducing points is very large,
this method becomes problematic memory-wise as the past Jacobian matrices
are cumbersome to store.

Figure 6.8. The main method presented in this paper, LIA! PP, compared againstLSVGP

and LSOLVEGP on the high dimensional UCI datasets SONG (89 dimensions) and BUZZ (77
dimensions). All methods run for the same number of iteration, plotted against wall-
clock time. This behaviour is also observed in the other experiments, see Section 6.3.8.

In this approach, we address this issue and propose a simple and cheap train-
ing method that efficiently achieves state-of-the-art performance in practice. It
builds on the recursive approach by Schürch et al. [2020], so that the poste-
rior moments are still analytically available, but we circumvent to store the past
gradients. This leads to a highly scalable method for hyperparameter learning
for sparse GPs. In particular, our method is based on the following hybrid ap-
proach. First, we stochastically train the hyperparameters on independent mini-
batches and then, we compute the recursive posterior on the whole dataset with
analytical updates for the fixed optimal hyperparameters. Note that the inde-
pendence approximation of the mini-batches only affects the level II inference
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for the hyperparameters, the level I inference is exact for fixed hyperparame-
ters. We benchmark our method on several real datasets with millions of data
points against the state-of-the-art stochastic variational GP (SVGP) and sparse
orthogonal variational inference for GPs (SOLVEGP). As a preview, in Figure 6.8,
there is an example of the behavior of our main method LIA! PP compared
against SVGP and SOLVEGP depicted. The plots show the root mean squared
error (RMSE) and average log likelihood as a function of computational time.
We observe, that our method achieves comparable performances to SVGP and
SOLVEGP while providing considerable speed-ups.

6.3.1 Recursive Estimation for Sparse GPs

We briefly recall the main findings from Chapter 5 [Schürch et al., 2020], where a
recursive way to train a range of sparse GP models is presented. In particular, the
posterior distribution q(a|y1: j) of the inducing points can be recursively updated

q(a|y1: j) =

Z

q(y j|a) q(a|y1: j−1)

q(y j)
da

/
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N
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y j
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�µ j,⌃ j

�

based on the previous posterior distribution q(a|y1: j−1), which acts as prior in the
next step. Thereby, the recursive posterior moments µ j and ⌃ j are analytically
available (5.11), namely
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,

(6.4)

which exploit the previous posterior moments µ j−1 and ⌃ j−1, for which [Schürch
et al., 2020] proposed a Kalman-Filter-(KF)-like updating as described in Sec-
tion 5.17. These recursive posterior updates give rise to the recursive collapsed
variational lower bound

LREC(✓ ) =

J
X

j=1

logN
�

y j

�

�H jµ j−1, P j

�

− aj(✓ ), (6.5)

where we recall P j = H j⌃ j−1H T
j + V j, H j = K X j AK−1

AA and V j = V̄ j + σ
2
nI with

the model specific training covariance V̄ j and correction term aj according to
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Table 5.2. By keeping the hyperparameters fixed, the posterior distribution, as
well as the lower bound, are equal to the batch version. For instance, using V j =

σ2
nI and aj(✓ ) =

Tr(K X j X j
−QX j X j

)

2σ2
n

yields the VFE model, and it holds in particular
LVFE = LREC. For hyperparameter estimation, the proposed method stochastic
recursive gradient propagation (SRGP) is based on a stochastically approximated
gradient by propagating the gradients of the posterior moments. This method
has two main drawbacks. First, it is constrained to use small learning rates for
the approximation to be valid and stable in practice. Second, the gradients of
the last iteration must be stored. Such storage becomes problematic when the
input space dimension or the number of inducing points is very large.

6.3.2 Information Filter for Sparse GPs

In order to overcome the previous issues, while keeping the advantage of analytic
posterior updates, we propose an Information-Filter-(IF)-like update for the pos-
terior moments, which constitutes an efficient and easy to interpret method for
computing the recursive posterior p(a|y1: j−1) of the inducing points a for sparse
GPs. Instead working with the posterior moments in (6.4), the posterior over
the inducing points can be more efficiently propagated using a natural parame-
terization N −1(a|⌘ j,⇤ j) with ⌘ j = ⌃

−1
j µ j and ⇤ j = ⌃

−1
j . The advantage of this

formulation are the compact updates

⌘ j = ⌘ j−1 +H T
j V−1

j y j and ⌘0 = 0, (6.6)

⇤ j = ⇤ j−1 +H T
j V−1

j H j and ⇤0 = K−1
AA, (6.7)

involving H j = K X j AK−1
AA and V j = V̄ j + σ

2
nI. For instance, for the VFE model,

the training covariance is V̄ j = 0 so that V j = σ
2
nI. Particularly, this IF-like

propagation is more efficient than the KF formulation used by Schürch et al.
[2020], when the mini-batch size is greater than the number of inducing points,
which is usually the case in practice.
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6.3.3 Generalized Lower Bound based on IF

Based on the IF-like update, the corresponding lower bound can be derived by

LI F(✓ ) = logq(y |✓ )−
J
X

j=1

aj(✓ )

= log
J

Y

j=1

Z

q(y j|a,✓ )q(a|y1: j−1,✓ )da−
J
X

j=1

aj(✓ )

=

J
X

j=1

log

Z

q(y j|a,✓ )q(a|y1: j−1,✓ )da− aj(✓ )

=

J
X

j=1

log

Z

N
�

y j

�

�H ja, V j

�

N
�

a
�

�µ j−1,⌃ j−1

�

da− aj(✓ )

=

J
X

j=1

logN
Ä

y j

�

�H jµ j−1, H j⌃ j−1H T
j + V j

ä

− aj(✓ )

=

J
X

j=1

logN
�

r j

�

�0, P j

�

− aj(✓ )

=

J
X

j=1

logN −1(r j|0, P−1
j )− aj(✓ ),

(6.8)

where V j = V̄ j +σ
2
nI, r j = y j − H jµ j−1 and P j = H j⌃ j−1H T

j + V j. For instance,
for the VFE model, by plugging-in V̄ j = 0 and the corresponding correction term
aj according Table 5.2, we get

LIF(✓ ) =

J
X

j=1

logN −1(r j|0, P−1
j )−

Tr(K X j X j
−QX j X j

)

2σ2
n

, (6.9)

where P−1
j = I

σ2
n
− 1
σ4

n
K X j A⇤

−1
j K AX j

can be obtained by applying the inversion
lemma to P j. Further computational efficiency could be gained by using the
equivalent transformed parameterization as described in Section 5.2.10 leading
to an equivalent predictive distribution and marginal likelihood. We refer the
reader to the supplementary material of Kania et al. [2021] for efficient compu-
tation of the posterior propagation and the lower bound in terms of the trans-
formed posterior mean and covariance.
Note that the value of LI F is equivalent to LREC , however, it is based on the IF-like
updating, which makes it more efficient. Moreover, it constitutes a starting point
for an even more efficient approach, as it will be discussed in Section 6.3.5.
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6.3.4 Stochastic Hyperparameter Optimization

The additive structure of the lower bound LIF, together with the efficient IF pos-
terior propagation, allow for more frequent parameter updates. Analogously to
the approach by Schürch et al. [2020], LIF can be stochastically optimized with
respect to all the kernel parameters and the inducing point locations. We denote
LIF, j the jth term in the sum of LIF =

PJ
j=1 LIF, j and explictily show the depen-

dencies on the previous posterior moments and the current hyperparameters ✓ j,
that is,

LIF, j(✓ j,⇤ j−1,⌘ j−1) = dj(✓ j,⇤ j−1,⌘ j−1)− aj(✓ j),

where dj = logN
−1
Ä

r k|0, P−1
j

ä

. The gradient of LIF, j w.r.t. the hyperparameters
✓ j, can be approximated using Jacobian matrices of the previous iteration

@ LIF, j

@ ✓ j
⇡
@ dj

@ ✓ j
+
@ dj

@⇤ j−1

@⇤ j−1

@ ✓ j−1
+
@ dj

@⌘ j−1

@⌘ j−1

@ ✓ j−1
−
@ aj

@ ✓ j
. (6.10)

This recursive propagation of the gradients of the posterior mean and covariance
indirectly takes into account all the past gradients via

@⇤ j−1

@ ✓ j−1
and

@⌘ j−1

@ ✓ j−1
. It would

be exact and optimal if the derivatives with respect to the current parameters
were available. However, when changing the parameters too fast between itera-
tions, e.g. due to a large learning rate, this approximation is too rough and leads
to unstable optimization results in practice. Furthermore, the performance gain
provided by the recursive gradient propagation does not compensate for the ad-
ditional storage requirements. For instance, if M = 500 inducing points are used
in a D = 10-dimensional problem, only storing the Jacobian matrices requires
10 GB, under double float precision, i.e. around the memory limit of the GPUs
used for this work.

6.3.5 Generalized Independent Lower Bound

In order to circumvent these instabilities and inefficiencies in the optimization
part based on LI F , we propose a fast and efficient method that ignores the
approximated correlations between the mini-batches in the stochastic gradient
computation in the beginning. In particular, we approximate LI F(✓ )⇡ LIA(✓ ) by
using the prior instead of the recursive posterior, that is, q(a|y1: j−1,✓ )⇡ p(a|✓ ),
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which leads to the following derivation

LI F(✓ ) = logq(y |✓ )−
J
X

j=1

aj(✓ )

= log
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=
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LIA, j(✓ )

= LIA(✓ ),

(6.11)

where P j = H j⌃0H T
j +V j = QX j X j

+V j. Note that each mini-batch is assumed to
be mutually independent, which simplifies for instance for the VFE lower bound
of the marginal likelihood to

LIA =

K
X

k=1

logN (y j|0,QX j X j
+σ2

nI)−
Tr(K X j X j

−QX j X j
)

2σ2
n

. (6.12)

Note that maximizing this lower bound leads to slightly different hyperparame-
ters as obtained by LIF, since the correlations between the mini-batches in the
bound are not taken into account. An iterative solution can be obtained by fol-
lowing the stochastic negative gradient direction as explained in Section 2.1.3.2,
that is,

✓ t+1 = ✓ t − γt

@LIA, j(✓ )

@ ✓
�

�✓=✓ t

, (6.13)
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with learning rate γt , for which we use the particular stochastic optimization
method ADAM [Kingma and Ba, 2014].

Algorithm 1 LIA! PP Algorithm
Choose number of epochs EIA

Split D into J mini-batches D1, . . . ,DJ each of size B = |D j|
for e = 1 : EIA do . loop over epochs

for j = 1 : J do . loop over mini-batches
compute gradients for the jth mini-batch D j in (6.12)
update the hyperparameters (6.13)

end for
end for
for j = 1 : J do . loop over mini-batches

compute posterior moments with (6.6) and (6.7)
end for

6.3.6 Recovery of the Full Posterior

In order to incorporate all the dependencies once reasonable hyperparameters
are achieved with the optimization of LIA, we could switch to optimize the bound
LIF during the last few epochs. Eventually, all the ignored data dependencies are
taken into account with this method, which is denoted as LIA! LIF. This has
much faster convergence as optimizing LIF directly, however, the memory for
propagating the past gradients might be still problematic.
A further computational shortcut is to fix the hyperparameters to the last ob-
tained value, however, computing afterwards the exact posterior moments ac-
cording to Equations (6.6) and (6.7) without any optimization in the last epoch.
This method, denoted LIA! PP, constitutes a practical alternative when the
computation and storage of the Jacobian matrices is costly, for instance in high
dimensional problems where a large number of inducing points are needed. For
clarity, a pseudo-code of the method is provided in Algorithm 1. Note that with
this method is exact for level I inference for the inducing points, it only approx-
imates the inference on level II for the hyperparameters. This means, the inde-
pendence assumption influences only the optimization of the hyperparameters
and no approximation is used for computing the posterior distribution of the
inducing points.
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Figure 6.9. Toy experiments: 1D and 2D generated GP data. Performances of GP and
LVFE in horizontal lines as their optimization does not use mini-batches. On the left
comparison in number of mini-batches, on the right runtime comparison.

6.3.7 Distributed Hyperameter Optimization

A further advantage of the Information Filter formulation is that it allows to
compute the posterior moments in parallel. Note that, Equations (6.6) and (6.7)
can be rewritten as

⌘J = ⌘0 +

J
X

j=1

Δ⌘ j and ⇤J = ⇤0 +

J
X

j=1

Δ⇤ j,

with the additive factors Δ⇤ j = H T
j V−1

j H j and Δ⌘ j = H T
j V−1

j y j, respectively.
Since the sums terms are functionally independent, the computation of the pos-
terior distribution can be easily distributed to J nodes and aggregated at a central
node afterwards. Moreover, the independent lower boundLIA(✓ ) =

PJ
j=1 LIA, j(✓ )

can be also straight-forwardly distributed and each node computes the value and
its gradient, which can be aggregated at the central node. The aggregated gra-
dient can then be used with deterministic optimization as discussed in Section
2.1.3.1 to find optimal values for the hyperparameters. Note again, the inde-
pendence assumption only affects the level II inference for the hyperparameters.
However, level I inference still takes into account all recursive dependencies and
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corresponds exactly to level I inference as in the full batch case.

6.3.8 Experiments

Each experiment presented in this section, is repeated 5 times by using differ-
ent random splits for the datasets. We always use the same hardware equipped
with a GeForce RTX 2080 Ti and an Intel(R) Xeon(R) Gold 5217 (3GHz). Fur-
thermore, we switch from optimizing LIA to the posterior propagation, denoted
LIA! PP, in the last 5 epochs of training for all the synthetic and real datasets.
Although only one epoch is needed to incorporate all the information of a dataset,
we do 5 epochs so the effect is noticeable in the figures. Alternatively, an adap-
tive switch could be used which is briefly discussed it in the supplementary ma-
terial of Kania et al. [2021]. Moreover, we did not exploit the parallelization
of the posterior propagation in order to be able to compare all training algo-
rithms with the same number of iterations in the stochastic optimization. Note
that LIF correspond to LREC [Schürch et al., 2020], however, we used a new
implementation based on Tensorflow with automatic gradients computations ex-
ploiting GPU, so that the computational times are comparable. For full GP, VFE
and SVGP, we used the GPflow 2.0 library [Matthews et al., 2017], which is
based on Tensorflow 2.0 [Abadi et al., 2015]. We further compare with the re-
cently introduced SOLVEGP [Shi et al., 2020], implemented in GPflow 1.5.1 and
Tensorflow 1.15.4. Our algorithms, namely the training of LIF, LIA! LIF and
LIA! PP are implemented in Tensorflow 2.02. All stochastic methods were opti-
mized with the ADAM optimizer [Kingma and Ba, 2014] using the default settings
(β1 = 0.9,β2 = 0.999,✏ = 1e−7) with a learning rate γ = 0.1 for the stochastic
optimization. We compare each method in terms of average log-likelihood, root
mean squared error (RMSE) and computational time. The comparison in compu-
tational time is fair because all methods were run on the same hardware which
ran exclusively the training procedure.

6.3.8.1 Toy Data

We start by showcasing the methods on a simple dataset generated by a sparse
GP with M = 200 random inducing points, and a SE kernel with varianceσ2

0 = 1,
Gaussian noise σ2

n = 0.01 and lengthscales l 2 {0.1, 0.2} for dimensions D = 1
and D = 2, respectively. We consider N = 5000 training points and 500 test
points. In all experiments, the initial parameters for the SE kernel were 1 for the
lengthscales and Gaussian noise, and 2 for the variance. Moreover, the 200 initial

2The code is available at https://github.com/lkania/Sparse-IF-for-Fast-GP
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Figure 6.10. Synthetic experiments: 5D and 10D data generated from GPs. RMSE vs
number of mini-batches (left), average log-likelihood vs number of mini-batches (cen-
ter), and average log-likelihood vs runtime (right).

inducing points were randomly selected from the training data. In this example,
the switch for LIA! LIF and LIA! PP was done in the last 200 epochs to make
the difference between them visually noticeable. All methods were run for 20K
iterations with a learning rate of γ = 0.001 and mini-batches of size B = 500
data points. Figure 6.9 shows that in 1D all sparse training methods converge to
the LVFE solution, which itself converges to the GP solution. However, this is not
the case in the 2D example. LIF comes closer to the VFE solution, followed by
LIA! LIF. Note that the convergence of LIA! LIF is expected since using LIA

at the beginning is just a way of warm-starting the parameters for LIF.

6.3.8.2 Synthetic Data

Using the same data generating process used in the previous experiments, we
produced two datasets with N = 100K points for D = 5 and D = 10 dimensions
using an SE kernel with variance σ2

0 = 1, Gaussian noise σ2
n = 0.01, and length-

scales l = 0.5 and l = 1, respectively. All SGPs models were initialized with
Gaussian noise of 1, kernel variance equal to 2 and the lengthscales all equal to
1 in the 5-dimensional case, and 2 in the 10-dimensional problem. All methods
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D Metric LIA! PP LIA LSVGP

5 avg log-lik -0.33 ± 0.03 -0.45±0.14 -0.48±0.15
10 avg log-lik 0.01 ± 0.01 -0.21±0.20 -0.24±0.20
5 RMSE 0.29 ± 0.01 0.34±0.05 0.36±0.06
10 RMSE 0.19 ± 0.003 0.26±0.04 0.27±0.05
5 runtime 1.03 ± 0.11 1.05±0.11 9.37±1.16
10 runtime 6.59 ± 0.06 6.65±0.09 27.40±0.79

Table 6.3. Average log-likelihood of last epoch (higher is better), average RMSE of
the last epoch (lower is better), and average runtime in minutes (lower is better). The
algorithm with the best metric is highlighted in each case.

run for 10K iterations in all the datasets using M = 100 and M = 500 induc-
ing points for 5 and 10 dimensions respectively. In all cases, we used learning
rates equal to 0.001 and mini-batches of B = 5000 points. Note, that LIF and
LIA! LIF were not run due to the memory constraints of our equipment. Figure
6.10 displays the log-likelihood and RMSE for all the methods. In 5 and 10 di-
mensions, we can clearly see the effect of a few posterior updates, for LIA! PP,
after fixing the parameters with LIA. Additionally, Table 6.3 displays the average
runtimes for each method. Note that LIA! PP offers a speed-up of 9x and 4x
over LSVGP for the 5- and 10-dimensional datasets respectively.

Name Train Test D Learning rate Iterations

AIRLINES 1.6M 100K 8 0.0001 60000
GAS 1.4M 100K 17 0.0001 40000
BUZZ 0.46M 100K 77 0.0001 60000
SONG 0.41M 100K 89 0.0001 60000
SGEMM 0.19M 48K 14 0.001 15000

PROTEIN 0.036M 9K 9 0.001 5000
BIKE 0.013M 3.4K 12 0.0001 40000

Table 6.4. Overview of used datasets. In particular, the size of the training and test as
well as the dimension of the benchmarked datasets are indicated. The last two columns
show the learning rate and the number of iterations for all training methods run in each
dataset.
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6.3.8.3 Real Data

We trained the sequential sparse SGP methods exploiting the lower boundsLSVGP,
LSOLVEGP, LIA and LIA! PP on several real-world datasets as summarized in Ta-
ble 6.4. All datasets were downloaded from the UCI repository dua except for
AIRLINES, where we follow the original example in Hensman et al. [2013]. For
each training algorithm, we present average log-likelihood, RMSE and runtime
for the same number of iterations. Figure 6.8 shows the results corresponding
to the datasets SONG and BUZZ. Tables 6.5, 6.6 and 6.7 report the average log-
likelihood, RMSE and runtime of all the algorithms. Note that training with
LIA! PP always provides comparable results to the state-of-the-art. However,
such results are achieved, on average, approximately 4 times faster than LSVGP

and 2.5 times faster than LSOLVEGP, see the last two columns of table 6.7. While
LIA! PP is uniformly around 4 times faster than LSVGP, its performance with re-
spect to LSOLVEGP strongly depends on the dataset. In general, LSOLVEGP is faster on
smaller and simpler datasets, while it becomes computationally costly on noisy
datasets like AIRLINE or BUZZ. The results demonstrate that the proposed method
LIA! PP constitutes an efficient method for hyperparameter estimation in sparse
GPs in practice, in particular for high dimensional and large datasets. Note that
the hybrid approach LIA! PP with the additional posterior propagation step al-
ways increases performances (lower RMSE, higher log-likelihood) compared to
LIA.



157 6.3 Sparse Information Filter for Fast Sparse GPs

Dataset LIA! PP LIA LSVGP LSOLVEGP

AIRLINES -1.31 ± 0.01 -1.33±0.01 -1.33±0.01 -1.32±0.01
GAS -0.13±0.02 -0.24±0.02 -0.25±0.01 -0.05 ± 0.05
BUZZ -0.10 ± 0.01 -0.17±0.01 -0.36±0.01 -0.55±0.04
SONG -1.20±0.001 -1.22±0.002 -1.25±0.004 -1.20 ± 0.002
SGEMM 0.47±0.002 0.33±0.02 0.28±0.05 0.63 ± 0.17

PROTEIN -1.04 ± 0.01 -1.13±0.05 -1.14±0.08 -1.06±0.02
BIKE 0.08 ± 0.02 0.03±0.02 0.04±0.02 0.01±0.04

Table 6.5. Average Log-Likelihood of the last epoch, higher is better. The algorithm with
the highest average mean log-likelihood is highlighted for each dataset.

Dataset LIA! PP LIA LSVGP LSOLVEGP

AIRLINES 0.89 ± 0.01 0.92±0.01 0.92±0.01 0.90±0.01
GAS 0.28±0.01 0.32±0.01 0.32±0.01 0.25 ± 0.01
BUZZ 0.28 ± 0.01 0.31±0.004 0.37±0.01 0.42±0.02
SONG 0.80±0.001 0.82±0.002 0.84±0.003 0.80 ± 0.002

SGEMM 0.14±0.001 0.17±0.004 0.17±0.01 0.13 ± 0.03
PROTEIN 0.68 ± 0.005 0.74±0.01 0.74±0.04 0.69±0.01

BIKE 0.22 ± 0.004 0.24±0.005 0.23±0.004 0.23±0.01

Table 6.6. Average RMSE of the last epoch, lower is better. The algorithm with the
lowest average mean RMSE is highlighted for each dataset.

Dataset LIA! PP LIA LSVGP LSOLVEGP ΔSV ΔSOLVE

AIRLINES 0.65 ± 0.004 0.66±0.004 2.78±0.07 3.72±0.16 4.29 5.75
GAS 0.43 ± 0.001 0.44±0.004 1.84±0.04 2.20±0.11 4.28 5.12
BUZZ 0.67 ± 0.004 0.68±0.005 2.95±0.04 1.79±0.08 4.38 2.66
SONG 0.68 ± 0.01 0.69±0.01 3.00±0.11 1.65±0.02 4.41 2.43
SGEMM 0.16 ± 0.001 0.16±0.001 0.69±0.02 0.30±0.01 4.22 1.84
PROTEIN 0.05 ± 0.0002 0.05±0.0001 0.23±0.004 0.07±0.001 4.20 1.33
BIKE 0.44 ± 0.005 0.44±0.003 1.88±0.07 0.56±0.02 4.27 1.28

Table 6.7. Average runtimes in hours. The algorithm with the lowest average mean
runtime is highlighted for each dataset. ΔSV is the ratio between the average runtimes
of LSVGP and LIA! PP, and similarly, ΔSOLVE between LSOLVEGP and LIA! PP.
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6.4 Summary of Contributions

In this chapter, we proposed 2 novel algorithms for sequential hyperparamter
estimation for sparse GPs.

The Section 6.2 about "Recursive Gradient Propagation" is based on the second
part of the paper "Recursive Estimation for Sparse Gaussian Process Regression"
[Schürch et al., 2020] for which we present here in this thesis an extended and
slightly adapted version without significant changes. This work provide the fol-
lowing novel contributions:

• Stochastic Optimization: Based on a recursive collapsed lower bound, a
unifying stochastic optimization procedure for estimating the hyperparam-
eters for a general class of sparse GP models is presented.

• Analytical Posterior: The recursive posterior of our model is analytically
available, which has the effect that the resulting lower bound is tighter and
there are less parameters to numerically optimize compared to competitor
methods.

• Scaling to Large Datasets: Compared to the full batch case, our presented
method can be scaled to large data sets with up to a million of training data
samples with comparable performance.

• Faster Convergence: Due to the analytic posterior, our method shows in
practice that the convergence to the full batch sparse GP is faster than
state-of-the-art methods, i.e. it needs less number of iterations in the opti-
mization part.

• Superior Accuracy: Since the optimal analytic posterior is used in the
lower bound, our method shows in many practical experiments superior
accuracy compared to state-of-the-art methods.

The Section 6.3 about "Sparse Information Filter for Fast Sparse GPs" is based on
the paper "Sparse Information Filter for Fast Gaussian Process Regression" [Kania,
Schürch, Azzimonti, and Benavoli, 2021] for which in this thesis an extended
and slightly adapted version without significant changes is presented. This work
provides the following novel contributions:

• Fast Stochastic Optimization: Based on an independent lower bound, we
propose a very efficient method for optimizing hyperparameters for sparse



159 6.4 Summary of Contributions

GPs. Thereby, the independence assumption between the mini-batches
only affects the inference at level II (hyperparameters) and not inference
at level I (inducing points).

• Analytical Posterior: We combine the fast optimization for the hyperpa-
rameters with an analytic Information-Filter-like updating for the posterior
of the inducing points, which is equivalent to the batch posterior for fixed
hyperparameters.

• Scaling to Big Data: Due to the hybrid approach with the analytic pos-
terior and the fast stochastic optimization, the resulting method is highly
scalable up to several millions of training data samples.

• Significant Speed-Up: Based on several experiments on real world data,
our proposed method achieves competitive performance to state-of-the-art
techniques in a fraction of the running time.

• Distributed Learning: The same hybrid approach as used for sequential
learning can also be used to efficiently compute the optimal hyperparame-
ters, together with the analytic posterior in parallel in a distributed setting.
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Chapter 7

Correlated Product of Experts for
Sparse Gaussian Process Regression

In this chapter, we propose a novel approach for GP approximation based on
local and correlated experts. In particular, our model is a generalization of the
independent Product of Experts (PoE) and sparse global GPs (SGPs), as discussed
in Section 4.2 and 4.3, respectively. In particular, we introduce local correlations
between the originally independent experts. Thereby, each of these experts cor-
respond to a local and sparse GP model represented by a set of local inducing
points, which are points on the GP summarizing locally the dependencies of the
training data. The degree of correlation between the experts can vary between
independent up to fully correlated experts in a consistent way, so that our model
recovers independent PoEs, sparse global GPs and full GP in the limiting cases. In
particular, in this chapter, the necessary background is discussed in Section 7.1,
the novel model Correlated Product of Exerts (CPoE) is presented in Section 7.2,
followed by a discussion about experiments to state-of-the-art methods in Sec-
tion 7.3. Moreover, we present in Section 7.4 an alternative inference approach
of the same model based on local message propagation. Finally, we provide a
conclusion and an explicit list of the contributions in Section 7.5.

7.1 Background

As discussed in previous chapters, full GP inference is limited to datasets with a
few thousand data points N , because of their computational complexity O(N 3)

and memory complexity O(N 2) due to the inversion of a N ⇥ N kernel matrix.
For this reason, many GP approximation techniques have been developed over
the past years, as thoroughly discussed in Chapter 4. For the sake of clarity, we
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briefly provide here the necessary context again. There are at least two differ-
ent approaches to circumvent the computational limitation of full GP. On the one
hand, there are sparse and global methods as discussed in Section 4.2 based on
Mg ⌧ N so-called global inducing points, which cover sparsely the input space
and summarizing the dependencies of the training points. This results in a low-
rank approximation of the kernel matrix of size Mg⇥Mg , which is less expensive
to invert. These methods consistently approximate full GP, for instance the au-
thors in Titsias [2009] have shown that it converges to full GP as Mg ! N . How-
ever, all these methods are still cubic in the number of global inducing points
Mg and for many applications - in particular in higher dimensions - the amount
of inducing points has to be rather large to capture the pattern of the function
properly. On the other hand, there are independent and local models, as dis-
cussed in Section 4.3, based on averaging predictions from J independent local
experts/models, resulting in a block-diagonal approximation of the kernel ma-
trix. The final probabilistic aggregation is then based on a product of the individ-
ual predictive densities, that is why they are called Product of Experts (PoEs). PoE
methods provide fast and rather accurate predictions, because they have fewer
hyperparameters than inducing point methods and are locally exact. However,
the predictive aggregation of independent experts leads to unreliable uncertainty
estimates and less accurate predictions in regions between experts.

0

Correlated PoE

Full GP

J

N
sparse

M

N

1

local

J

1dense
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global

γ
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=

(a) Precision Matrices.
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(b) KL to full GP.

Figure 7.1. Unifying view of our proposed method.

Our approach has the aim to overcome these limitations by introducing a frame-
work based on J correlated experts, so that it approximates full GP in two or-
thogonal directions: sparsity and locality. Thereby, our model is a generalization
of the independent PoEs and sparse global GPs by introducing local correlations
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between experts. These experts correspond to local and sparse GP models repre-
sented by a set of local inducing points, which are points on the GP summarizing
locally the dependencies of the training data. The degree of correlation C be-
tween the experts can vary between independent up to fully correlated experts
in a consistent way, so that our model recovers independent PoEs, sparse global
GP and full GP in the limiting cases. Our method exploits the conditional in-
dependence between the experts, resulting in a sparse and low-rank prior as
well as posterior precision (inverse of covariance) matrix, which can be used to
efficiently obtain local and correlated predictions from each expert. These corre-
lated predictions are aggregated by the covariance intersection method [Julier and
Uhlmann, 1997], which is useful for combining consistently several estimates
with unknown correlations. The resulting predictive distribution is a smooth
weighted average of the predictive distributions of the individual experts. Our
algorithm works with a general kernel function and performs well with vari-
ables in higher dimensions. The number of hyperparameters to optimize for our
method is the same as for full GP, which are just a few parameters (depending
on the kernel). These parameters can be similarly estimated via the log marginal
likelihood, which is analytically and efficiently computable for our model. In our
inference, also (log-normal) priors can be incorporated leading to maximum-a-
posteriori estimates for the hyperparameters.

Compared to the independent Product of Experts, the performance can already
significantly improve by modelling just a few of the pairwise correlations between
the experts. Compared to the number of global inducing point Mg , which is usual
much smaller than the number of data points N , our approach allows a much
higher of total local inducing points in the order of N , which helps to cover the
space and therefore to model more complicated functions.

y1 y2 yj yJ... ...

f1 f2 fj fJ ... ...

y1 y2 ... ...

f1 f2
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y1 y2 ... ...
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iii) PoEii) SGPi) Full GP
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yj yJ yj yJ

(a) Training.
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a

ii) SGP

fjf1 fJ
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y⇤

f⇤

f⇤jf⇤1 f⇤J

(b) Prediction.

Figure 7.2. Graphical models of different GP approaches.
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7.1.1 GP Regression

In this section, we briefly contrast the posterior distributions of full GPs, global
sparse GPs and local Product of Experts (PoEs) in order to highlight the connec-
tions to our model, which will be introduced in the subsequent sections.
We consider data D = {y , X} =

�

y j, X j

 J

j=1
split into J mini-batches of size B

with inputs X j 2 RB⇥D, outputs y j 2 RB and the corresponding latent function
values f j = f (X j) 2 RB, as similarly used in previous chapters. The posterior
distribution of full GP over the latent variables given the data as introduced in
(3.12) can be alternatively formulated as

p ( f |y)/ p ( f , y) = p(y | f )p( f ) =
J

Y

j=1

p
�

y j | f j

�

p
�

f j | f 1: j−1

�

, (7.1)

where the joint prior p( f ) is rewritten using the product rule for probabilities and
the other quantities defined in Section 3.2. Similarly, for sparse global meth-
ods based on global inducing points a, the posterior over the inducing points
p(a|y)/

R

p (a, f , y)d f as introduced in (4.19) can be derived from the joint
distribution

p (a, f , y) = p (y | f ) p ( f |a) p(a) =
J

Y

j=1

p
�

y j | f j

�

p
�

f j |a
�

p(a), (7.2)

where more details are given in Section 4.2. The posterior distribution of local
independent experts in (4.60) can be also formulated as

p ( f |y)/ p ( f , y) =
J

Y

j=1

p
�

y j | f j

�

p
�

f j

�

. (7.3)

For all three approaches, the corresponding graphical model is depicted in Fig-
ure 7.2a together with the corresponding prediction procedures in 7.2b, which
are defined in the corresponding previous sections. Moreover, we provide a toy
example as a preview, which compares the different GP approximations (with
comparable time complexity) in Figure 7.3. Thereby, for each of the GP approxi-
mation method, the predictive mean (solid blue) and 95%-credible interval (dot-
ted blue) are indicated and compared to full GP (black and shaded blue area).
The number in the right bottom corner indicates the KL-divergence (2.12) to full
GP. In the right bottom plot, our method Correlated Product of Expert (CPoE) is
presented for a degree of correlation C = 2 and sparsity γ = 1. We can notice,
that sparse GPs can model the underlying function well as long as the global



165 7.2 Correlated Product of Experts

inducing points (green) can represent the input space properly. Further, both
purely local approaches, minimal variance expert (minVar) and the generalized
PoE (GPoE), as discussed in Sections 4.3.1.3 and 4.3.2.5, respectively, are local
good approximation methods, however, they have difficulties between the inde-
pendent experts. In particular, we note in the right top plot in Figure 7.3, that the
method minVar has severe discontinuities. On the other hand, our method CPoE
includes correlations between the local experts, resulting in an approximation,
which can represent well local and global patterns in the data.

Figure 7.3. Different GP approximations methods for toy example.

7.2 Correlated Product of Experts

In this section, we present our GP regression method Correlated Product of Ex-
pert CPoE(C ,γ), which is a generalization of the independent PoEs and sparse
global GPs. The first generalization is the introduction of correlations between
the experts, which can be adjusted by the parameter 1 C  J and allows to in-
terpolate between local and global models. Secondly, similar to the sparse global
approximation, our method allows to sparsify the inducing points by sparsity pa-
rameter 0< γ 1, as illustrated in Figure 7.1.
In particular, we introduce the graphical model for our method in Section 7.2.1
and explain the local and sparse character of the prior approximation in Sec-
tion 7.2.2. Further, we discuss how to perform inference and prediction with
our model in Section 7.2.3 and 7.2.4, respectively. In Section 7.2.5, we show
that the quality of our approximation consistently improves in terms of Kullback-
Leibler-(KL)-divergence (2.12) w.r.t. full GP for increasing degree of correlation.
Moreover, we present connections to Bayesian linear models in 7.2.6, determin-
istic and stochastic hyperparameter optimization techniques in 7.2.7, and com-
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parisons against state-of-the-art GP approximation methods in a time versus ac-
curacy sense, for synthetic as well as several real-world datasets, in Section 7.3.
Thereby, we demonstrate superior performance of our proposed method for dif-
ferent kernels in multiple dimensions. Finally, Section 7.5 concludes the work.

7.2.1 Graphical Model

Assuming N = BJ data samples, which are divided into J ordered partitions
(or experts) of size B, i.e. D =

�

y j, X j

 J

j=1
with inputs X j 2 RB⇥D and outputs

y j 2 RB. We denote f j = f (X j) 2 RB the corresponding latent function values
on the GP f . We abbreviate y = y1:J 2 RN , X = X1:J 2 RN⇥D and f = f 1:J 2 RN .

Definition 7.1 (Local Inducing Points) We introduce a set of local inducing points
�

a j, A j

 J

j=1
with inducing inputs A j 2 RL⇥D and the corresponding inducing outputs

a j = f (A j) 2 RL of size L = bγBc with 0< γ 1.

These L local inducing points
�

a j, A j

�

of expert j serve as local summary points
for the data

�

y j, X j

�

where the sparsity level can be adjusted by γ. If γ = 1, the
inducing inputs A j are exactly to X j and correspondingly a j = f j. We abbreviate
a = a1:J 2 RM with M = LJ for all local inducing outputs with the corresponding
local inducing inputs A= A1:J 2 RM⇥D. Next, we model connections between the
experts by a set of neighbour experts according to the given ordering.

Definition 7.2 (Predecessor and Correlation Index Sets) We introduceφi( j) 2
{1, . . . , j − 1}, corresponding to the index of the ith predecessor of the jth expert.
For a given correlation parameter 1  C  J, we introduce the predecessor set
⇡C( j) =

SI j

i=1φi( j) satisfying

⇡C( j) ⇢ {1, . . . , j − 1} and ⇡C+1( j) = ⇡C( j) [ φC+1( j),

such that the size of the set I j = |⇡C( j)|=min( j−1, C −1). Further, we define the
region of correlation with the correlation indices as  C( j) = ⇡C( j) [ j if j > C
and  C( j) = C(C) = {1, . . . , C} otherwise, so that | C( j)|= C for all j.

The purpose of these predecessor and correlation indices are to model the lo-
cal correlations among the experts of degree C . If for all j the indices ⇡C( j)
are the C − 1 previous indices, we say that the predecessors are consecutive and
non-consecutive otherwise. If C is clear from the context, ⇡C( j) and  C( j) are
abbreviated by ⇡( j) and  ( j), respectively. Details about the specific choices
of the ordering, partition, inducing points and predecessor indices are given in
Section 7.2.7.1.
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Definition 7.3 (Graph) We define a directed graph G(V, E) with nodes V = a [
f [ y and directed edges

E = { {(a⇡i
C ( j)

, a j)}
I j

i=1 [ {(a i
C ( j)

, f j)}Ci=1 [ ( f j, y j) }Jj=1,

where ⇡i
C( j) and  i

C( j) denote the ith element in the corresponding set.

The directed graph G is depicted in Fig. 7.5aii), where the local inducing points
of the jth expert are connected with the inducing points of the I j experts in⇡C( j).
Further, the function values f j are connected in the region of correlation  C( j)
to the local inducing points. The graph G = (V, E) can be equipped with a prob-
abilistic interpretation, in particular, each node v 2 V and each incoming edge
(v i, v) 2 E for all predecessors i = 1, . . . , I can be interpreted as a conditional
probability density p (v |v1, . . . , v I).

Proposition 7.1 (Graphical Model; Proof C.1) We define a graphical model cor-
responding to the graph G(V, E) with the conditional probability distributions

p
�

y j| f j

�

=N
�

y j

�

� f j,σ
2
nI
�

, (7.4)

p
�

f j|a ( j)
�

=N
�

f j

�

�H ja ( j), V j

�

, (7.5)

p
�

a j|a⇡( j)
�

=N
�

a j

�

�F ja⇡( j),Q j

�

, (7.6)

where (7.4) is the usual Gaussian likelihood for GP regression with noise variance
σ2

n, (7.5) the projection conditional and (7.6) the prior transition. Thereby, the
matrices are defined as

H j = K X j A ( j)K
−1
A ( j)A ( j)

2 RB⇥LC ,

V j = Diag[K X j X j
− K X j A ( j)K

−1
A ( j)A ( j)

K A ( j)X j
] 2 RB⇥B,

F j = K A j A⇡( j)K
−1
A⇡( j)A⇡( j)

2 RL⇥LI j ,

Q j = K A j A j
− K A j A⇡( j)K

−1
A⇡( j)A⇡( j)

K A⇡( j)A j
2 RL⇥L,

with F1 = 0 and Q1 = K A1A1
.

The two conditional distributions (7.5) and (7.6) can be derived from the true
joint prior distribution p(a, f , y), as shown in Proof C.1. Alternatively, a general-
ization of this model can be obtained when using a modified projection distribu-
tion p

�

f j|a ( j)
�

so that for C ! J and γ< 1, our model recovers a range of well
known global sparse GP methods as described in Section 7.2.8 and Proposition
7.7. In any case, these local conditional distributions lead to the following joint
distribution.
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Figure 7.4. Correlation structure ⇡C between the J = 5 experts for different degrees of
correlation 1 C  J . Left: Graphical model among the local inducing points a j . Right:
Structure of sparse transition matrix F , projection matrix H , prior precision S, likelihood
precision T and posterior precision ⌃−1. Note that ⇡C does not have to be consecutive,
e.g 2 /2 ⇡2(3).
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Figure 7.5. Graphical model for training and prediction of CPoE(C ,γ).
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Definition 7.4 (Joint Distribution) For the graphical model corresponding to graph
G, the joint distribution over all variables f , a, y can be written as

qc,γ( f , a, y) =
J

Y

j=1

p
�

y j| f j

�

p
�

f j|a ( j)
�

p
�

a j|a⇡( j)
�

. (7.7)

In the case γ= 1 and thus a = f , the joint distribution simplifies (Proof C.2) to

qc,1( f , y) =
J

Y

j=1

p
�

y j| f j

�

p
�

f j| f ⇡( j)
�

. (7.8)

We use q = qc,γ instead of p in order to indicate that it is an approximate distri-
bution. The joint distributions in Definition 7.4 and the corresponding graphical
model in Fig. 7.5a allow interesting comparisons to other GP models in Fig. 7.2
and the corresponding formulas (7.1), (7.2), (7.3). Whereas the conditioning
set for full GP are all the previous latent values f 1: j−1, for sparse GPs some global
inducing points a and for local independent experts the empty set, we propose
to condition on the C − 1 predecessors f ⇡( j) (or a sparsified version in the gen-
eral case). From this point of view, we can notice that our probabilistic model
is equal to full GP, sparse GP and PoEs under certain circumstances, which are
more precisely formulated in Proposition 7.7.

7.2.2 Sparse and Local Prior

The conditional independence assumptions between the experts, induced by the
predecessor structure ⇡C , lead to an approximate prior qc,γ(a) and approximate
projection qc,γ( f |a), yielding a sparse and local joint prior qc,γ(a, f , y).

Proposition 7.2 (Joint Prior Approximation, Proof C.4) The prior over all lo-
cal inducing points a in our CPoE model is

qc,γ(a) =
J

Y

j=1

p
�

a j|a⇡( j)
�

=N
�

a
�

�0,S−1
C

�

,

with the prior precision SC = S = F T Q−1F 2 RM⇥M, where Q = Diag [Q1, . . . ,QJ] 2
RM⇥M and F 2 RM⇥M is given as the sparse lower triangular matrix in Fig. 7.6.
Moreover, the projection conditional is

qc,γ( f |a) =
J

Y

j=1

p
�

f j|a ( j)
�

=N
�

f
�

�Ha, V
�

,
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where H 2 RN⇥M defined in Figure 7.6 and V = Diag
⇥

V1, . . . , V J

⇤

2 RN⇥N . To-
gether with the exact likelihood p (y | f ) =

QJ
j=1 p(y j| f j) = N

�

y
�

� f ,σ2
nI
�

deter-
mines the joint approximate prior

qc,γ(a, f , y) = p(y | f ) qc,γ( f |a) qc,γ(a).

I

I

I

I

I

I

I

I

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

-F1
2

-F1
3

-F2
3

-F1
4

-F2
40

-F1
5

-F2
50 0F =

-FC
J

-F1
J 00

0 0 0

00 -Fi
j

j

00 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

-FC
J

-2

⇡
i(j)

-1

0 0H1
5

H2
50 0H = 0 0

0H1
4

H2
40 0 00H3

4

0 0H1
3

H2
3 0 00H3

3

0H1
2 0 00H2

2
H3

2

00 000H1
1

H2
1

H3
1

0 00 0 0 0HC
j-1

0 000 Hi
j

j HC
j

000 0 HC
j+1

0 HC
J

H1
J 00 HC

J
-2

 i(j)

-1HC
J

Figure 7.6. Sparse transition matrix F 2 RM⇥M and sparse projection matrix H 2 RN⇥M ,
where F i

j 2 RL⇥L and H i
j 2 RB⇥L are the ith part of F j 2 RL⇥L(C−1) and H j 2 RB⇥LC ,

respectively, corresponding to the contribution of the ith predecessor ⇡i( j) and  i( j).

Note that the joint prior qc,γ(a, f , y) is Gaussian N (0, W) with dense covariance
W and sparse precision Z = W−1, as shown in Fig. 7.13 in subsequent sections.
If the predecessor set is consecutive, the matrix F is a lower band (block)matrix
with bandwidth C and in the non-consecutive case each row has exactly C non-
zero blocks. The sparsity pattern of F is inherited to the prior precision S =
F T Q−1F , which is also a sparse matrix (see Fig. 7.4). For the consecutive case, S
is a block-band matrix with bandwidth 2C−1. Note that the inverse S−1 is dense.
The likelihood matrix H is exact in the corner up to indices C , which ensures
that we recover sparse global GP in the limiting case C = J . The quality of the
approximation of our CPoE(C ,γ) model is discussed in Section 7.2.5, where we
show that qc,γ(a, f , y) converges to the true prior p(a, f , y) for C ! J .

7.2.3 Inference

For our model, it is possible to infer analytically the posterior qc,γ(a|y) and the
marginal likelihood qc,γ(y) used later for prediction and for hyperparameter es-
timation, respectively.
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Proposition 7.3 (Posterior Approximation; Proof C.12) From the joint distri-
bution, the latent function values f can be integrated out yielding

qc,γ(a, y) =

Z

qc,γ( f , a, y)d f = qc,γ(y |a)qc,γ(a) =N
�

y
�

�Ha, V
�

N
�

a
�

�0,S−1
�

,

with V = V +σ2
nI 2 RN⇥N . The posterior can be analytically computed by

qc,γ(a|y) =
qc,γ(a, y)

qc,γ(y)
/ qc,γ(a, y) =N

�

a
�

�µ,⌃
�

=N −1 (a|⌘,⇤) , (7.9)

with ⌃−1 = ⇤ = T + S 2 RM⇥M, µ = ⌃⌘ 2 RM, ⌘ = H T V−1y 2 RM and T =
H T V−1H 2 RM⇥M.

The posterior precision matrix ⌃−1 = T + S inherits the sparsity pattern of the
prior, since the addition of the projection precision T = H T V−1H has the same
sparsity structure, as depicted in Figs. 7.4 and 7.7. On the other hand, the pos-
terior covariance ⌃ is dense, therefore it will be never explicitly fully computed.
Instead, the sparse linear system of equations ⌃−1µ= ⌘ can be efficiently solved
for µ = ⌃⌘, as shown in Section 7.2.7.2.

= +

HV −1

HTFF T Q−1
⌃

−1

prior precision Sposterior precision projection and likelihood precision T

Figure 7.7. Sparse posterior precision approximation.

Proposition 7.4 (Marginal Likelihood; Proof C.13) The marginal likelihood is

qC ,γ(y |✓ ) = qC ,γ(y) =

Z

qC ,γ(y , a)da =N (0, P)

with P = HS−1H T + V 2 RN⇥N , where all dependencies on ✓ of the matrices are
omitted.

Further, in our CPoE model, the marginal likelihood qc,γ(y |✓ ) can be analyti-
cally computed (Proposition 7.4) with the dense covariance matrix P, which
can be used for hyperparameter optimization, as shown in in Section 7.2.7.3.
The posterior approximation qc,γ(a|y) as well as the approximate marginal likeli-
hood qc,γ(y) converge to the true distributions p (a|y) and p (y), respectively, for
C ! J . In particular, they correspond exactly to the posterior and marginal like-
lihood of full GP and sparse global GP with bγNc inducing points for C = J ,γ= 1
and C = J ,γ< 1, respectively.
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7.2.4 Prediction

The final predictive posterior distribution is obtained by an adaptation of the PoE
aggregation, as presented in Section 4.3.2. The main idea is to consistently ag-
gregate weighted local predictions form the experts, such that the correlations
between them are taken into account, resulting in a smooth and continuous pre-
dictive distribution.

Proposition 7.5 (Prediction Aggregation; Proof C.17) Similarly to the PoE ag-
gregation in (4.58), we define the final predictive posterior distribution qc,γ( f⇤|y)
for a query point x ⇤ 2 RD as

qc,γ( f⇤|y) =
J

Y

j=C

qc,γ( f⇤ j|y)β⇤ j ,

involving the local predictions qc,γ( f⇤ j|y) = N
�

m⇤ j, v⇤ j
�

and weights β⇤ j 2 R de-
fined in Proposition 7.6 and Definition 7.5, respectively. Moreover, the distribution
qc,γ( f⇤|y) =N (m⇤, v⇤) with m⇤ = v⇤

PJ
j=C β⇤ j

m⇤ j
v⇤ j

and 1
v⇤
=
PJ

j=C
β⇤ j

v⇤ j
is analytically

available. The final noisy prediction is p (y⇤|y) =N
�

m⇤, v⇤ +σ
2
n

�

.

The graphical model corresponding to this prediction procedure is depicted in
Fig. 7.5b. Note that the first C − 1 experts are only implicitly considered since
 ( j) = (C) for j  C , resulting in J2 = J−C+1 predictive experts, so that the
proposed prediction aggregation interpolates between predictions from J2 = J
completely independent experts and predictions from J2 = 1 fully correlated
expert, which is depicted in Figure 7.8.

Proposition 7.6 (Local Predictions, Proof C.18) The local predictive distribution
qc,γ( f⇤ j|y) =N

�

m⇤ j, v⇤ j
�

of the jth expert are based on the region  ( j) where the
correlations are modelled and can be computed as

qc,γ( f⇤ j|y) =
Z

p
�

f⇤ j|a ( j)
�

qc,γ(a ( j)|y)da ( j) =N
�

h⇤µ ( j), hT
⇤
⌃ ( j)h⇤ + v⇤

�

,

involving the local posteriors qc,γ(a ( j)|y) = N
�

µ ( j),⌃ ( j)
�

and the predictive
conditional p

�

f⇤ j|a ( j)
�

=N
�

h⇤a ( j), v⇤
�

(which is exactly defined in Proof C.18).

The local posteriors with mean µ ( j) and covariance entries ⌃ ( j) could be ob-
tained from the corresponding entries  ( j) of µ and ⌃. However, computing
explicitly some entries in the dense covariance ⌃ based on the sparse precision
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⌃
−1 is not straightforward, since in the inverse the blocks are no longer indepen-

dent. However, we can exploit the particular sparsity and block-structure of our
precision matrix and obtain an efficient implementation of this part, which is key
to achieve a competitive performance of our algorithm. More details are given
in Section 7.2.7.2.

Definition 7.5 (Aggregation Weights) The input depending weights β⇤ j = β j(X⇤)
at query point X⇤ models the influence of expert j. In particular, the unnormalized
weights

β̄⇤ j = H[p ( f⇤)]− H[p
�

f⇤ j|y
�

] =
1
2

log

✓

v⇤0
v⇤ j

◆

,

are set to the difference in entropy H (2.7) before and after seeing the data similarly
proposed by Fleet [2014]. Thereby, the predictive prior is p ( f⇤) = N (0, v⇤0) with
v⇤0 = kX⇤X⇤ and the predictive posterior defined in Proposition 7.6. The normalized
weights are then obtained by β⇤ j = b−1β̄ Z

⇤ j where b =
PJ

j=C β̄
Z
⇤ j and Z = log(N)C.

J = 5

J2 = J − C + 1

C

5

4

3

2

1

Figure 7.8. Prediction Aggregation in
CPoE(C ,γ) model with J base experts
and J2 = J −C +1 predictive experts.

These weights bring the flexibility of in-
creasing or decreasing the importance of
the experts based on the predictive uncer-
tainty. However, independent of the par-
ticular weights, our aggregation of the pre-
dictions is consistent since it is based on
the covariance intersection method [Julier
and Uhlmann, 1997], which is useful for
combining several estimates of random vari-
ables with known mean and variance but
unknown correlation between them. For
the covariance method, the authors in Li
et al. [2015] showed that (with normalized
weights) (a) the accuracy of the fused es-
timate outperforms each local one and (b)
provide consistent fused estimate, and thus
reliable confidence information. The Z in
the exponent of the normalization of the
weights has a sharpening effect, so that the
informative experts have even more weight compared to the non-informative ex-
perts for more data N and higher correlations C . This is a heuristic, but showed
quite robust performance in experiments. Moreover, the consistency properties
are more relevant than the particular weights.
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7.2.5 Properties

Proposition 7.7 (Equality; Proof C.3) Our model correlated Product of Experts
CPoE(C ,γ) is equal to full GP for C = J and γ= 1. For γ< 1, our model corresponds
to sparse global GP with Mg = bγNc inducing points. Further, with C = 1 and γ= 1,
our model is equivalent to independent PoEs. That is, we have

CPoE(J , 1) = GP; CPoE(J ,γ) = SGP(bγNc); CPoE(1, 1) = GPoE⇤,

where SGP refers to the FTIC model [Snelson and Ghahramani, 2006] and GPoE⇤

corresponds to GPoE [Fleet, 2014] with slightly different weights (Z = 1) in the
prediction.

In Section 7.2.8, we present a generalization of our model, so that CPoE(J ,γ) cor-
responds to a range of other well known versions of sparse global GP, by changing
the projection distribution and adding a correction term in the log marginal like-
lihood, similarly discussed in Schürch et al. [2020] and Chapter 5 for the global
case. For instance, we can extend our model analogously to the variational ver-
sion of Titsias [2009].
For correlations between the limiting cases C = 1 and C = J , we investigate
the difference in KL of the true GP model with CPoE(C ,γ) and CPoE(C2,γ) for
1 C  C2  J . For that reason, we define the difference in KL between the true
distribution of x and two different approximate distributions, i.e.

D(C ,C2)
[x ] = K L[p (x ) || qc,γ(x )]− K L[p (x ) || qc2,γ(x )]. (7.10)

Similarly, we define the difference in KL of a conditional distribution x |y to be

D(C ,C2)
[x |y] =K L[p (x |y) || qc,γ(x |y)]− K L[p (x |y) || qc2,γ(x |y)]

=Ep(y)



Ep(x |y)



log
qc2,γ(x |y)
qc,γ(x |y)

��

,
(7.11)

which follows from the the definition of KL (2.12). Using these definitions, we
show that the approximation quality of the prior qc,γ(a) and projection approxi-
mation qc,γ( f |a) monotonically improves for C ! J , so that the KL between the
true p(a, f , y) and our approximate joint distribution qc,γ(a, f , y), is decreasing
for C ! J .

Proposition 7.8 (Decreasing KL; Proof C.6) For any predecessor structure ⇡C

and any 0 < γ  1 and 1  C  C2  J, the difference in KL of the marginal
prior, projection and data likelihood are non negative, i.e.

D(C ,C2)
[a]≥ 0, D(C ,C2)

[ f |a]≥ 0, D(C ,C2)
[y | f ] = 0,
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so that the joint difference in KL is also non-negative

D(C ,C2)
[a, f , y] = D(C ,C2)

[a] +D(C ,C2)
[ f |a] +D(C ,C2)

[y | f ] ≥ 0.

Moreover, we can quantify the approximation quality, in particular D(C ,C2)
[a] =

1
2 log |QC |

|QC2
| and D(C ,C2)

[ f |a] = 1
2 log |V̄C |

|V̄C2
| .

The last statement demonstrates that our CPoE model is a sound GP prior pre-
cision approximation, which converges monotonically to the true prior for C !
J . Moreover, we can quantify the relative approximation quality of our model,
which constitutes an approach of estimating the needed C , since it is indepen-
dent of the true (and non-calculable) full GP distribution. The decreasing KL
of the joint prior is depicted in Fig. 7.9 together with the decreasing KL of the
posterior, marginal likelihood and predictive posterior.

Figure 7.9. Decreasing KL[p||q] between true distribution p of full GP and approximate
distribution q = qc,γ of CPoE for increasing values of C and γ for the joint prior, posterior,
marginal likelihood and predictive posterior for synthetic GP data (N = 1024, D = 2, SE
kernel).

Note that, the accuracy of our proposed model is increasing for larger values of
C , as theoretically shown in Proposition 7.8 and illustrated in Figure 7.9. How-
ever, there is a trade-off between accuracy and time. This means, a reasonable
value for the degree of correlation C has to be determined in practice. In our em-
pirical experiments, we found values C 2 {2, 3, 4} a good choice for competitive
performance. However, this value could be easily increased in our algorithm.
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7.2.6 Generalizations of Bayesian Linear Models

In this section, we briefly summarize and establish some connections to the
Bayesian linear model and their use for GP approximations. These models are
summarized in Table 7.1 and depicted in Figure 7.10. In the previous chap-
ters, the connections between GP models and Bayesian linear model with basis
functions and Gaussian observation noise are discussed. In particular, we show
in Chapter 5, that the ordinary Bayesian linear model can be extended with an
additional noise term, so that it can represent sparse global GP models. These
two models are shown in Figure 7.10 in i) and ii), where the deterministic re-
lations between the weights a and f j in i) are depicted as red arrows, whereas
the probabilistic relation in ii) are shown as green arrows. These two models
both exploit some global weights, or inducing points a, which summarize the
relationship among the latent function values f j. In this chapter instead, we
investigate models with a different dependency structure among the latent func-
tion values. A possible structure would be to directly introduce a local dynamics
among the latent function values f j, as shown in iii), which is also known as a
dynamical Bayesian linear model in the literature. This model can be further im-
proved, by instead modeling a dynamic among some hidden variables/weights
a j, as indicated in model iv). The dependency structure of the latter two models
are restricted to a chain structure. In this chapter, we even generalize this model
to arbitrary dependency structures among the hidden variable, as depicted with
the blue arrows in the model vi) in Figure 7.10, which we call hidden conditional
Bayesian linear model. In particular, in this chapter, we introduce a novel model,
which unifies all these generalized dependency structures among the latent func-
tions values, resulting in a novel framework for GP approximations.

7.2.7 Computational Details

7.2.7.1 Graph

The graphical model in Section 7.2.1 is generically defined and several choices
are left for completely specifying the graph G(V, E) for a particular dataset: the
partition method, the ordering of the partition, the selection of the predeces-
sors and the local inducing points. We tried to make these choices as simple
and straightforward as possible with focus on computational efficiency, however,
there might be more sophisticated heuristics. Concretely, we use KD-trees [Ma-
neewongvatana and Mount, 2001] for partitioning the data D into J regions and
the ordering starts with a random partition, which is then greedily extended by
the closest partition in euclidean distance (represented by the mean of the induc-
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Model Reference Equations Assumptions GP Model

Gaussian Observ. Model y j = f j + " j " j ⇠N
�

0,σ2
nI
�

i) Bayesian Linear Model Section 2.3.4 f j = H ja a ⇠N (0,⌃0) Degenerate GP

ii) Extended
Bayesian Linear Model

Definition 5.1 f j = H ja+ γ j
a ⇠N (0,⌃0)

γ j ⇠N
�

0, V̄ j

� Sparse Global GP

iii) Dynamical
Bayesian Linear Model

special case of
Proposition 7.1

f j = F j f j−1 + qj
a0 ⇠N (0,⌃0)

qj ⇠N
�

0,Q j

�

CPoE with
γ= 1 and C = 1

iv) Hidden Dynamical
Bayesian Linear Model

special case of
Proposition 7.1

f j = H ja j + γ j

a j = F ja j−1 + qj

a0 ⇠N (0,⌃0)

γ j ⇠N
�

0, V̄ j

�

qj ⇠N
�

0,Q j

�

CPoE with
γ< 1 and C = 1

vi) Hidden Conditional
Bayesian Linear Model

Proposition 7.1
f j = H ja j

+ γ j

a j = F ja⇡ j
+ qj

a0 ⇠N (0,⌃0)

γ j ⇠N
�

0, V̄ j

�

qj ⇠N
�

0,Q j

�

CPoE with
γ< 1 and C > 1

Table 7.1. Summary of Bayesian linear models and their use for GP approximations.

... ...

y1 y2 ... ...

f1 f2

a

fj fJ

yj yJ y1 y2 yj yJ... ...

f1 f2 fj fJ

i) Bayesian Linear Model

y1 y2 yj yJ... ...

f1 f2 fj fJ

v) Conditional

Bayesian Linear Model

iii) Dynamical

Bayesian Linear Model

... ...

a1 a2 aj aJ

y1 y2 yj yJ... ...

f1 f2 fj fJ

iv) Hidden Dynamical

Bayesian Linear Model

... ...

y1 y2 ... ...

f1 f2

a

fj fJ

yj yJ

... ...

a1 a2 aj aJ

y1 y2 yj yJ... ...

f1 f2 fj fJ

vi) Hidden Conditional

Bayesian Linear Model

ii) Extended

Bayesian Linear Model

Figure 7.10. The Bayesian linear model with basis functions and possible generaliza-
tions. Our unifying model in this chapter can represent all of these models.
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ing points). The L  B inducing inputs A j 2 RL⇥D of the jth partition (or expert)
can be in principle arbitrary, however, in this work they are chosen as a random
subset of the data inputs X j 2 RB⇥D of the jth expert for the sake of simplic-
ity. For the predecessors (block-)indices ⇡C , the C − 1 closest partitions among
the previous (according to the ordering) predecessors in euclidean distance are
greedily selected. These explained concepts are illustrated for a toy example in
Fig. 7.11.
Note that, there might be more sophisticated methods to find in particular an
appropriate partition. We have also investigated partitions based on K-Means and
splits according to a particular or random data dimension. We found that KD-
trees provide rather robust results in a range of synthetic and real-world data sets
in different dimensions. However, the investigation of improved partitions in our
algorithm is postpone to future work. An interesting data-dependent partition
approach is presented by Buschjäger et al. [2019].

4

2

3

4

2

3

5

1

c) directed graph

center of Aj

predecessor ⇡3(j)

2

5

data Xj

local inducing inputs Aj predecessor ⇡2(j)

1

3

4

1

center of Aj center of Aj

a) ordered partition b) directed graph

5

C = 2 C = 3

Figure 7.11. Toy example for partition, local inducing points, predecessors and directed
graph illustrated for D = 2 with J = 5 experts/partitions each with B = 4 samples,
γ= 0.75 and thus L = 3 local inducing points. In a) the ordered partition with the data
(black), local inducing points (green) and their mean (blue) are depicted. In b) and c)
the directed graph for C = 2 and C = 3 are shown with corresponding predecessors
⇡2(1) = {}, ⇡2(2) = {1}, ⇡2(3) = {1}, ⇡2(4) = {2}, ⇡2(5) = {3} and ⇡3(1) = {},
⇡3(2) = {1}, ⇡3(3) = {1, 2}, ⇡3(4) = {2, 3}, ⇡3(5) = {3, 4}, respectively. In the previous
example, ⇡3 is consecutive and ⇡2 is non-consecutive.

7.2.7.2 Solving Linear System & Partial Inversion

For solving the sparse linear system⌃−1µ= ⌘ in Proposition 7.3, sparse Cholesky
decomposition is exploited. In particular, M⌃−1M T = LLT =: Y is computed so
that ⌫ and µ can be efficiently obtained via solving L⌫= ⌘ and LTµ = ⌫, respec-
tively. Thereby, the matrix M is a so-called fill-reduction permutation matrix,
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such that the Cholesky matrix L is as sparse as possible and thus µ = M−1µ.
Note that, M is computed only via the structure on the block level, which is only
J dimensional instead of J L.
Additionally to the mean µ, also some entries ⌃ ( j), in the covariance matrix
⌃, has to be explicitly computed, which are needed for computing local predic-
tions (Section 7.2.4) and (derivatives) of the marginal likelihood (Section C.2),
respectively. Therby, the needed entries correspond to the non-zeros in the preci-
sion matrix ⌃−1. Computing efficiently these entries is not straightforward, since
in the inverse the blocks are no longer independent. However, we can exploit
the particular sparsity and block-structure of our precision matrix and obtain an
efficient implementation of this part, which is key to achieve a competitive per-
formance of our algorithm. Computing some entries in Z = Y−1 is also known
as partial inversion. We adapted the approach in Takahashi [1973], where the
recursive equations with J blocks for computing the full inverse Z are provided

ZBj
= −ZCj

LBj
L−1

Aj
and ZAj

= L−T
Aj

L−1
Aj
− Z T

Bj
LBj

L−1
Aj

,

where the recursion starts from j = J with ZAJ
= L−T

AJ
L−1

AJ
.

ZAj

ZCj

ZT
Bj

ZBj

Z =

LBj

LAj

L =

Figure 7.12. Shape of Z and L.

Instead of computing the full inverse using this recursion, we exploited the block-
sparsity structure of our posterior precision matrix in order to gain significant
speed-up. We only computed the entries in the inverse Z, which are symbolically
non-zero in L. In Algorithm 2, we provide efficient pseudo-code using sparse-
block-matrices in the block-sparse-row format.
Alternatively, for computing the Cholesky factor of ⌃−1 = S+HV−1H , we could
directly exploit that the prior precision S = F T Q−1F is already decomposed into a
upper/lower-triangular form, since F lower triangular. However, when updating
the Cholesky factor with HV−1H needs quadratic time in the number of nonzeros
for each expert.
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Algorithm 2 Partial Sparse Block Inversion

Require: Cholesky matrix L of size JB ⇥ JB in block-sparse-row (bsr) format
with J ⇥ J total blocks, block-size B and N non-zero blocks. Data array d of
size N ⇥ B ⇥ B, the column-block-indices r of size N , row-block-pointer p of
length J + 1, and lookup table M of dimension J ⇥ J .

Ensure: The lower part of the symmetric partial inversion is computed in bsr-
format with the same row-block-indices r and row-block-pointer p and data
array z of size N ⇥ B ⇥ B.
for i 2 {J , . . . , 1} do

L−1
A  d[M[i, i], :, :]−1

z[M[i, i]] (L−1
A )

T · L−1
A

for j 2 {r[p[i + 1]], r[p[i + 1]− 1], . . . , r[p[i]]} do
Q 0
for l 2 {r[p[i]], r[p[i] + 1], . . . , r[p[i + 1]]} do

R z[M[ j, l]]
if l > j then

R RT

end if
Q Q+ R · d[M[l, i]] · L−1

A
end for
z[M[i, j]] z[M[i, j]]−Q

end for
end for

7.2.7.3 Hyperparameter Estimation

In Section 7.2, we introduced CPoE for fixed hyperparameters ✓ , where implicitly
all distributions are conditioned on ✓ . However, we omitted these dependencies
on ✓ in the most cases for the sake of brevity. Similar to full GP, sparse GP or PoEs,
we can use the ML-II approach, where the log marginal likelihood (LML) can be
used as an objective function for optimizing the few hyperparameters ✓ , as dis-
cussed in Section 2.3.3. The log of the marginal likelihood of our model, formu-
lated in Section 7.2.3, is logq (y |✓ ) = logN (0, P) with P = HS−1H T +V , which
can be efficiently computed, as detailed in the Appendix of [Schürch et al., 2022],
and can be used for deterministic optimization with full batch y for moderate sam-
ple size N . However, in order to scale this parameter optimization part to larger
number of samples N in a competitive time, stochastic optimization techniques
exploiting subsets of data have to be developed similarly done for the global
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sparse GP model (SVI Hensman et al. [2013]; REC Schürch et al. [2020]; IF Ka-
nia et al. [2021]). We adapt the hybrid IF approach of Kania et al. [2021], where
we can also exploit an independent factorization of the log marginal likelihood,
which decomposes into a sum of J terms, so that it can be used for stochastic op-
timization. This constitutes a very fast and accurate alternative for our method,
as shown in the Appendix of [Schürch et al., 2022], and will also be exploited in
Section 7.3 for large data sets.

Prior on Hyperparameters
Alternatively to the ML-II approach, we can use the MAP-II approach, as intro-
duced in Section 2.3.3. The MAP-II approach is based on the log of the poste-
rior distribution p (✓ |y)/ p (y |✓ ) p (✓ ), where p (✓ ) is a suitable prior on the
hyperparameters, yielding log p (✓ |y) = log p (y |✓ )+ log p (✓ ) as objective func-
tion. In the following, we assume p (✓ ) =

Q

j p
�

✓ j

�

and a log-normal prior for

each hyperparameter p
�

✓ j

�

= logN
Ä

✓ j

�

�⌫ j,λ
2
j

ä

for means ⌫ j and variances λ2
j ,

similarly introduced in Section 2.3.4.6. For the deterministic case, the MAP es-
timator can be straightforwardly computed by just adding the log prior on ✓ to
the batch log marginal likelihood, i.e. log p (✓ |y) = L(✓ ) + log p (✓ ). Similarly
for the stochastic case, the stochastic MAP can be decomposed as log p (✓ |y) ⇡
PJ

j=1

�

l j(✓ ) +
1
J log p (✓ )

�

, where l j(✓ ) is the jth term in the stochastic marginal
likelihood (defined properly in the Appendix of Schürch et al. [2022]), so that
it can be used again for stochastic mini-batch optimization. An example using
priors for the hyperparameters is presented in Section 7.3.1.

7.2.7.4 Complexity

The time complexity for computing the posterior and the marginal likelihood
in our algorithm is dominated by J operations which are cubic in LC (inver-
sion, matrix-matrix multiplication, determinants). This leads to O(NB2↵3) and
O(NB↵2) for time and space complexity, respectively, where we define the ap-
proximation quality parameter ↵ = Cγ. Similarly, for Nt testing points, the time
and space complexities are O(NB↵2Nt) and O(N↵Nt). Note that, an approach
to remove the dependency on N is outlined in the Appendix of [Schürch et al.,
2022]. In Table 7.2, the asymptotic complexities of our model together with
other GP algorithms are indicated. It is interesting that for ↵= 1, our algorithm
has the same asymptotic complexity for training as sparse global GP with Mg = B
global inducing points, but we can have M = LJ = γBJ = γN total local induc-
ing points! Thus, our approach allows much more total local inducing points M
in the order of N (e.g. M = 0.5N with C = 2), whereas for sparse global GP
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full GP sparse GP PoE CPoE

time O(N3) O(N M2
g ) O(NB2) O(NB2↵3)

space O(N2) O(N Mg) O(NB) O(NB↵2)

timet O(N2Nt) O(M2
g Nt) O(NBNt) O(NBNt↵

2)

spacet O(NNt) O(Mg Nt) O(NNt) O(NNt↵)

#pars |✓ | M D+ |✓ | |✓ | |✓ |

Table 7.2. Complexity for training, pointwise predictions for Nt points and number of
optimization parameters for different GP algorithms.

usually Mg ⌧ N . This has the consequence that the local inducing points can
cover the input space much better and therefore represent much more compli-
cated functions. As a consequence, there is also no need to optimize the local
inducing points resulting in much fewer parameters to optimize. Consider the
following example with N = 100000 in D = 10 dimensions. Suppose a sparse
global GP model with Mg = 500 global inducing points. A CPoE model with the
same asymptotic complexity has a batch size B = Mg = 500 and ↵ = 1. There-
fore, we have J = N

B = 20 experts and we choose C = 2 and γ = 1
2 such that we

obtain L = γB = 250 local inducing points per experts and M = γN = 50000 total
local inducing points! Further, the number of hyperparameters to optimize with
a SE kernel is for global sparse GP Mg D + |✓ | = 5012, whereas for CPoE there
are only |✓ | = 12. For an extended version of this section consider Appendix of
Schürch et al. [2022].

7.2.8 Generalized CPoE

In this section, we present a generalization of our CPoE model. The graphical
model defined in Definition 7.4 recovers the sparse global GP model FITC [Snel-
son and Ghahramani, 2006] in the limiting case C ! J , s shown in Proposition
7.7. In this section, we present a generalization of our CPoE model, such that
it recovers other sparse global GP models, such as VFE [Titsias, 2009] or PEP
[Bui et al., 2017b]. As shown in Chapter 5 based on [Schürch et al., 2020] for
the global case, these models differ in the training only by the choice of the pro-
jection matrix V j in Definition 7.4 and in the hyperparameter optimization by a
modification of the log marginal likelihood log q (y |✓ ) in Section 7.2.7.3. These
two changes can also be made for our local sparse CPoE model. In particular, we
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modify V j and aj according to the values in Table 5.2 in the projection conditional

p
�

f j|a ( j)
�

=N
�

f j

�

�H ja ( j), V j

�

,

and in the lower bound to the log marginal likelihood

L(✓ ) = logq(y |✓ )−
J
X

j=1

aj(✓ ).

This generalizes the CPoE method, such that for C ! J , we recover the men-
tioned global methods in Table 5.2. Thereby, the involved Nyström matrix QX j X j

is in this context slightly adapted, namely,

QX j X j
= K X j A ( j)K

−1
A ( j)A ( j)

K A ( j)X j
.

The setting in VFE [Titsias, 2009] is particularly interesting, since it constitutes
in the global case a direct posterior approximation derived via a variational max-
imization of the lower bound of the log marginal likelihood as shown in Section
4.2.3.1. Moving a bit away from the true marginal likelihood of full GP has the
effect that overfitting (w.r.t. full GP) can not happen when optimizing the hyper-
parameters with the lower bound. This is particularly important when all induc-
ing inputs are optimized, as it is usually recommended in sparse global methods.
Note that, this is not the case for our model, since it allows to have a number
of inducing points in the order of the number of data samples. In the adapted
"local VFE" model, when using V j = 0 and minimize also aj = t r{K X j X j

−QX j X j
},

has the effect that the model is locally variationally optimal. However, it would
be interesting to directly derive a lower bound analogously to Titsias [2009], so
that the posterior of our CPoE model is rigorously connected to full GP. Since this
is not a straight-forward extension, we postpone this task to future work. Below,
we present the connection to full GP for this adapted model in the joint prior
sense analogously to Proposition 7.8 for the local FITC model.

Proposition 7.9 (Local VFE) Using the deterministic conditional q( f j|a ( j)) =
N
�

f j

�

�H ja ( j),0
�

in the graphical model in Definition 7.4 and Proposition 7.1,
that is, setting the covariance V j = 0 in the projection step, recovers global VFE
for C ! J. Moreover, the difference in KL to full GP of the joint prior is also de-
creasing. In particular, the difference in KL of the prior of the local VFE model for
1 C  C2  J is

D(C ,C2)
[a] =

1
2

log
|QC |
|QC2
| ≥ 0.
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Further, the difference in KL of the projection is

D(C ,C2)
[y |a] = 1

2σ2
n

t r{V̄C − V̄C2
}≥ 0.

The overall prior approximation quality is

D(C ,C2)
[a, y] =

1
2

log
|QC |
|QC2
| +

1
2σ2

n

t r{V̄C − V̄C2
},

where

t r{V̄C}=
N
X

i=1

KX i X i
− KX i A ( ji )

K−1
A ( ji )A ( ji )

KA ( ji )X i
.

Compared to the FITC model, note the difference in the trace instead of the
fraction of the log-determinants.

7.2.9 Additional Results

In this section, we present some additional theoretical results for our CPoE model.

HS−1HT + V̄ HS−1HT + V̄

HS−1HT + V̄ HS−1HT + V

HS−1

HS−1

S−1HTS−1
S−1HTa

f

y

0

0
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2
n

I
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2
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I
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Figure 7.13. Covariance W and precision Z = W−1 of joint prior approximation
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Proposition 7.10 (Prior Approximation II; Proof C.15) Alternatively to Propo-
sition 7.2, the prior approximation q (a) = N

�

a
�

�0,S−1
�

can be equivalently writ-
ten as

q (a) =
J

Y

j=1

p
�

a j|a⇡( j)
�

=

J
Y

j=1

N
Ä

a⇡+( j)
�

�0,S−1
( j)

ä

,
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with S( j) = F̃
T
j Q−1

j F̃ j , F̃ j =
⇥

−F j I
⇤

and ⇡+( j) = ⇡( j) [ j. Further, the prior
precision matrix can also be written as

S =
J
X

j=1

S( j),

where S( j) 2 RM⇥M is the augmented matrix consisting of S( j) 2 RLC⇥LC at the
entries [⇡+( j),⇡+( j)] and 0 otherwise.

Proposition 7.11 (Prior Approximation III; Proof C.16) Alternatively to Propo-
sition 7.2 and Proposition 7.10, the prior approximation q (a) can be equivalently
written as

q (a) =
J

Y

j=1

p
�

a j, a⇡( j)
�

p
�

a⇡( j)
� =

J
Y

j=C

p
�

a⇡+( j)
�

p
�

a⇡( j)
� ,

which is a Gaussian N
�

a
�

�0,S−1
�

with prior precision

S =
J
X

j=1

K
−1

A⇡+( j)A⇡+( j)
− K

−1

A⇡( j)A⇡( j)
,

where K
−1

AφAφ
2 RM⇥M is the augmented matrix consisting of K−1

AφAφ
2 RT⇥T at the

entries [φ,φ] and 0 otherwise with T = |φ|.

Proposition 7.12 (Exact Diagonal of Prior; Proof C.14) The precision matrix SC

of the prior approximation qC(a) is exact on the diagonal, that is,

t r(SC K AA) = J L,

where J L is the dimension of the matrices.

Proposition 7.13 (Band-Diagonal Approximation) In the consecutive case, i.e.
 ( j) = { j − C + 1, . . . , j}, the block-entries

S−1
[ ( j), ( j)] = K AA[ ( j), ( j)],

are equal, which means that the block-band-diagonals −C + 1, . . . , 0, . . . , C − 1 of
the both matrices are the same. For the case C = J it holds S−1 = K AA.
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Proposition 7.14 (Decreasing Prior Entropy; Proof C.10) For any predecessor
structure ⇡C as in Definition 7.2, the entropy H of the approximate prior qC(a) is
decreasing for C ! J, in particular

H [q1(a)]≥ · · ·≥ H
⇥

qj(a)
⇤

≥ · · ·≥ H [qJ(a)] ,

where it holds H [qJ(a)] = H [p(a)] and

H[qj(a)] =
1
2

log |QC |+
M
2
(1+ log2⇡).

Similar results can be obtained for the joint prior qC(a, f , y).

From the last proposition we know, that increasing the degree of correlation C
add always more information to the prior. In particular, the prior of complete
independent PoEs (i.e. C = 1) encodes the least of information, since all correla-
tions between the experts are missing, whereas the prior of full GP incorporates
the most information, since all correlations are modeled.

7.3 Comparison

In this section, we compare the performance with competitor methods for GP
approximations using several synthetic and real world datasets as summarized in
Table 7.5a. In this thesis, we provided a slighlly shortened versions of this section,
for more details about the experiments we refer to the Appendix of Schürch et al.
[2022].
First, we examine the accuracy vs. time performance of different GP algorithms
for fixed hyperparameters in a simulation study with synthetic GP data. We gen-
erated N = 8192 data samples in D = 2 with 5 repetitions from the sum of two
SE kernels with a shorter and longer lengthscale, such that both global and local
patterns are present in the data, as indicated in Figure 7.16. In Figure7.17, the
mean results are shown for the KL and RMSE to full GP, the 95%-coverage and the
log marginal likelihood against time in seconds. The results for sparse GP with
increasing number of global inducing points Mg are shown in blue, the results for
minVar, GPoE and BCM for increasing number of experts J are depicted in red,
cyan and magenta, respectively. For CPoE, the results for increasing correlations
C are shown in green. We observe superior performance of our method com-
pared to competitors in terms of accuracy compared to full GP vs. time. More-
over, one can observe that the confidence information of our model are reliable
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KL time

concrete mg space abalone kin concrete mg space abalone kin

fullGP 0.0 0.0 0.0 0.0 0.0 7.3 25.5 114.8 237.9 161.5
SGP(100) 352.9 9.9 108.1 15.6 603.7 36.4 14.4 46.6 58.9 42.2
minVar 122.2 19.4 63.6 25.1 211.0 1.5 2.0 7.2 6.4 9.3
GPoE 174.4 54.2 98.0 50.3 342.3 1.4 1.9 7.2 6.3 9.4
GRBCM 224.6 69.1 105.6 36.4 129.8 1.7 2.3 6.5 7.6 11.9
CPoE(1) 111.1 12.2 63.0 16.8 152.4 1.5 2.1 7.8 6.4 9.2
CPoE(2) 89.6 8.4 36.5 8.1 79.9 2.1 2.8 10.6 7.5 12.9
CPoE(3) 82.2 7.8 36.3 6.2 46.9 2.5 3.1 12.9 9.3 19.8
CPoE(4) 79.5 7.6 36.0 4.7 32.8 2.8 3.3 14.9 10.4 27.8

Table 7.3. Results with deterministic optimization. Average KL to full GP (left) and
time (right) for different GP methods and 5 datasets with 10 repetitions. More results
are provided in Appendix C.3.

already for small approximation orders, since it is based on the consistent covari-
ance intersection method. More details about the experiment is provided in the
supplementary material of Schürch et al. [2022].
Second, we benchmark our method with 10 real world datasets as summarized
in Table 7.5a. For the 5 smaller datasets in the first block we use deterministic
parameter optimization, for which the average results over 10 training/testing
splits are depicted in Table 7.3. In particular, the KL to full GP (left) and time
(right) for different GP methods are shown. Similarly, the average accuracy and
computational times for the 4 larger datasets in the second block, where stochas-
tic parameter optimization is exploited, can be found in Table 7.4.
In general, the local methods perform better than the global sparse method. Fur-
ther, the performance of our correlated PoEs is superior to the one of independent
PoEs for all datasets. In particular, the KL to full GP can be continuously improved
for increasing degree of correlation, i.e. larger C values. The time for CPoE(1)
is comparable with the independent PoEs and for increasing C , our approxima-

Figure 7.16. Generated data by a sum of 2 SE-kernels with local and global lengthscales.
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Figure 7.17. Average accuracy vs. time performance of different GP algorithms.

CRPS time

kin2 cadata sarcos casp kin2 cadata sarcos casp

SGP(500) 0.183 0.253 0.069 0.329 112.1 346.9 730.1 632.9
SGP(1000) 0.166 0.252 0.063 0.325 244.1 727.6 1718.5 1362.5
minVar 0.173 0.257 0.052 0.294 14.4 28.2 71.3 45.8
GPoE 0.193 0.289 0.086 0.302 14.4 28.3 71.4 45.6
GRBCM 0.164 0.262 0.060 0.310 16.5 33.5 84.6 59.4
CPoE(1) 0.163 0.259 0.052 0.289 13.8 24.5 45.4 45.1
CPoE(2) 0.155 0.251 0.051 0.287 18.9 33.4 67.3 70.3
CPoE(3) 0.151 0.249 0.051 0.282 31.7 52.0 134.3 123.8

Table 7.4. Results with stochastic optimization. Average CRPS (left) and time (right)
for different GP methods and 4 datasets with 5 repetitions. More results are provided in
Section C.3 in the Appendix.

tion has a moderate increase in time with a significant decrease in KL. For more
details about the experiments we refer to the Appendix of Schürch et al. [2022],
and for more results, e.g. tables including standard deviations, are provided in
Appendix C.3.

7.3.1 Application

In this Section, our method is applied on time series data with covariates using a
rather complicated and non-stationary kernel together with priors on the hyper-
parameters, as discussed in Section 7.2.7.3. In recent work [Corani et al., 2021],
the authors have shown that GPs constitute a competitive method for modelling
time series using a sum of several kernels, including priors on the hyperparam-
eters, which are previously learnt from a large set of different time series. We
adapt their idea by using a slightly modified kernel and the same priors. In par-
ticular, for two data points x 1 = [t1, x1,2, . . . , x1,D] and x 2 = [t2, x2,2, . . . , x2,D]
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N D Ntest J

concrete 927 8 103 4
mg 1247 6 138 8
space 2797 6 310 8
abalone 3760 8 417 16
kin 5192 8 3000 16

kin2 7373 8 819 16
cadata 19640 8 1000 64
sarcos 43484 21 1000 128
casp 44730 9 1000 128

elecdemand 2184 3 15288 13

(a) Description of datasets.

KL KL IN KL OUT time

full GP 0.0 0.0 0.0 404.3

SGP(100) 120.9 110.5 146.7 56.3
SGP(200) 114.9 65.6 238.3 75.2
minVar 503.0 406.5 744.5 20.7
GPoE 328.0 336.0 307.9 20.4
GRBCM 393.4 382.1 421.8 28.2

CPoE(1) 289.5 255.1 375.5 20.5
CPoE(2) 113.1 108.5 124.3 36.8
CPoE(3) 86.4 61.9 147.6 39.7
CPoE(4) 58.3 59.4 55.5 52.9

(b) KL to full GP and time of different methods.

Table 7.5. Summary of used datasets and results for the elecdemand time series.

we model the kernel as the sum of 4 components

k✓ (x 1, x 2) = kP1
(t1, t2) + kP2

(t1, t2) + kSM(t1, t2) + kSE(x 1, x 2),

where kP1
and kP1

are standard periodic kernels with period p1 and p2, respec-
tively, to capture the seasonality components of the time series. Further, kSM is
a spectral-mixture kernel and kSE a squared-exponential kernel. Note that, the
former 3 kernels only depend on the first variable, which corresponds to time,
whereas the SE-kernel depends on all variables, thus models the influence of the
additional covariates. With our CPoE model it is straightforward to handle time
series with covariates, as opposed to other time series methods [Benavoli and
Corani; Corani et al., 2021; Sarkka et al., 2013; Hyndman and Athanasopoulos,
2018]. The kernel k✓ depends on several hyperparameters ✓ for which we use
the parametrization in Corani et al. [2021]. We assume a log-normal prior on
✓ as described in Section 7.2.7.3 in which the corresponding means and vari-
ances are taken from Table 1 in Corani et al. [2021]. We demonstrate the MAP
estimation for ✓ on the elecdemand time series ([Hyndman, 2020], Table 7.5a),
which contains the electricity demand as response y together with the time as
the first variable x1, the corresponding temperature as x2 and the indicator vari-
able whether it is a working day as x3, which is depicted in the plots in Fig. 7.18
on the left, where we shifted the first and third variable in the second plot for the
sake of clarity. Similarly as in the previous section, we run full GP, SGP, PoEs and
CPoE and optimized the hyperparameter deterministically, using the MAP as ob-
jective function taking into account the priors. The results are provided in Table
7.5b and in Fig. 7.18 on the right, which again show very competitive perfor-
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mance also for a general kernel with priors on the hyperparameters. A complete
description of the experiment is given in the Appendix of Schürch et al. [2022].
Overall, the experiments in this section demonstrate superior performance of
CPoE compared to state-of-the-art GP approximation algorithms. In particular,
competitive results can be experimentally verified for synthetic GP data as well as
for real world data in multiple dimensions, using different kernels, and including
priors on the hyperparameters.

Figure 7.18. Time series data with covariates and prior on hyperparameters.

7.4 CPoE via Gaussian Belief Propagation

In this section, we present an alternative inference approach for the model Cor-
related Product of Experts (CPoE), as presented in Section 7.2 and evaluated in
Section 7.3. Although the underlying model is equivalent, the inference approach
is different, so that new insights and connections to a range of other probabilis-
tic methods and algorithms can be established. The CPoE algorithm presented
in Section 7.2 is based on the exploitation of local conditional independence
assumptions, as illustrated in Figure 7.19. This figure constitutes a different vi-
sualization of the graphical models of full GP, sparse global GPs, and CPoE in
Figures 7.2a.i)-ii) and 7.5a.i), respectively.
This local representation leads to a block-sparse precision matrix ⇤ = ⌃−1 and
natural mean⌘ of the posterior distribution q(a|y) =N −1 (a|⌘,⇤) =N

�

a
�

�µ,⌃
�

of the local inducing points a, as presented in Proposition 7.3. For inference in
this model, the posterior mean µ and some entries in the posterior covariance
⌃ ( j) are required. In the previous sections, our approach was to solve the cor-
responding block-sparse linear system ⇤µ = ⌘ based on sparse block Cholesky



192 7.4 CPoE via Gaussian Belief Propagation

·
·
·

·
·
·

y1 yi

yN yN−1

y3y2

f1 fi

fN fN−1

f3f2

(a) Full GP

·
·
·

·
·
·

y1 yi

yN yN−1

y3y2

f1 fi

fN fN−1

f3f2

a

(b) Sparse Global GP

·
·
·

·
·
·

y1 yi

yN yN−1

y3y2

f1 fi

fN fN−1

f3f2

(c) Correlated PoE

Figure 7.19. Fully connected latent function values in full GP (a), global inducing points
in sparse GPs (b), and local correlation structure of CPoE (c).

decomposition of the precision matrix for obtaining µ. Further, the needed en-
tries ⌃ ( j) are computed via partial inversion based on an adapted approach by
Takahashi [1973], as discussed in Section 7.2.7.2.
Another approach for inference in this model constitutes Belief Propagation (BP)
[Koller and Friedman, 2009, Section 11.3.2], or, in particular in our case Gaus-
sian Belief Propagation (GaBP) [Koller and Friedman, 2009, Section 14.2.3];
[Murphy, 2012, Section 20.2.3], which can be used for computing the marginal
posterior distributions for each factor in the product of the joint posterior dis-
tribution. BP can be implemented as iterative message passing procedure on
the posterior factor graph and operates by sending and receiving local mes-
sages from neighboring nodes. We will see, that the resulting local posterior
marginal distributions in the factor graph correspond exactly to the needed en-
tries N

�

a ( j)
�

�µ ( j),⌃ ( j)
�

.
The GaBP is exact if the underlying graph is a tree, otherwise, loopy BP [Koller
and Friedman, 2009, Chapter 11] can be applied, where several iterations are
performed. If the loopy GaBP message passing process converges, which can
be proven for certain conditions [Weiss and Freeman, 1999; Malioutov et al.,
2006], the resulting posterior beliefs encode the correct marginal mean µ ( j)
of the joint distribution, however, the estimated marginal posterior covariances
⌃ ( j) are generally not correct. In particular, they are underestimates of the
true covariances, so that the resulting posteriors are "overconfident", which is
not a desired property. An exact solution for general underlying graphs can be
achieved by constructing as so-called junction tree or clique tree [Koller and Fried-
man, 2009, Chapter 10], and to perform BP on this graph instead. Since this is
a tree, all marginal distributions are then exact.
We first discuss the construction of the junction tree based on the initial directed
graph of the experts in Section 7.4.1. Next, the particular factorization of the
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Figure 7.20. Connection between sparse matrices and graphs. In particular, we show
the correlation structure between the experts in the first column in form of a directed
graph and the transition matrix F . The resulting posterior precision matrix ⌃−1 can be
encoded as the corresponding moral graph, as shown in the second column. Finally, the
structure of the Cholesky factor L of the posterior precision matrix has the same structure
as the chordal completion.

joint distribution is discussed in 7.4.2, together with the Gaussian belief propa-
gation in Section 7.4.3. Finally, we outline some future work and provide con-
cluding remarks in Section 7.4.4.

7.4.1 Construction of Junction Tree

First, the construction of a junction tree from a given directed graph over the
sparse experts is discussed. This general procedure is described in [Koller and
Friedman, 2009, Section 10.4], summarized in Algorithm 3, and illustrated in
Figures 7.20-7.22. We start from a given directed graph G = (V, E) with nodes
V = f [ y [ a = {v1, . . . , v2N+M} and edges E according to Definition 7.3. From
this graph G, we compute the corresponding undirected moral graph M =

(V, EM). In particular, all directed edges E are interpreted as undirected and
some additional edges are added to the original edges to obtain EM . Intuitively,
those additional edges are added, so that all experts in the predecessor set are
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connected. Based on this moralized graphM, a chordal graph C = (V, EC) is com-
puted by adding further edges. This is also known as triangulation of a graph.
Note that, exact algorithms for a chordal completion with minimal number of
additional edges are not feasible in general, since this problem is NP-complete.
There are several useful heuristics, e.g. min-fill, which show often good perfor-
mance for computing chordal completions with additional edges as few as pos-
sible. These steps are illustrated in Figure 7.20 for an example with C = 2 and
γ = 1. In particular, the latent function values f j and the observed data y j are
depicted in the inner and outer circle, respectively. In the lower row, we de-
pict also the corresponding sparse matrices from Section 7.2, since the task of
computing a minimum chordal completion of a moral graph and the problem
of finding an optimal permutation matrix in the Cholesky decomposition with
minimal number of fill-in entries is closely related [Barfoot, 2020].

Figure 7.21. Construction of junction tree from chordal graph via clique graph.

Based on the obtained chordal graph C, all cliques Q = {q1, . . . ,q T} are com-
puted. These cliques are fully connected subgraphs in C, and thus, each clique
contains some variables from the original set of variable V . Note that, the size of
the largest clique is also called treewidth. These cliques can be used to compute
the clique graph CG = (Q, EQ), in which an edge is present in EQ, iff two cliques
q i and q j have at least one common variables and the edge weight correspond
to the number of common variables. From this clique graph CG, a maximum
spanning tree is computed, which corresponds then to the final junction tree
J T = (Q, EJ). This is illustrated in Figure 7.21, where in the first 3 plots only
the unobserved nodes, i.e. the ones involving f j, are depicted for the sake of
simplicity. In particular, we depict the chordal graph over the (unobserved) vari-
ables in V (red) in the first plot, the corresponding clique graph over the cliques
Q (blue) in the second plot, and the maximum spanning tree of the clique graph
in the third plot. This graph corresponds to the junction tree over the cliques,
however, involving only the latent values f j. In the last plot, we depict the cor-
responding junction tree including the observed variables y j, where the base
structure is the same as in previous graph. This junction tree structure can then
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be used to pass the local messages among the edges, so that the local marginal
posteriors can be computed. In Figure 7.22, we present several examples of this
construction for increasing degree of correlation C between the experts.

Algorithm 3 - Construction of Junction Tree
adapted from [Koller and Friedman, 2009, Section 10.4]

Require: directed graph G = (V, E) as in Def. 7.3
Ensure: compute junction tree J T = (Q, EJ)

. compute moralized graph M = (V, EM): construct the undirected
moral graph form the directed graph G

. compute chordal graph C = (V, EC): make triangulation of moral
graph M with as few additional edges, e.g. with min-fill heuristics

. compute clique graph CG = (Q, EQ): compute all cliques Q of the
chordal graph C, that is, find all fully connected subgraphs

. compute junction tree J T = (Q, EJ): compute maximum spanning
tree of clique graph CG, weights are number of common variables

7.4.2 Factorization of Joint Distribution

In the previous section, the construction of a junction tree is discussed. This is
independent of the particular associated distribution to the initial directed graph.
In this section, we explain the connection between the factors in this distribution
and the nodes in the clique graph.

7.4.2.1 Initial Factors of Variables

We first define the initial factors in the undirected graph G = (V, E) over the
initial variables V = f [ y [ a = {v1, . . . , v2N+M}. In particular, we introduce
the general formulation for the joint distribution q(V ) = q( f , y) of the graphical
model in (7.7), that is,

q(V ) =
Y

v i2V

φ0(v i) =

J
Y

j=1

p
�

y j| f j

�

p
�

f j|a ( j)
�

p
�

a j|a⇡( j)
�

. (7.12)

Therefore, the initial factors are φ0(v j) = p
�

f j| f ⇡( j)
�

for 1  j  N , φ0(v j) =

p
�

y j| f j

�

for N < j  2N , and φ0(v j) = p
�

a j|a⇡( j)
�

for j > 2N .
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Figure 7.22. Different underlying directed graphs (1st column) between the experts
with increasing degree of correlation (per rows) and the corresponding chordal graphs,
clique graphs, and junctions trees (2st-4rd columns).
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7.4.2.2 Factors of Clique Nodes

As discussed in Section 7.4.1, from the directed graph G = (V, E) over the nodes
V , we can compute the corresponding clique graph CG = (Q, EQ) over the cliques
Q = {q1, . . . ,qK}. Next, we discuss the assignment of the initial factors φ0 over
V to the factors φ of the cliques in Q. Note that, this assignment is not unique,
since the original nodes are present in several cliques. We define the assignment
function ass(v j), which assigns each node v j 2 V to a clique q k, in which the
node is contained v j 2 q k. For the sake of uniqueness, we thereby choose the
smallest index k = arg mini2{1,...,K} v j 2 q i. Similarly, we defined the reverse
assignment f acts(q k) =

S

v j2V v j1[ass(v j) = q k], including all nodes v j, where
an initial factor φ0 is associated to clique q k. Then, the distribution over the
cliques q(Q) can be formulated as

q(Q) =
Y

q k2Q

φ(q k) =
Y

q k2Q

Y

v j2 f acts(q k)

φ0(v j). (7.13)

Note that, the distributions q(V ) in (7.12) and (7.13) q(Q) are equal, they only
constitute a different factorization of the joint distribution. In particular, the
factorization (7.13) over the cliques allow efficient local posterior inference.

7.4.3 Belief Propagation

In this section we describe the belief propagation (BP) algorithm on the junction
tree J T = (Q, EJ). We first select a root clique q0 2Q, and propagate messages
from the leaves in J T towards the root among all edges (q i,q j) 2 EJ . The
messages are based on the sum-product algorithm [Koller and Friedman, 2009,
Section 10.2], where the sums are replaces by integrals, since we consider contin-
uous variables. In particular, the message from clique q i to q j can be computed
as

δq i!q j
(q j) =

Z

φ(q i)
Y

q k2 neigh(q i)\q j

δq k!q i
(q k) d[q i \ q j], (7.14)

where first all incoming messagesδq k!q i
(q k) from all neighbors of q i in neigh(q i),

except q j, are multiplied together with the clique potential φ(q i). From this
product, all variables contained in clique q i but not q j, are integrated out, so
that the scope of the message δq i!q j

(q j) consists of all common variables be-
tween clique q i and q j. This message passing process proceeds up the root q0 of
the tree. When the root clique has received all messages, it multiplies them with
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its own initial potential to get the (unormalized) belief potential β(q0), which
can be computed in general for clique q i as

β(q i) = φ(q i)
Y

q k2 neigh(q i)

δq k!q i
(q k). (7.15)

At this stage, the belief of the root clique is calibrated, however, the belief of all
other cliques are not. In order to get a completely calibrated tree, the messages
based on Equation (7.14) have to be sent backwards, i.e. from the root to all
leaves. If all leaves have received their messages, the tree is fully calibrated.
Note that, with this procedure, only all marginal prior beliefs of the cliques can
be computed, since we did not condition on any observed variables.

7.4.3.1 Dealing with Observed Variables

In this section, we briefly describe a modification of the above message passing
algorithm that can deal with observed variables. Thereby, we split the compu-
tations in (7.14), in particular, we first compute the product over all involved
factors

β− j(q i) = φ(q i)
Y

q k2 neigh(q i)\q j

δq k!q i
(q k), (7.16)

which is similar to the belief (7.15) without the message from clique q j. Instead
of directly integrating out all variables from this product (7.16), we condition
first on the observed variables v o 2 q i in the clique q i, which is denoted as the
following operation

δq i
(q i \ v o) = Γ β

−(q i)
�

� v o. (7.17)

Finally, all variables, which are not in the scope of clique q j, are integrated out
from (7.17), that is,

δq i!q j
(q j) =

Z

δq i
(q i \ v o) d[q i \ {q j [ v o}]. (7.18)

The (unormalized) belief over each clique q i can again be computed by

β(q i) = φ(q i)
Y

q k2 neigh(q i)

δq k!q i
(q k). (7.19)

Note that, this belief correspond now to the marginal posterior distribution over
clique q i.
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7.4.3.2 Belief Propagation via Division

In the previous Section 7.4.3, we showed an approach for message passing in
junction trees, based on the sum-product approach (7.14). Alternatively, we can
use the sum-product-divide belief propagation approach [Koller and Friedman,
2009, Section 10.3], which maintains always the current beliefs β(q i) (7.19)
and exploits the division operation, so that the belief β− j(q i) in (7.16) without
the message from q j can be computed as

β− j(q i) =
β(q i)

δq j!q i

. (7.20)

The conditioning (7.17) and marginalization (7.18) can be analogously com-
puted as in the previous section. This approach is mathematically equivalent to
that of the previous section, however, it is often more convenient for computing
all marginal posterior distributions over all cliques, therefore, our implementa-
tion1 is based on this approach.

7.4.3.3 Gaussian Belief Propagation (GaBP)

The belief propagation (BP) procedure relies on three operations, namely, the
marginalization and the conditioning operation, as well as computing the prod-
uct of two (unormalized) densities. Thus, BP can be applied to all distributions,
where these operations can be performed efficiently. Here, we focus on the
multivariate Gaussians, since the initial potentials φ0 are all Gaussians. In this
case, these three operations can be efficiently computed when working with the
canonical form of Gaussians, as described in Section 2.1.1.3. In particular, the
marginalization is defined in (2.9), the conditioning in (2.10), and the product
and division in (2.11).

7.4.4 Summary

The approach presented in this Section 7.4 allows to compute all marginal poste-
rior distributions N

�

a ( j)
�

�µ ( j),⌃ ( j)
�

. In particular, by performing GaBP on the
constructed junction tree based on the directed graph of the experts, all posterior
marginal distributions of the cliques can be computed. From these cliques, it is
easy to derive the marginal posterior distributions in the region of correlation
 ( j) of each expert, from which local predictions can be obtained and aggre-
gated, as discussed in Section 7.2.4. This approach is an alternative method for

1Thes code is available on https://github.com/manuelIDSIA/CPoE-BP.
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computing local marginal posterior distributions in an efficient and clean way by
exploiting the structure of the induced junction tree. This approach establishes
connections between GP approximation methods and local message passing al-
gorithms, which opens up several new research directions for future work, as
outlined in Section 8.2.

7.5 Summary of Contributions

7.5.1 Conclusion

In this chapter, we introduced a novel GP approximation algorithm "Correlated
Product of Experts" (CPoE), where the degree of approximation can be adjusted
by a locality and a sparsity parameter, so that the proposed method recovers
independent PoEs, sparse global GP and full GP. We showed that our method
consistently approximates full GP, in particular, we proved that increasing the cor-
relations between the experts decreases monotonically the KL of the joint prior
of full GP to them of our model. The presented algorithm has only a few hyper-
parameters, which allows an efficient deterministic and stochastic optimization.
Further, our presented algorithm works with a general kernel, with several vari-
ables and also priors on the hyperparameters can be included. Moreover, the
time and space complexity is linear in the number of experts and number of
data samples, which makes it highly scalable. This is demonstrated with effi-
cient implementations, so that a dataset with several ten thousands of samples
can be processed in around a minute on a standard Laptop. In several experi-
ments with synthetic and real world data, superior performance in a accuracy vs.
time sense compared to state-of-the-art GP approximations methods is demon-
strated for the deterministic and stochastic case, which makes our algorithm a
competitive method for GPs approximations. Moreover, we present an alterna-
tive approach for inference in the same model based on local message passing or
belief propagation algorithm. This novel approach for GP approximation estab-
lishes several connections to other probabilistic methods and algorithms.

7.5.2 Contributions

The content of this Chapter 7 is based on the paper "Correlated Product of Experts
for Sparse Gaussian Process Regression" by Schürch et al. [2022], except the sec-
tions "Generalizations of Bayesian Linear Models" in 7.2.6 and "CPoE via Gaussian
Belief Propagation" in 7.4 is unpublished material. In particular, the approach
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presented in Section 7.4 constitutes an additional novel contribution and opens
up several future work, as outlined in Section 8.2. The the other sections of this
chapter are slightly adapted from the paper, where some sections are extended,
and some shortened. We included several more explanations, in order to make
some connections clearer, on the other hand, we did not include some details for
the sake of brevity. In the following, we summarize the novel scientific contribu-
tions contained in this chapter:

• General Dependency Structure: We introduce a novel unifying GP ap-
proximation model with a general dependency structure among the latent
function values, which unifies several existing GP approximation methods.

• Combining Global and Local Approaches: Our model combines the ad-
vantages from both global sparse GP models and local independent Product
of Experts.

• Recovering of Existing Methods: The main idea of our model is to in-
troduce some correlations between local sparse experts, where the degree
of correlation and the sparsity can be adjusted by two parameters, so that
independent PoE, sparse global GPs and full GPs can be recovered in the
limiting cases.

• Analytic Inference: Our model allows analytic inference by exploiting the
sparse posterior precision matrix induced by conditional independence as-
sumptions among the latent function values. Thereby, the first inference
approach is based on block-sparse Cholesky decomposition.

• Efficient Hyperparameter Estimation: For our model, we provide effi-
cient hyperparameter estimation methods, including stochastic optimiza-
tion approaches, which allows to train our model for a large number of
training data points.

• Superior Performance: We compare our novel model with state-of-the-art
methods for GP approximations and demonstrate, in several experiments
for synthetic as well as real world data, superior performance in terms of
accuracy vs. time.

• Generalization of Bayesian Linear Models: We explain, that several pre-
sented GP approximation models in this thesis can be seen as generaliza-
tions of the ordinary Bayesian linear model. This provides novel insight
and justifications of our methods.
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• Connection to Gaussian Belief Propagation: We present an alternative
inference approach of the CPoE model based on local belief propagation
between the experts. This opens up several connections to other proba-
bilistic methods and algorithms as well as it initiates several directions for
future work, as outlined in Section 8.2.



Chapter 8

Conclusion and Future Work

8.1 Summary

This thesis provides novel contributions to scalable Gaussian processes. In par-
ticular, the properties of GPs with focus on regression methods were reviewed,
the state-of-the-art methods for their approximations were analyzed, and their
strengths and limitations were discussed. To make GPs scalable to large datasets,
new methodologies and novel algorithms were proposed, theoretically supported
and empirically evaluated by several experiments. In particular, the novel con-
tent can be summarized as follows.

• Chapter 5 - Recursive Estimation for Sparse GPs: A unifying algorithm
for sparse GPs in the online and distributed setting was introduced.

• Chapter 6 - Sequential Hyperparameters Learning for Sparse GPs: Two
novel algorithms for sequential hyperparameters learning were presented,
enabling to scale GPs up to millions of training samples.

• Chapter 7 - Correlated Product of Experts for Sparse GPs: A new GP
approximation method based on locally correlated experts was proposed,
unifying several existing local and global GP approximations.

These proposed methods union high scalability with accurate performance, so
that state-of-the-art performance in several tasks was achieved and a range of
new applications are opened up for GPs. Our work can be extended into several
directions, which range from practical improvements to the development of new
methodologies and the application of our derived methods in new areas. In the
following, we highlight some particularly interesting research direction for the
future.

203
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8.2 Future Work

8.2.1 Online Algorithm for Sparse GPs

In Chapter 6, we presented two novel approaches for sequential hyperparam-
eter learning for a range of sparse GP models. In this section, an idea for an
adapted and complete online algorithm for sparse GPs is presented. In our re-
cursive model, we assumed global optimal hyperparameters ✓ , even though we
trained them with the aid of mini-batches sequentially over several epochs. Af-
terwards, these global optimal hyperparameters are fixed and used for inference
at level I, that is, for analytically computing the posterior distribution of the in-
ducing points. A different setting is online learning of the hyperparameters, as
explained in Section 6.1. Thereby, we assume that the hyperparameters can vary
for each mini-batch, and old mini-batches cannot be revisited again. In Section
5.2.11 we already outlined connections between our recursive model and dynam-
ical state space systems. Thereby, the state of the varying system correspond to
the global inducing points a j = f✓ j

(A), indexed by the current hyperparameters.
This corresponds to the following model

y j = f j + " j,

f j = H(✓ j) a j + γ j,

a j = F(✓ j,✓ j−1) a j−1 + qj,

where the projection matrix is similarly defined as H(✓ j) = K
✓ j

XA

Ä

K
✓ j

AA

ä−1
and

the novel transition matrix F(✓ j,✓ j−1) = K
✓ j

XA

Ä

K
✓ j−1

AA

ä−1
takes into account the

varying hyperparameters. The optimal states a j can be obtained by the Kalman
Filter, as discussed in Chapter 5, including the prediction step for the transition.
Further, the optimal states can also be smoothed backwards via the Kalman-
Smoother [Kalman et al., 1960]. A preliminary example is given in Figure 8.1,
where we see the non-stationary behavior. We are convinced, that this constitutes
a promising approach to probabilistic model flexible non-stationary functions.

Figure 8.1. Online varying hyperparameters for sparse GPs.
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8.2.2 Variational Approach for CPoE

In this section, we outline an approach to theoretically and thoroughly link our
presented CPoE method to full GP in a posterior sense, instead of in a prior sense,
as we showed in Section 7.2.5 and particularly in Proposition 7.8. Thereby, we
have proven that the KL, between the true joint distribution p(a, f , y) of full
GP and our approximate joint distribution qc,γ(a, f , y), is decreasing for C ! J .
This means, the approximation quality of the joint prior of our model is mono-
tonically improving for increasing correlation. Although this demonstrates that
our proposed method constitutes a well principled GP approximation in a prior
sense, there is still a missing link between our model and full GP in a posterior
sense. In Section 7.2.8, we presented a generalization of our model, so that for
the maximal correlation, i.e. C = J , CPoE corresponds to a range of known sparse
global GP methods. For instance, the variational approach by Titsias [2009] can
be recovered, where a rigorous connection between the sparse GP model and
full GP in the posterior sense exist. It would be interesting to directly derive a
modified CPoE model via variational inference, so that the posterior of our model
qc,γ(a, f |y) would be thoroughly connected to full GP p(a, f |y).

8.2.3 Efficient Drawing of Posterior Samples

As demonstrated in this thesis, there are several approaches for training scal-
able GPs, however, methods for accurately generating draws from the posterior
distribution have received relatively little attention [Wilson et al., 2020]. Draw-
ing a posterior sample of full GP involves the inversion of the covariance matrix
⌃(X⇤) 2 RNtest⇥Ntest in (3.16) of the posterior predictive distribution for test in-
puts X⇤ 2 RNtest⇥D, which scales cubically in the number Ntest of test locations.
We outline here an idea to efficiently draw posterior samples based on the sparse
and local decomposition in our CPoE method. In particular, we can exploit our
sparse precision matrix in (7.9). This allows to draw a posterior sample, evalu-
ated at all local inducing points, where the total number of these local inducing
points can be in the order of the number of training points N . Therefore, if the
evaluation points are known before training and Ntest ⇡ N , the local inducing
points can be set to the test points. Otherwise, this approach could be gener-
alized to posterior samples evaluated at new test points. Based on the sparse
posterior precision, local and correlated posterior samples can be obtained in a
similar spirit to the local and correlated predictions in Chapter 7, which could
then similarly aggregated based on probabilistic averaging techniques, resulting
in an efficient procedure for drawing approximate GP posterior samples.
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8.2.4 Large-Scale GP Implementations for Time-Series

In this section, we present an idea for a practical improvement of the imple-
mentations of our GP approximation method CPoE presented in Chapter 7. In
particular, we plan to build a software library for times-series modeling with GPs
based on the example in Section 7.3.1 and inspired by the work [Corani et al.,
2021]. The main idea is to combine the automatic times-series learning frame-
work [Corani et al., 2021] with our novel scalable GP approximation methods.
In particular, this involves the flexible usage of composed kernels and includes
different priors on the hyperparameters. As demonstrated in Section 7.3.1, our
new GP approximation approach CPoE is ideal suited for this setting, so that auto-
matic times-series estimation can be extended to huge datasets. Form a practical
point of view, we plan to reimplement1 our algorithm CPoE based on tensorflow
and gpflow [Abadi et al., 2015; Matthews et al., 2017], so that we can handle the
different kernels and priors efficiently. This planed software package, based on
our new proposed algorithms, would allow to efficiently exploit large time-series
datasets with scalable GP algorithms.

8.2.5 Unifying GP Model for Regression and Classification

In Section 7.4, we presented an inference approach for the CPoE model by ex-
ploiting local belief propagation algorithms. In particular, from the local cor-
relation structure, the corresponding junction tree (see Section 7.4.1) can be
constructed, from which the local marginal distributions can be efficiently com-
puted by passing messages among the edges of this junction tree. This is again
illustrated in Figure 8.2, where the correlation structure among the local experts
is depicted in the top row, and the corresponding junction tree in the bottom row.
In a first step, we plan to thoroughly investigate this approach for the regression
case (i.e. Gaussian likelihood), in particular the advantages over the Cholesky
based approach presented in Section 7.2 in a sequential and distributed setting.
In a second step, we want to generalize this approach to the non-Gaussian like-
lihood case (e.g. Bernoulli or Poisson distribution). The sparse and local ap-
proximate prior distribution is still assumed to be multivariate Gaussian and
the structure of the junction tree is still the same. Unfortunately, the compu-
tations needed in the belief propagation algorithm cannot be performed analyti-
cally anymore. In this setting, the expectation propagation (EP) approach can be
applied for approximate inference (see Section 4.2.3.2 and [Bishop, 2006, Sec-
tion 10.7]). Thereby, the only difference is that each non-feasible local message

1This will be available on https://github.com/manuelIDSIA/CPoE-tensorflow.
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distribution is projected by its mean and covariance to the mean and covariance
of the closest Gaussian distribution in the KL-sense, as formulated in (4.47) .
This leads then to approximate inference for GPs with non-Gaussian likelihoods.
An alternative and promising exact inference approach for non-Gaussian likeli-
hoods in GPs is based on the skew normal or skew Gaussian distribution [Azzalini,
2013], which can be used for skew GPs [Benavoli et al., 2020]. However, full skew
GPs are again not well suited for large datasets. Our presented local and sparse
GP approach could be generalized to skew GPs, so that efficient and scalable GP
inference would be possible for more general likelihoods.

Figure 8.2. Correlated experts and corresponding junction trees for local inference.

8.2.6 Potential Application Areas for Large-Scale GPs

The novel GP approximation algorithms proposed in this thesis could have many
potential application domains. Similar to full GPs, their scalable approximations
can be applied in a wide range from social to natural science and engineering.
While keeping the advantageous properties of full GPs, the new scalable approxi-
mations allow to exploit much larger datasets. Those algorithms are particularly
well suited for applications, in which scalable, understandable, realiable and
adaptive algorithms are of key importance, such as sequential design of experi-
ments [Bect et al., 2012; Azzimonti et al., 2016], Bayesian optimization [Gins-
bourger et al., 2010; Snoek et al., 2012], and reinforcement learning [Deisenroth
et al., 2013; Grande et al., 2014]. As a subjective aim regarding future areas of
applications, I would like to contribute in projects involving medical and environ-
mental data because of my personal conviction of the importance about applied
research in these areas.
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Appendix A

Orthogonally Decoupled Variational
Fourier Features

In this section, we briefly present a new approach for an algorithm to train sparse
GP methods exploiting two kind of different bases, as described in [Azzimonti,
Schürch, Benavoli, and Zaffalon, 2020]. We briefly provide the necessary back-
ground and a summary of our approach. For more details we refer to the original
paper and its supplementary material.

Background

Sparse global inducing point GP approximation methods, as presented in Section
4.2, have long been the standard method to fit GPs to large datasets. In partic-
ular, Titsias [2009] introduced a variational method that keeps the original GP
prior and approximates the posterior with variational inference, as discussed in
Section 4.2.3.1. An alternative method for variational inference on sparse GPs
was introduced by Cheng and Boots [2016], where the authors proposed a vari-
ational inference method based on a property of the reproducing kernel Hilbert
space (RKHS) associated with the GP. This approach has been improved by Sal-
imbeni et al. [2018], who proposed a powerful orthogonally decoupled basis that
allows for an efficient natural gradient update rule. A parallel line of research
studies inter-domain approaches (Rahimi and Recht [2008] and Lázaro-Gredilla
and Figueiras-Vidal [2009]), which replace inducing points variables with more
informative inducing features, for instance Fourier features.
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Summary

In the approach, as thoroughly described in [Azzimonti et al., 2020], we combine
the flexibility of the orthogonally decoupled RKHS bases introduced in Salimbeni
et al. [2018] and the explanatory power of inter-domain approaches to propose
a new method for training sparse Gaussian processes. In particular, we build
a variational distribution parametrized in the mean by an inducing point basis
and in the covariance by a variational Fourier features basis. Since the basis
in the mean does not require a matrix inversion we can use a large number of
inducing points for the basis in the mean and obtain an approximation close
to the true posterior mean. On the other hand, by using a variational Fourier
features basis in the covariance, we exploit the higher informative power of such
features to obtain better covariance estimates. The orthogonal structure of the
RKHS basis guarantees that the range of the two basis does not overlap. In several
experiments, we demonstrated that our method is competitive with the state-
of-the-art on synthetic as well as real datasets. For more details we refer to
[Azzimonti, Schürch, Benavoli, and Zaffalon, 2020].
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Appendix of Chapter 5

B.1 Proofs

Proof B.1 (Proof of Proposition 5.4) The lower bound to the log marginal like-
lihood logq(y j|y1: j−1) ≥ L

�

qj( f j, a)
�

in (5.20) can be formulated accordingly to
(4.35) for z = [ f j, a]T , leading to

L(qj( f j, a)) =

Z

qj( f j, a) log
p( f j, a, y j|y1: j−1)

qj( f j, a)
d f j da. (B.1)

Thereby, the true joint sequential distribution is given as

p( f j, a, y j|y1: j−1) = p(y j| f j)p( f j|a)p(a|y1: j−1), (B.2)

where we assume by recursion that the true distribution correspond to the previ-
ous optimal distribution p(a|y1: j−1) = q⇤j−1(a) = N

�

a
�

�µ j−1,⌃ j−1

�

. Plugging the
structure of the variational distribution (5.19) and (B.2) into (B.1) leads to

L(qj(a)) =

Z

p( f j|a) qj(a) log
p(y j| f j) p( f j|a) q⇤j−1(a)

p( f j|a) qj(a)
d f j da

=

Z

p( f j|a) qj(a) log
p(y j| f j) q⇤j−1(a)

qj(a)
d f j da,

where p( f j|a) cancels out. It can be rearranged to

Z

qj(u)

⇢Z

p
�

f j|a
�

log p
�

y j| f j

�

d f j + log
qj−1(a)

qj(a)

�

da,
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in which the integral involving f j is computed as
Z

p
�

f j|a
�

log p
�

y j| f j

�

d f j

= E f j |a



−
B
2

log(2⇡σ2
n)−

1
2

⇥

y j − f j

⇤T 1
σ2

n

⇥

y j − f j

⇤

�

= −
B
2

log(2⇡σ2
n)−

1
2σ2

n

Ä

y T
j y j +E f j |a

î

f T
j f j − 2y T

j f j

óä

.

(B.3)

Using the true training conditional p( f j|a) =N
Ä

f j
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�H ja, K X j X j
−QX j X j

ä

for com-

puting the expectation by the formula E
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x T Ax
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= Tr [A⌃] + µT Aµ with p(x ) =
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x
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, yields

−
K
2

log(2⇡σ2
n)−

1
2σ2

n

Ä

y T
j y j + tr

î

K X j X j
−QX j X j

ó

+ aT H T
j H ja− 2y T

j H ja
ä

= log
⇥

N
�

y j

�

�H ja,σ2
nI
�⇤

−
1

2σ2
n

tr
î

K X j X j
−QX j X j

ó

for the integral in (B.3). Substitute this expression back, the sequential lower bound
becomes

Z

qj(a) log
N
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y j
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qj(a)
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1
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.

We can now maximize this bound with respect to qj(a) by taking functional deriva-
tives with respect to qj(a) yielding the optimal distribution

q⇤j (a) =N
�

y j
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,

which match the results in Proposition 5.4 and completes the proof.

B.2 Details for Recursive Gradient Propagation

We show here the computation for the recursive gradient propagation from Sec-
tion 6.2 for the PEP model. For other models, aj and V from the Table 5.2 could
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be used correspondingly. We will use the following notation: diag [A] = d, di =

aii, Diag [d] = A, aii = di, ai j = 0, A � B = C , ci j = ai j bi j, A ÷ B = C , ci j =
ai j

bi j
,
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L̇d j X j X j
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j Ḣ j

For the noiseσn, all jernel derivatives are zero, therefore the calculations simplify
significantly.
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Appendix of Chapter 7

C.1 Proofs

Proof C.1 (Proof of Proposition 7.1; Joint Distribution) . The matrices in the
conditional distributions (7.5) and (7.6) in Proposition 7.1 can be obtained via
Gaussian conditioning (2.3) from the assumed joint densities

p
Ä

f i
j, a ( j)

ä
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0, K [X i
j ;A ( j)][X

i
j ;A ( j)]

ä

,

p
�

a j, a⇡( j)
�
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,

resulting in

H j = K X j A ( j)K
−1
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,
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],
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,

Q j = K A j A j
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−1
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K A⇡( j)A j
,

with F1 = 0 and Q1 = K A1A1
.

Proof C.2 (Proof used in Definition 7.4; Joint Distribution II) In the case γ=
1, thus a j = f j and a = f , the joint distribution can be written as q ( f , a, y) =
q ( f , f , y) = q ( f , y), which is equivalent to
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since

p
�

f j, f  ( j)
�

p
�

f  ( j)
� =

p
�

f j, f j, f  ( j)\ j
�

p
�

f j, f  ( j)\ j
� = 1.

Proof C.3 (Proof of Proposition 7.7; Equality to Full GP ) Full GP: For γ= 1,
the joint distribution of our model is formulated in Definition 7.4 and Proof C.2.
For C = J, we have

qJ( f , y) =
J

Y

j=1

p
�

y j| f j

�

p
�

f j| f ⇡J ( j)

�

,

where the predecessor set ⇡J( j) correspond to {1, . . . , j − 1} and thus the condi-
tional variables f ⇡( j) = f 1: j−1. The posterior qJ( f |y) is proportional to the joint
distribution qJ( f , y) (see Proof C.12), thus we have

qJ( f |y)/
J

Y

j=1

p
�

y j| f j

�

p
�

f j| f 1: j−1

�

,

which is equal to the posterior distribution of full GP (7.1). Also the hyperparam-
eter optimization is the same, since the marginal likelihood qJ(y) can be derived
from the joint qC( f , y) (see Proof C.13). Further, in the prediction step, for C = J
we have J2 = C − J + 1 = 1 predictive expert which is based on the full region
 (J) = {1, . . . , J}. Therefore we conclude that the two models in considerations are
the same.

Sparse global GP: Similarly, for C = J but γ< 1, we have

qJ( f , y) =
J

Y

j=1

p
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p
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p
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y j| f j

�

p
�

f j|a
�

p (a) = p (y | f ) p ( f |a) p (a)

so that the posterior correspond to that of sparse GP in (7.2). The prediction step
simplifies also to 1 predictive expert based on the full region. Moreover, the marginal
likelihood is the same for C = J and could be adapted as shown in Section 7.2.8.



227 C.1 Proofs

Independent local GP: For C = γ= 1 we have

q1( f , y) =
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Y
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,

which is equal to (7.3). Prediction and hyperparameter estimation similar as above.

Proof C.4 (Proof of Proposition 7.2; Prior Approximation) Here we prove the
first part for the prior over a, the second part is proven in Proof C.5. Using Propo-
sition 7.10 (with Proof C.15), the prior q (a) can be equivalently written as
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where Q̄−1
j 2 RM⇥M a zero matrix except Q−1

j 2 RL⇥L at the entries [⇡+( j),⇡+( j)].
Further, the matrix F̄ j 2 RM⇥M has one sparse row at j, that is,
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...

...
...

...
...

...
...

...
...

...
0 · · · −F1

j 0 −F i
j · · · −F

I j

j I · · · 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

5

,

where F i
j 2 RL⇥L is the ith part of F j 2 RL⇥L(C−1), which corresponds to the contri-

bution of the ith predecessor ⇡i( j).
By using the property in (2.11), the original product q(a) is then

J
Y

j=1

N
⇣

a
�

�0,
Ä

F̄ T
j Q̄−1

j F̄ j

ä−1⌘

=N

 

a
�

�0,

Ç

J
X

j=1

F̄ T
j Q̄−1

j F̄ j

å−1!

= N
Ä

a
�

�0,
�

F T Q−1F
�−1ä

=N
�

a
�

�0,S−1
�

with Q−1 = Diag[Q−1
1 , . . . ,Q−1

J ] and F corresponds then to the matrix depicted in
Fig. 7.6. Note that, S is positive definite since Q−1 positive definite because each Q−1

j
is positive definite, which concludes the proof.
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Proof C.5 ((Sub)proof of Proposition 7.2 (Projection Approximation) ) The pro-
jection q ( f |a) = qC( f |a) is

qC( f |a) =
J

Y

j=1

p
�

f j|a ( j)
�

=

J
Y

j=1

N
�

f j

�

�H ja ( j), V j

�

,

where H j 2 RB⇥LC and V j 2 RB⇥B. The log of this density in f j 2 RB is proportional
to

/ −1
2
( f j −H ja ( j))

T V
−1

j ( f j −H ja ( j)),

which can be equivalently written as

−
1
2
(I j f − H̄ ja)

T V̄
−1

j (I j f − H̄ ja),

with V̄ j 2 RM⇥M with V j at [ ( j), ( j)]. Further, H̄ j 2 RBJ⇥M the following matrix

2

6

6

6

6

6

4

0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 · · · H1

j 0 H i
j · · · HC−1

j HC
j · · · 0

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0

3

7

7

7

7

7

5

,

where jth row not empty with H i
j 2 RB⇥L the ith entry in H j , which corresponds to

to i( j). Further, I j 2 RBJ⇥BJ a zero matrix with I 2 RB⇥B at [ j, j]. For the original
product of the projections

qC( f |a) =
J

Y

j=1

N
Ä

0
�

�I
T
j f − H̄ ja, V̄ j

ä

,

using the product rule of Gaussians in (2.11), we obtain

N

 

0
�

�V
J
X

j

V̄
−1

j

�

I j f − H̄ ja
�

,

Ç

J
X

j

V̄
−1

j

å−1!

= N

Ç

0
�

�VV
−1

J
X

j

�

I j f − H̄ ja
�

, V

å

=N

Ç

0
�

�

J
X

j

�

I j

�

f −
J
X

j

�

H̄ j

�

a, V

å

= N
�

0
�

�I f −Ha, V
�

=N
�

f
�

�Ha, V
�

.

This concludes the statement, since V positive definite.
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Proof C.6 (Proof of Proposition 7.8; Decreasing Prior KL) We first show the de-
composition

D(C ,T )[ f , a, y] = D(C ,T )[a] +D(C ,T )[ f |a] +D(C ,T )[y | f ].

Starting with Equation (7.10), we get

D(C ,T )[ f , a, y]

= Ep( f ,a,y)

ï

log
qC+T ( f , a, y)
qC( f , a, y)

ò

= Ep(y | f )p( f |a)p(a)

ï

log
qC+T (y | f )qC+T ( f |a)qC+T (a)

qC(y | f )qC( f |a)qC(a)

ò

=

Z

p(y | f )p( f |a)p(a) log
qC+T (y | f )qC+T ( f |a)qC+T (a)

qC(y | f )qC( f |a)qC(a)
da d f dy

=

Z

p(a)

✓Z

p( f |a)
Z

p(y | f ) log
qC+T (y | f )
qC(y | f )

dy · · ·

+ log
qC+T ( f |a)
qC( f |a)

�

d f + log
qC+T (a)
qC(a)

◆

da

=

Z

p(a) log
qC+T (a)
qC(a)

da+

Z

p(a)

Z

p( f |a) log
qC+T ( f |a)
qC( f |a)

d f

+

Z

p( f )

Z

p(y | f ) log
qC+T (y | f )
qC(y | f )

dy d f

= Ep(a)

ï

log
qC+T (a)
qC(a)

ò

+Ep(a)

ï

Ep( f |a)

ï

log
qC+T ( f |a)
qC( f |a)

òò

+Ep( f )

ï

Ep(y | f )

ï

log
qC+T (y | f )
qC(y | f )

òò

= D(C ,T )[a] +D(C ,T )[ f |a] +D(C ,T )[y | f ],

where we used Equation (7.10). We also immediately see that

D(C ,T )[y | f ] = 0,

since qC(y | f ) = qC+T (y | f ) = p(y | f ) is exact. The proofs for D(C ,T )[a] ≥ 0 and
D(C ,T )[ f |a]≥ 0 are given in Proof C.7, C.8 and C.8, respectively.

Proof C.7 (Proof of Subproof I of Proof C.6) We prove

D(C ,T )[a] = Ep(a)

ï

log
qC+T (a)
qC(a)

ò

≥ 0.
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We abbreviate q1(a) = qC(a) and q2(a) = qC+T (a). The difference D(C ,T )[a] is

Z

p(a) log
q2(a)
q1(a)

da =

Z

p(a) log

QJ
j=1 p

�

a j|a⇡2( j)

�

QJ
j=1 p

�

a j|a⇡1( j)

� da

=

Z

p(a)
J
X

j=1

log
p
�

a j|a⇡2( j)

�

p
�

a j|a⇡1( j)

� da =
J
X

j=1

Z

p(a) log
p
�

a j|a⇡2( j)

�

p
�

a j|a⇡1( j)

� da.

We recall property (iii) in Definition 7.2, thus we have ⇡2( j) = ⇡1( j)[φ( j), where
φ( j) is the additional predecessor of expert j in the model 2 compared to model 1.
In the following, we abbreviate ⇡1( j) = ⇡( j) yielding

J
X

j=1

Z

p(a) log
p
�

a j|a⇡( j), aφ( j)
�

p
�

a j|a⇡( j)
� da

=

J
X

j=1

Z

p(a) log
p
�

a j|a⇡( j), aφ( j)
�

p
�

aφ( j)|a⇡( j)
�

p
�

a j|a⇡( j)
�

p
�

aφ( j)|a⇡( j)
� da

=

J
X

j=1

Z

p(a) log
p
�

a j, aφ( j)|a⇡( j)
�

p
�

a j|a⇡( j)
�

p
�

aφ( j)|a⇡( j)
� da

=

J
X

j=1

Z

p(ã j) log
p
�

a j, aφ( j)|a⇡( j)
�

p
�

a j|a⇡( j)
�

p
�

aφ( j)|a⇡( j)
� dã j

=

J
X

j=1

I
�

a j, aφ( j)|a⇡( j)
�

≥ 0,

where ã j = a j [ aφ( j) [ a⇡( j) and I
�

a j, aφ( j)|a⇡( j)
�

the conditional mutual infor-
mation, which is always positive [Ajjanagadde et al., 2017, p. 30] and therefore
concludes the first part of the proof.

Proof C.8 (Subproof II of Proof C.6) We prove

D(C ,T )[ f |a] = Ep(a)

ï

Ep( f |a)

ï

log
qC+T ( f |a)
qC( f |a)

òò

≥ 0.

We abbreviate q1( f |a) = qC( f |a) and q2( f |a) = qC+T ( f |a). The differenceD(C ,T )[ f |a]
is

Z

p(a)

Z

p( f |a) log
q2( f |a)
q1( f |a)

d f da =

Z

p(a, f ) log

QJ
j=1 p

�

f j|a 2( j)

�

QJ
j=1 p

�

f j|a 1( j)

� d f da
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=

Z

p(a, f )
J
X

j=1

log
p
�

f j|a 2( j)

�

p
�

f j|a 1( j)

� d f da =
J
X

j=1

Z

p(a, f ) log
p
�

f j|a 2( j)

�

p
�

f j|a 1( j)

� d f da.

We recall the definition of C( j) in Definition 7.2, namely, C( j) = ⇡C( j)[ { j, . . . , C}
if j < C and C( j) = ⇡C( j) [ j otherwise. Further, we have ⇡2( j) = ⇡1( j)[φ( j),
where φ( j) is the additional predecessor of expert j in the model 2 compared to
model 1. Therefore, we have  2( j) = 1( j) [ φ( j) for all j.
[Proof: If j < C, we have ⇡1( j) = ⇡2( j) since φ( j) empty. Therefore, we have

 1( j) = ⇡1( j) [ { j, . . . , C}= ⇡2( j) [ { j, . . . , C}= 2( j) for all j = 1, . . . , C −1.
If j ≥ C, we have 1( j) = ⇡1( j) [ j and 2( j) = ⇡2( j) [ j = ⇡1( j) [ φ( j) [ j =
 1( j) [ φ( j) for all j = C , . . . , J. ]

We abbreviate  1( j) = ( j) and substitute  2( j) = ( j) [ φ( j) yielding

J
X

j=1

Z

p(a, f ) log
p
�

f j|a ( j), aφ( j)
�

p
�

f j|a ( j)
� d f da

=

J
X

j=1

Z

p(a, f ) log
p
�

f j|a ( j), aφ( j)
�

p
�

aφ( j)|a ( j)
�

p
�

f j|a ( j)
�

p
�

aφ( j)|a ( j)
� da

=

J
X

j=1

Z

p(a, f ) log
p
�

f j, aφ( j)|a ( j)
�

p
�

f j|a ( j)
�

p
�

aφ( j)|a ( j)
� da

=

J
X

j=1

Z

p(ã j, f j) log
p
�

f j, aφ( j)|a ( j)
�

p
�

f j|a ( j)
�

p
�

aφ( j)|a ( j)
� dã j

=

J
X

j=1

I
�

f j, aφ( j)|a ( j)
�

≥ 0,

where ã j = aφ( j) [ a ( j) and I
�

f j, aφ( j)|a ( j)
�

the conditional mutual information
which is always positive [Ajjanagadde et al., 2017, p. 30] and therefore concludes
the first part of the proof.

Moreover, the difference in the joint prior is

D(C ,T )[ f , a, y] = D(C ,T )[ f , a] = D(C ,T )[a] +D(C ,T )[ f |a]

=
1
2

log
|V̄C ||S−1

C |
|V̄C+T |S−1

C+T ||
=

1
2

log
|V̄C ||QC+T |
|V̄C+T |QC ||

≥ 0.
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Proof C.9 (Subproof III of Proof C.6; Prior KL) For the second part, we use (7.10),
where the difference in KL of 2 Gaussians with zero mean and same base distribution
is formulated. In our case we have

1
2

Å

t r((SC − SC+T )K AA) + log
|SC+T |
|SC |

ã

,

where the trace is 0 by Proposition 7.12 and thus D(C ,T ) =
1
2 log |SC+T |

|SC | . Since SC =

F T Q−1F and |F |= 1, we have D(C ,T ) =
1
2 log |QC |

|QC+T | , which concludes the proof.

Proof C.10 (Proof of Proposition 7.14; Decreasing Prior Entropy) For the third
part of the statement, the entropy H of qC(a) is

H[qC(a)] =
1
2
(− log |SC |+ J L(1+ log2⇡)) =

1
2
(log |QC |+ J L(1+ log2⇡)) ,

where we used Eq. (2.7) and |F |= 1. The second part follows from Proposition 7.7.
Using Proof C.9, which states

D(C ,T ) =
1
2

log
|QC |
|QC+T |

≥ 0,

it follows

log |QC |≥ log |QC+T |

for any T 2 {1, . . . , C − 1} and therefore

H[qC+T (a)] H[qC(a)],

which concludes the proof.

Proof C.11 ((Sub)Proof of Proposition 7.3; Marginalized Joint Distribution)
From the joint distribution in Definition 7.4 over all variables, the latent function
values f can be integrated out resulting in

q (a, y) =

Z

q ( f , a, y)d f =

Z

p (y | f )q ( f |a)d f q (a) ,

where the integral can be computed via (2.2) yielding

q (a, y) =

Z

p (y | f )q ( f |a)d f =

Z

N
�

y
�

� f ,σ2
nI
�

N
�

f
�

�H f , V
�

d f =N
�

y
�

�Ha, V
�

with V = V +σ2
nI. Thus

q (a, y) = q (y |a)q (a) =N
�

y
�

�Ha, V
�

N
�

a
�

�0,S−1
�

,

which concludes the proof.
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Proof C.12 (Proof of Proposition 7.3; Posterior Approximation) The posterior
approximation is

q (a|y) = q (a, y)
q (y)

/ q (a, y) = q (y |a)qC(a),

where the first equality comes from the definition of conditional probabilities, the
proportionality because the marginal likelihood q(y) is independent of a and the
last equality exploits Proof C.11. Since

q (y |a)qC(a) =N
�

y
�

�Ha, V
�

N
�

a
�

�0,S−1
�

,

the desired posterior distribution can be analytically computed via (2.6) yielding

q (a|y) =N
�

a
�

�µ,⌃
�

,

with ⌃ =
�

H T V−1H + S
�−1

, µ = ⌃⌘ and ⌘ = H T V−1y .

Proof C.13 (Proof of Proposition 7.4; Marginal Likelihood) The marginal like-
lihood q(y) is obtained by integrating (2.2) over the joint distribution q (y , a),
leading to

q (y) =

Z

q (y , a)da =

Z

q (y |a)q (a)da =

Z

N (Ha, V)N
�

0,S−1
�

da =N (0, P) ,

where P = HS−1H T + V .

Proof C.14 (Proof of Proposition 7.12; Exact Diagonal of Prior) Using Propo-
sition 7.11, the trace can be written as

t r (SK AA) = t r

ÇÇ

J
X

j=1

K
−1

A⇡+( j)A⇡+( j)
− K

−1

A⇡( j)A⇡( j)

å

K AA

å

=

J
X

j=1

t r
Ä

K
−1

A⇡+( j)A⇡+( j)
K AA

ä

− t r
Ä

K
−1

A⇡( j)A⇡( j)
K AA

ä

.

By construction of the matrices K
−1

Aφ ,Aφ
, they contain the matrix K−1

Aφ ,Aφ
at the entries

[φ,φ]. Therefore, the resulting product, when multiplying with K AA, is a matrix
with identity IT at the position [φ,φ] with T = |φ| and 0 at the diagonal where
not φ. The quantity above is then

J
X

j=1

L|⇡+( j)|− L|⇡ ( j) |=
J
X

j=1

L (min( j, C)−min( j − 1, C − 1)) = J L.
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Proof C.15 (Proof of Proposition 7.10; Prior Approximation II) The prior ap-
proximation is

q(a) =
J

Y

j=1

p
�

a j|a⇡( j)
�

=

J
Y

j=1

N
�

a j

�

�F ja⇡( j),Q j

�

,

for which the quadratic term inside the exponential of the individual Gaussian can
be written as

−
1
2
(a j − F ja⇡( j))

T Q−1
j (a j − F ja⇡( j))−

1
2

⇥

aT
⇡( j) aT

j

⇤



−F T
j

I

�

Q−1
j

⇥

−F j I
⇤



a⇡( j)
a j

�

which corresponds to a Gaussian

N
Ä

a⇡+( j)
�

�0,S−1
( j)

ä

with S( j) = F̃
T
j Q−1

j F̃ j 2 RLC⇥LC and F̃ j =
⇥

−F j I
⇤

2 RL⇥LC , which proves the first
part. We can augment this Gaussian for a⇡+( j) 2 RLC to

−
1
2

aT S̄−1
( j)a / N

Ä

a
�

�0, S̄−1
( j)

ä

over a 2 RM, where S̄( j) 2 RM⇥M is the augmented matrix consisting of S( j)at the
entries [⇡+( j),⇡+( j)] and 0 otherwise. Using (2.11), the original product q(a) is
then

J
Y

j=1

N
Ä

a
�

�0, S̄−1
( j)

ä

=N

 

a
�

�0,

Ç

J
X

j=1

S̄( j)

å−1!

and thus S =
PJ

j=1 S̄( j) positive definite, which concludes the proof.

Proof C.16 (Proof of Proposition 7.11; Prior Approximation III) The prior q(a)
can be written as

q(a) =
J

Y

j=1

p
�

a j|a⇡( j)
�

=

J
Y

j=1

p
�

a j, a⇡( j)
�

p
�

a⇡( j)
� =

J
Y

j=1

p
�

a⇡+( j)
�

p
�

a⇡( j)
�

=

J
Y

j=1

N
Ä

a⇡+( j)
�

�0, K A⇡+( j)A⇡+( j)

ä

N
Ä

a⇡( j)
�

�0, K A⇡( j)A⇡( j)

ä .

Similarly to the Proof C.15, we can augment the C L-dimensional and the (C −
1)L-dimensional Gaussian in the nominator and denominator, respectively, to a
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M-dimensional Gaussian with covariance K
−1

AφAφ
consisting of K−1

AφAφ
at the entries

[φ,φ] and 0 otherwise. This gives with (2.11)

J
Y

j=1

N
Ä

a
�

�0, K A⇡+( j)A⇡+( j)

ä

N
Ä

a
�

�0, K A⇡( j)A⇡( j)

ä =N

 

a
�

�0,

Ç

J
X

j=1

K
−1

A⇡+( j)A⇡+( j)
− K

−1

A⇡( j)A⇡( j)

å−1!

,

. Since
S =

PJ
j=1 K

−1

A⇡+( j)A⇡+( j)
− K

−1

A⇡( j)A⇡( j)
positive definite, this concludes the proof.

Proof C.17 (Proof of Proposition 7.5; Prediction Aggregation) The predictive
posterior distribution is defined as

p ( f⇤|y) =
J

Y

j=C

p
�

f⇤ j|y
�β⇤ j .

Since the local predictions p
�

f⇤ j|y
�

=N
�

m⇤ j, v⇤ j
�

are all univariate Gaussians, we
obtain via the product rule of Gaussians in (2.11) directly

m⇤ = v⇤ j

J
X

j=C

β⇤ j
m⇤ j
v⇤ j

and
1
v⇤
=

J
X

j=C

β⇤ j

v⇤ j
.

Using the usual likelihood p (y⇤| f⇤) = N
�

f⇤,σ
2
n

�

yields with (2.2) the final noisy
prediction p (y⇤|y) =

R

p (y⇤| f⇤) p ( f⇤|y)d f⇤ =N
�

m⇤, v⇤ +σ
2
n

�

.

Proof C.18 (Proof of Proposition 7.6; Local Predictions) The predictive condi-
tional p

�

f⇤ j|a ( j)
�

can be again derived via (2.3) from the assumed joint

p
�

f⇤ j, a ( j)
�

=N
Ä

0, K [x ⇤,A ( j)][x ⇤,A ( j)]
ä

leading to N
�

h⇤a ( j), v⇤
�

with

h⇤ = K x ⇤A ( j)K
−1
A ( j)A ( j)

and
v⇤ = K x ⇤x ⇤ − K x ⇤A ( j)K

−1
A ( j)A ( j)

K A ( j)x ⇤ .

Moreover, the local posteriors q
�

a ( j)|y
�

= N
�

µ ( j),⌃ ( j)
�

are obtained from the
corresponding entries  ( j) of the mean µ and covariance ⌃ (via partial inversion
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7.2.7.2) in Prop, 7.3. Finally, the local predictions p
�

f⇤ j|y
�

in Proposition (7.6)
can then be computed with Gaussian integration (2.2) yielding

q
�

f⇤ j|y
�

=

Z

p
�

f⇤ j|a ( j)
�

p
�

a ( j)|y
�

da ( j),

which correspond to the desired quantities

N
�

m⇤ j, v⇤ j
�

=N
�

h⇤µ ( j), hT
⇤
⌃ ( j)h⇤ + v⇤

�

.

Proof C.19 (Proof for Figure 7.13; Joint Prior Covariance) For the joint prior

qC(a, f , y) =N
�

[a; f ; y]
�

� 0, W γ

�

with covariance

W γ =

2

4

⌃aa ⌃a f ⌃ay

⌃ f a ⌃ f f ⌃ f y

⌃ya ⌃y f ⌃y y

3

5

corresponding to Fig. 7.13, we show that we recover the marginal and conditional
distributions qC(a), qC( f |a) and p(y | f ). For qC(a), the marginalization corre-
sponds to selecting the corresponding mean and covariance, i.e. N
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C.2 Additional Material

Derivatives of LML

The log marginal likelihood in Section 7.2.7.3 is proportional to
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In the following, we provide the partial derivative with respect to ✓ for each
additive term.
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In the last expression, the whole posterior covariance is needed, however, it turns
out that only the entries, which are non-zero in the precision, are needed. The
right term in the last expression equals sum

¶
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, where � denotes the

pointwise multiplication. Therefore it is enough to only compute sum
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,

where⌃ is the partial inversion (for more derails 7.2.7.2). which is sparse as well
and already computed for the local predictions in Proposition 7.6. The deriva-
tives of the log-determinants can be computed as follows:
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The derivatives @⌃−1

@ ✓
, @ V
@ ✓

and @Q
@ ✓

can be computed via chain rule of derivatives.

C.3 Tables

Here we provide more results for the experiments in Section 7.3 and the datasets
in Table 7.5a. In the following, we report different average quantities for sev-
eral test points x ⇤, y⇤, corresponding to the predictive distributions p (y⇤|y) =
N (m⇤, v⇤). The considered quantities are Kullback-Leibler-(KL)-divergence (KL)
to full GP, Continuous Ranked Probability Score (CRPS) and 95%-coverage (COV),
root mean squared error (RMSE), absolut error (ABSE), negative log probability
(NLP), root mean squared error to full GP (ERR) and log marginal likelihood
(LML).
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We use the KL to compare the closeness of predictive distributions of different
GP approximation models to the one of full GP N (m, v). Since both are uni-
variate Gaussians, the K L (N (m, v) kN (m⇤, v⇤)) can be computed as follow-
ing 1

2

Ä

log v⇤
v +

v
v⇤
+
(m−m⇤)

2

v⇤
− 1

ä

. The CRPS can be used to assess the respec-
tive accuracy of two probabilistic forecasting models. In particular, it is a mea-
sure between the forecast CDF F⇤ of N (m⇤, v⇤) and the empirical CDF of the
observation y⇤ and is defined as CRPS(F⇤, y⇤)

R �

F(z)− 1z≥y⇤

�2
dz. The 95%-

confidence interval can be computed as c1,2 = m⇤ ± 1.96
p

v⇤. The 95%-coverage
is then defined as COV = 1c1y⇤c2

. The negative log probability is −p (y⇤|y) =
1
2 log (2⇡v⇤)+

(y⇤−m⇤)
2

2v⇤
. For all quantities except LML (large values are better) and

COV (should be close to 0.95), small values mean better predictions.
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time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 7.3 ± 0.6 -314.2 ± 5.1 0.0 ± 0.0 0.0 ± 0.0 0.162 ± 0.004 0.311 ± 0.011 0.218 ± 0.005 0.47 ± 0.12 0.92 ± 0.01
SGP(25) 6.4 ± 0.6 -595.4 ± 10.7 440.3 ± 19.6 0.314 ± 0.008 0.234 ± 0.005 0.422 ± 0.01 0.324 ± 0.005 1.11 ± 0.04 0.96 ± 0.01
SGP(50) 14.5 ± 2.6 -539.6 ± 10.2 405.0 ± 31.3 0.291 ± 0.012 0.222 ± 0.004 0.402 ± 0.008 0.308 ± 0.005 1.01 ± 0.03 0.95 ± 0.01
SGP(100) 36.4 ± 2.9 -494.6 ± 7.8 352.9 ± 29.5 0.264 ± 0.011 0.211 ± 0.004 0.384 ± 0.007 0.292 ± 0.006 0.92 ± 0.03 0.95 ± 0.01
minVar 1.5 ± 0.1 -389.8 ± 2.9 122.2 ± 13.1 0.156 ± 0.012 0.175 ± 0.004 0.335 ± 0.011 0.236 ± 0.005 0.61 ± 0.09 0.92 ± 0.01
GPoE 1.4 ± 0.1 -389.8 ± 2.9 174.4 ± 9.4 0.166 ± 0.01 0.186 ± 0.004 0.342 ± 0.01 0.255 ± 0.007 0.68 ± 0.05 0.96 ± 0.01
BCM 1.4 ± 0.1 -389.8 ± 2.9 338.1 ± 32.7 0.185 ± 0.012 0.195 ± 0.005 0.354 ± 0.01 0.265 ± 0.007 1.16 ± 0.12 0.82 ± 0.01
RBCM 1.4 ± 0.1 -389.8 ± 2.9 427.9 ± 35.0 0.166 ± 0.013 0.187 ± 0.005 0.342 ± 0.011 0.249 ± 0.006 1.43 ± 0.21 0.79 ± 0.01
GRBCM 1.7 ± 0.1 -465.0 ± 3.1 224.6 ± 30.3 0.202 ± 0.011 0.19 ± 0.004 0.352 ± 0.01 0.262 ± 0.006 0.71 ± 0.05 0.92 ± 0.01
CPoE(1) 1.5 ± 0.0 -397.0 ± 2.8 111.1 ± 12.5 0.146 ± 0.011 0.175 ± 0.004 0.333 ± 0.011 0.237 ± 0.006 0.59 ± 0.09 0.93 ± 0.01
CPoE(2) 2.1 ± 0.1 -345.1 ± 5.6 89.6 ± 14.3 0.124 ± 0.013 0.172 ± 0.004 0.326 ± 0.011 0.232 ± 0.006 0.6 ± 0.1 0.91 ± 0.01
CPoE(3) 2.5 ± 0.1 -337.0 ± 5.5 82.2 ± 14.3 0.116 ± 0.013 0.17 ± 0.004 0.323 ± 0.01 0.231 ± 0.005 0.59 ± 0.1 0.91 ± 0.01
CPoE(4) 2.8 ± 0.1 -339.4 ± 5.0 79.5 ± 13.9 0.111 ± 0.012 0.171 ± 0.004 0.324 ± 0.011 0.232 ± 0.005 0.6 ± 0.1 0.91 ± 0.01

Table C.1. Results for dataset concrete.

time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 25.5 ± 1.1 -994.2 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 0.283 ± 0.002 0.511 ± 0.004 0.39 ± 0.005 1.49 ± 0.02 0.94 ± 0.0
SGP(25) 7.5 ± 0.7 -1082.8 ± 0.9 93.49 ± 3.86 0.232 ± 0.005 0.316 ± 0.003 0.561 ± 0.004 0.445 ± 0.005 1.68 ± 0.02 0.94 ± 0.0
SGP(50) 9.7 ± 1.4 -1042.7 ± 5.2 41.4 ± 5.59 0.146 ± 0.012 0.299 ± 0.003 0.537 ± 0.003 0.416 ± 0.006 1.59 ± 0.01 0.94 ± 0.0
SGP(100) 14.4 ± 0.8 -1009.6 ± 1.2 9.86 ± 1.73 0.069 ± 0.006 0.285 ± 0.002 0.514 ± 0.004 0.395 ± 0.005 1.51 ± 0.02 0.94 ± 0.0
minVar 2.0 ± 0.2 -1025.8 ± 1.1 19.39 ± 1.78 0.101 ± 0.005 0.282 ± 0.002 0.508 ± 0.005 0.39 ± 0.003 1.48 ± 0.02 0.93 ± 0.0
GPoE 1.9 ± 0.1 -1025.8 ± 1.1 54.22 ± 1.64 0.162 ± 0.003 0.301 ± 0.002 0.535 ± 0.004 0.424 ± 0.006 1.6 ± 0.01 0.96 ± 0.0
BCM 1.9 ± 0.1 -1025.8 ± 1.1 257.61 ± 8.81 0.209 ± 0.005 0.313 ± 0.003 0.555 ± 0.006 0.422 ± 0.004 2.02 ± 0.04 0.82 ± 0.0
RBCM 1.9 ± 0.1 -1025.8 ± 1.1 38.35 ± 1.56 0.132 ± 0.003 0.295 ± 0.003 0.528 ± 0.005 0.408 ± 0.005 1.56 ± 0.02 0.92 ± 0.0
GRBCM 2.3 ± 0.2 -1048.9 ± 1.7 69.12 ± 6.48 0.196 ± 0.01 0.307 ± 0.004 0.551 ± 0.007 0.431 ± 0.006 1.64 ± 0.02 0.94 ± 0.0
CPoE(1) 2.1 ± 0.1 -1025.8 ± 1.1 12.18 ± 0.92 0.079 ± 0.003 0.284 ± 0.002 0.51 ± 0.004 0.393 ± 0.003 1.49 ± 0.02 0.94 ± 0.0
CPoE(2) 2.8 ± 0.1 -1010.1 ± 1.5 8.44 ± 0.66 0.066 ± 0.003 0.285 ± 0.002 0.512 ± 0.004 0.394 ± 0.004 1.5 ± 0.02 0.93 ± 0.0
CPoE(3) 3.1 ± 0.1 -1007.0 ± 1.5 7.83 ± 0.58 0.064 ± 0.002 0.285 ± 0.002 0.513 ± 0.004 0.394 ± 0.004 1.5 ± 0.02 0.93 ± 0.0
CPoE(4) 3.3 ± 0.1 -1004.8 ± 1.5 7.59 ± 0.63 0.062 ± 0.003 0.285 ± 0.002 0.513 ± 0.004 0.393 ± 0.004 1.5 ± 0.02 0.93 ± 0.0

Table C.2. Results for dataset mg.

time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 114.8 ± 4.3 -2113.6 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.255 ± 0.005 0.471 ± 0.01 0.348 ± 0.007 1.3 ± 0.04 0.95 ± 0.0
SGP(50) 34.8 ± 4.8 -2319.6 ± 7.4 137.62 ± 7.41 0.259 ± 0.009 0.288 ± 0.005 0.531 ± 0.012 0.395 ± 0.007 1.57 ± 0.04 0.95 ± 0.0
SGP(100) 46.6 ± 6.1 -2242.4 ± 7.5 108.14 ± 6.24 0.229 ± 0.008 0.279 ± 0.005 0.514 ± 0.012 0.382 ± 0.007 1.5 ± 0.04 0.95 ± 0.0
SGP(150) 56.6 ± 6.8 -2205.9 ± 6.6 90.94 ± 6.01 0.21 ± 0.009 0.275 ± 0.005 0.508 ± 0.012 0.376 ± 0.007 1.47 ± 0.04 0.94 ± 0.0
minVar 7.2 ± 0.2 -2312.6 ± 6.8 63.58 ± 2.93 0.19 ± 0.01 0.272 ± 0.006 0.508 ± 0.016 0.374 ± 0.008 1.41 ± 0.04 0.95 ± 0.0
GPoE 7.2 ± 0.2 -2312.6 ± 6.8 98.01 ± 3.06 0.2 ± 0.013 0.279 ± 0.006 0.515 ± 0.02 0.378 ± 0.008 1.49 ± 0.03 0.97 ± 0.0
BCM 7.2 ± 0.2 -2312.6 ± 6.8 222.78 ± 4.12 0.2 ± 0.008 0.28 ± 0.007 0.511 ± 0.016 0.38 ± 0.008 1.75 ± 0.1 0.87 ± 0.01
RBCM 7.2 ± 0.2 -2312.6 ± 6.8 635.61 ± 21.61 0.194 ± 0.011 0.285 ± 0.007 0.513 ± 0.018 0.378 ± 0.008 2.54 ± 0.18 0.77 ± 0.01
GRBCM 6.5 ± 0.2 -2397.3 ± 6.2 105.64 ± 5.13 0.24 ± 0.008 0.284 ± 0.005 0.525 ± 0.012 0.391 ± 0.007 1.5 ± 0.04 0.95 ± 0.01
CPoE(1) 7.8 ± 0.2 -2316.1 ± 6.8 62.99 ± 2.94 0.186 ± 0.011 0.272 ± 0.006 0.507 ± 0.018 0.372 ± 0.008 1.41 ± 0.04 0.96 ± 0.0
CPoE(2) 10.6 ± 0.2 -2164.9 ± 6.7 36.45 ± 3.02 0.142 ± 0.011 0.264 ± 0.005 0.491 ± 0.015 0.361 ± 0.008 1.36 ± 0.04 0.95 ± 0.0
CPoE(3) 12.9 ± 0.2 -2165.9 ± 6.7 36.27 ± 2.99 0.141 ± 0.01 0.263 ± 0.005 0.49 ± 0.014 0.361 ± 0.008 1.36 ± 0.04 0.95 ± 0.0
CPoE(4) 14.9 ± 0.2 -2166.2 ± 6.7 36.03 ± 3.0 0.14 ± 0.01 0.263 ± 0.005 0.489 ± 0.014 0.361 ± 0.008 1.36 ± 0.04 0.95 ± 0.0

Table C.3. Results for dataset space.
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time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 237.9 ± 12.2 -3722.3 ± 7.4 0.0 ± 0.0 0.0 ± 0.0 0.34 ± 0.005 0.635 ± 0.012 0.459 ± 0.006 1.92 ± 0.04 0.94 ± 0.0
SGP(20) 21.9 ± 2.5 -3785.3 ± 5.8 27.8 ± 4.1 0.15 ± 0.01 0.343 ± 0.004 0.635 ± 0.011 0.463 ± 0.005 1.93 ± 0.03 0.95 ± 0.0
SGP(50) 26.4 ± 3.6 -3758.7 ± 7.6 22.4 ± 3.9 0.14 ± 0.01 0.342 ± 0.004 0.633 ± 0.011 0.461 ± 0.006 1.93 ± 0.03 0.94 ± 0.0
SGP(100) 58.9 ± 7.0 -3746.9 ± 7.4 15.6 ± 3.5 0.11 ± 0.01 0.34 ± 0.005 0.631 ± 0.012 0.457 ± 0.006 1.92 ± 0.04 0.94 ± 0.0
minVar 6.4 ± 0.4 -3847.3 ± 7.2 25.1 ± 1.5 0.15 ± 0.0 0.346 ± 0.005 0.647 ± 0.013 0.466 ± 0.006 1.94 ± 0.04 0.94 ± 0.0
GPoE 6.3 ± 0.4 -3847.3 ± 7.2 50.3 ± 1.0 0.19 ± 0.0 0.353 ± 0.004 0.652 ± 0.011 0.478 ± 0.006 1.99 ± 0.02 0.96 ± 0.0
BCM 6.3 ± 0.3 -3847.3 ± 7.2 1838.2 ± 46.8 0.16 ± 0.0 0.373 ± 0.006 0.642 ± 0.011 0.473 ± 0.006 5.33 ± 0.24 0.67 ± 0.01
RBCM 6.3 ± 0.3 -3847.3 ± 7.2 1147.4 ± 64.8 0.12 ± 0.0 0.362 ± 0.006 0.638 ± 0.012 0.466 ± 0.006 4.01 ± 0.21 0.73 ± 0.01
GRBCM 7.6 ± 0.4 -3864.0 ± 7.6 36.4 ± 1.9 0.18 ± 0.0 0.353 ± 0.004 0.661 ± 0.011 0.477 ± 0.005 1.98 ± 0.03 0.94 ± 0.0
CPoE(1) 6.4 ± 0.4 -3848.6 ± 7.3 16.8 ± 0.6 0.12 ± 0.0 0.342 ± 0.004 0.638 ± 0.012 0.463 ± 0.005 1.92 ± 0.03 0.95 ± 0.0
CPoE(2) 7.5 ± 0.3 -3737.3 ± 7.0 8.1 ± 0.5 0.08 ± 0.0 0.341 ± 0.005 0.636 ± 0.012 0.463 ± 0.006 1.92 ± 0.04 0.94 ± 0.0
CPoE(3) 9.3 ± 0.5 -3736.5 ± 7.2 6.2 ± 0.6 0.07 ± 0.0 0.341 ± 0.005 0.636 ± 0.012 0.461 ± 0.006 1.92 ± 0.04 0.94 ± 0.0
CPoE(4) 10.4 ± 0.3 -3733.7 ± 7.0 4.7 ± 0.5 0.06 ± 0.0 0.34 ± 0.005 0.635 ± 0.012 0.46 ± 0.006 1.91 ± 0.04 0.94 ± 0.0

Table C.4. Results for dataset abalone.

time LML KL ERR CRPS RMSE ABSE NLP COV

fullGP 161.5 ± 3.6 -1232.1 ± 7.4 0.0 ± 0.0 0.0 ± 0.0 0.148 ± 0.001 0.267 ± 0.001 0.207 ± 0.001 0.17 ± 0.01 0.94 ± 0.0
SGP(100) 42.2 ± 6.5 -4033.6 ± 27.1 603.7 ± 9.4 0.4 ± 0.01 0.265 ± 0.003 0.476 ± 0.005 0.369 ± 0.004 1.35 ± 0.02 0.96 ± 0.0
SGP(200) 49.8 ± 3.3 -3141.3 ± 17.8 408.4 ± 3.7 0.29 ± 0.0 0.218 ± 0.001 0.392 ± 0.001 0.303 ± 0.001 0.96 ± 0.0 0.96 ± 0.0
SGP(300) 54.8 ± 2.2 -2732.8 ± 13.5 323.1 ± 5.0 0.25 ± 0.0 0.201 ± 0.001 0.363 ± 0.001 0.281 ± 0.001 0.8 ± 0.01 0.96 ± 0.0
minVar 9.3 ± 0.2 -2820.5 ± 9.0 211.0 ± 2.3 0.2 ± 0.0 0.183 ± 0.001 0.333 ± 0.001 0.256 ± 0.001 0.59 ± 0.01 0.94 ± 0.0
GPoE 9.4 ± 0.1 -2820.5 ± 9.0 342.3 ± 2.6 0.23 ± 0.0 0.202 ± 0.001 0.354 ± 0.002 0.278 ± 0.002 0.84 ± 0.01 0.99 ± 0.0
BCM 9.4 ± 0.1 -2820.5 ± 9.0 1629.2 ± 24.7 0.25 ± 0.0 0.218 ± 0.002 0.367 ± 0.002 0.278 ± 0.002 3.45 ± 0.07 0.64 ± 0.0
RBCM 9.4 ± 0.2 -2820.5 ± 9.0 939.3 ± 17.4 0.2 ± 0.0 0.193 ± 0.001 0.331 ± 0.002 0.253 ± 0.001 2.06 ± 0.05 0.71 ± 0.0
GRBCM 11.9 ± 0.2 -2981.3 ± 9.6 129.8 ± 3.0 0.14 ± 0.0 0.168 ± 0.001 0.303 ± 0.001 0.235 ± 0.001 0.43 ± 0.01 0.94 ± 0.0
CPoE(1) 9.2 ± 0.1 -2822.7 ± 8.9 152.4 ± 1.7 0.15 ± 0.0 0.17 ± 0.001 0.307 ± 0.001 0.237 ± 0.001 0.46 ± 0.0 0.97 ± 0.0
CPoE(2) 12.9 ± 0.1 -1811.2 ± 11.1 79.9 ± 1.3 0.11 ± 0.0 0.161 ± 0.001 0.29 ± 0.001 0.225 ± 0.001 0.33 ± 0.01 0.95 ± 0.0
CPoE(3) 19.8 ± 0.3 -1466.0 ± 9.9 46.9 ± 1.0 0.09 ± 0.0 0.155 ± 0.001 0.279 ± 0.001 0.217 ± 0.001 0.26 ± 0.01 0.95 ± 0.0
CPoE(4) 27.8 ± 0.2 -1363.8 ± 9.2 32.8 ± 1.0 0.07 ± 0.0 0.153 ± 0.001 0.276 ± 0.001 0.215 ± 0.001 0.24 ± 0.01 0.94 ± 0.0

Table C.5. Results for dataset kin.

time LML CRPS RMSE ABSE NLP COV

SGP(250) 77.7 ± 0.4 -4163.9 ± 23.7 0.207 ± 0.002 0.366 ± 0.004 0.282 ± 0.002 0.93 ± 0.01 0.98 ± 0.0
SGP(500) 112.1 ± 1.2 -3242.2 ± 12.6 0.183 ± 0.001 0.324 ± 0.002 0.252 ± 0.001 0.67 ± 0.01 0.98 ± 0.0
SGP(1000) 244.1 ± 2.9 -2534.7 ± 9.0 0.166 ± 0.001 0.294 ± 0.002 0.23 ± 0.001 0.46 ± 0.01 0.98 ± 0.0
minVar 14.4 ± 0.5 -3388.8 ± 7.9 0.173 ± 0.002 0.314 ± 0.004 0.242 ± 0.002 0.48 ± 0.02 0.94 ± 0.0
GPoE 14.4 ± 0.5 -3388.8 ± 7.9 0.193 ± 0.001 0.34 ± 0.003 0.267 ± 0.002 0.76 ± 0.01 0.99 ± 0.0
BCM 14.4 ± 0.5 -3388.8 ± 7.9 0.21 ± 0.001 0.35 ± 0.003 0.266 ± 0.002 3.6 ± 0.1 0.63 ± 0.0
RBCM 14.4 ± 0.5 -3388.8 ± 7.9 0.188 ± 0.001 0.318 ± 0.003 0.244 ± 0.002 2.39 ± 0.09 0.69 ± 0.0
GRBCM 16.5 ± 0.4 -3388.8 ± 7.9 0.164 ± 0.001 0.294 ± 0.003 0.229 ± 0.002 0.37 ± 0.02 0.94 ± 0.0
CPoE(1) 13.8 ± 0.2 -3393.9 ± 8.0 0.163 ± 0.001 0.292 ± 0.003 0.226 ± 0.002 0.38 ± 0.01 0.97 ± 0.0
CPoE(2) 18.9 ± 0.3 -2076.6 ± 12.9 0.155 ± 0.001 0.278 ± 0.002 0.217 ± 0.001 0.27 ± 0.01 0.95 ± 0.0
CPoE(3) 31.7 ± 0.6 -1655.2 ± 8.7 0.151 ± 0.001 0.27 ± 0.002 0.211 ± 0.001 0.21 ± 0.01 0.95 ± 0.0

Table C.6. Results for dataset kin2 for the stochastic versions.
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time LML CRPS RMSE ABSE NLP COV

SGP(250) 70.9 ± 3.7 -3905.6 ± 23.3 0.207 ± 0.002 0.373 ± 0.004 0.287 ± 0.002 0.85 ± 0.02 0.96 ± 0.0
SGP(500) 86.1 ± 1.8 -2968.6 ± 11.7 0.181 ± 0.001 0.325 ± 0.003 0.252 ± 0.001 0.57 ± 0.01 0.96 ± 0.0
SGP(1000) 143.6 ± 3.6 -2277.2 ± 8.6 0.162 ± 0.001 0.292 ± 0.002 0.225 ± 0.001 0.36 ± 0.01 0.96 ± 0.0
minVar 13.8 ± 0.2 -3384.5 ± 7.8 0.173 ± 0.002 0.314 ± 0.004 0.241 ± 0.002 0.48 ± 0.02 0.94 ± 0.0
GPoE 13.8 ± 0.2 -3384.5 ± 7.8 0.193 ± 0.001 0.34 ± 0.002 0.267 ± 0.002 0.75 ± 0.01 0.99 ± 0.0
BCM 13.8 ± 0.2 -3384.5 ± 7.8 0.209 ± 0.001 0.35 ± 0.003 0.266 ± 0.002 3.63 ± 0.07 0.63 ± 0.0
RBCM 13.8 ± 0.2 -3384.5 ± 7.8 0.187 ± 0.001 0.317 ± 0.003 0.243 ± 0.001 2.38 ± 0.06 0.69 ± 0.0
GRBCM 18.8 ± 0.4 -3608.7 ± 8.4 0.164 ± 0.001 0.294 ± 0.002 0.229 ± 0.002 0.38 ± 0.02 0.94 ± 0.0
CPoE(1) 16.2 ± 0.8 -3389.8 ± 8.0 0.162 ± 0.001 0.292 ± 0.003 0.225 ± 0.002 0.37 ± 0.01 0.97 ± 0.0
CPoE(2) 21.5 ± 0.7 -2071.4 ± 13.0 0.155 ± 0.001 0.278 ± 0.002 0.217 ± 0.001 0.26 ± 0.01 0.95 ± 0.0
CPoE(3) 34.3 ± 0.9 -1650.7 ± 8.3 0.15 ± 0.001 0.27 ± 0.002 0.211 ± 0.001 0.21 ± 0.01 0.94 ± 0.0

Table C.7. Results for dataset kin2 for the deterministic batch version.

time LML CRPS RMSE ABSE NLP COV

SGP(250) 248.6 ± 0.6 -15182.0 ± 35.7 0.254 ± 0.003 0.48 ± 0.009 0.335 ± 0.004 1.42 ± 0.03 0.95 ± 0.0
SGP(500) 346.9 ± 3.4 -15074.6 ± 37.2 0.253 ± 0.003 0.478 ± 0.009 0.333 ± 0.004 1.41 ± 0.03 0.95 ± 0.0
SGP(1000) 727.6 ± 3.5 -14961.2 ± 31.4 0.252 ± 0.003 0.476 ± 0.009 0.332 ± 0.004 1.4 ± 0.03 0.95 ± 0.0
minVar 28.2 ± 1.0 -15387.4 ± 17.5 0.257 ± 0.003 0.491 ± 0.009 0.337 ± 0.005 1.42 ± 0.04 0.94 ± 0.0
GPoE 28.3 ± 1.0 -15387.4 ± 17.5 0.289 ± 0.003 0.534 ± 0.009 0.371 ± 0.004 1.64 ± 0.02 0.96 ± 0.0
BCM 28.5 ± 0.9 -15387.4 ± 17.5 0.321 ± 0.004 0.536 ± 0.01 0.373 ± 0.004 20.72 ± 1.0 0.45 ± 0.0
RBCM 28.5 ± 0.9 -15387.4 ± 17.5 0.303 ± 0.005 0.515 ± 0.01 0.358 ± 0.004 15.98 ± 0.9 0.51 ± 0.01
GRBCM 33.5 ± 1.2 -15387.4 ± 17.5 0.262 ± 0.003 0.499 ± 0.009 0.346 ± 0.004 1.44 ± 0.03 0.94 ± 0.0
CPoE(1) 24.5 ± 0.1 -15404.2 ± 17.8 0.259 ± 0.004 0.492 ± 0.01 0.335 ± 0.005 1.43 ± 0.04 0.95 ± 0.0
CPoE(2) 33.4 ± 0.2 -13645.5 ± 19.8 0.251 ± 0.003 0.479 ± 0.009 0.328 ± 0.004 1.36 ± 0.04 0.94 ± 0.0
CPoE(3) 52.0 ± 0.5 -13483.2 ± 15.6 0.249 ± 0.004 0.476 ± 0.01 0.324 ± 0.004 1.34 ± 0.04 0.94 ± 0.0

Table C.8. Results for dataset cadata.

time LML CRPS RMSE ABSE NLP COV

SGP(250) 473.4 ± 1.0 9370.3 ± 60.7 0.0746 ± 0.0005 0.1407 ± 0.0008 0.097 ± 0.001 -0.39 ± 0.01 0.95 ± 0.0
SGP(500) 730.1 ± 1.1 12112.0 ± 68.2 0.0695 ± 0.0003 0.1304 ± 0.001 0.09 ± 0.001 -0.49 ± 0.01 0.95 ± 0.0
SGP(1000) 1718.5 ± 1.8 16034.0 ± 91.6 0.0628 ± 0.0003 0.1172 ± 0.0009 0.081 ± 0.0 -0.64 ± 0.01 0.96 ± 0.0
minVar 71.3 ± 23.1 27128.2 ± 20.2 0.0516 ± 0.0008 0.1024 ± 0.0034 0.067 ± 0.001 -1.88 ± 0.04 0.93 ± 0.0
GPoE 71.4 ± 23.2 27128.2 ± 20.2 0.0862 ± 0.0004 0.1322 ± 0.0013 0.096 ± 0.001 -0.57 ± 0.01 1.0 ± 0.0
BCM 71.5 ± 23.2 27128.2 ± 20.2 0.095 ± 0.001 0.1544 ± 0.001 0.115 ± 0.001 7.86 ± 0.3 0.48 ± 0.01
RBCM 71.6 ± 23.2 27128.2 ± 20.2 0.0726 ± 0.0009 0.1196 ± 0.0013 0.086 ± 0.001 11.45 ± 0.47 0.5 ± 0.01
GRBCM 84.6 ± 23.0 27128.2 ± 20.2 0.06 ± 0.0007 0.1102 ± 0.001 0.079 ± 0.001 -0.52 ± 0.08 0.79 ± 0.01
CPoE(1) 45.4 ± 0.2 -41213.2 ± 883.2 0.0516 ± 0.0005 0.0998 ± 0.0019 0.067 ± 0.001 -1.86 ± 0.02 0.96 ± 0.0
CPoE(2) 67.3 ± 0.4 -37867.5 ± 911.8 0.0509 ± 0.0006 0.0977 ± 0.0015 0.067 ± 0.001 -1.8 ± 0.02 0.93 ± 0.0
CPoE(3) 134.3 ± 1.2 -37204.6 ± 949.1 0.0507 ± 0.0005 0.0975 ± 0.0011 0.067 ± 0.001 -1.78 ± 0.02 0.92 ± 0.0

Table C.9. Results for dataset sarcos.
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time LML CRPS RMSE ABSE NLP COV

SGP(250) 443.2 ± 2.1 -53395.2 ± 80.2 0.334 ± 0.004 0.59 ± 0.008 0.475 ± 0.007 1.77 ± 0.02 0.96 ± 0.0
SGP(500) 632.9 ± 2.7 -52988.7 ± 58.9 0.329 ± 0.005 0.582 ± 0.008 0.467 ± 0.007 1.75 ± 0.02 0.96 ± 0.0
SGP(1000) 1362.5 ± 4.8 -52592.1 ± 46.9 0.325 ± 0.005 0.575 ± 0.008 0.459 ± 0.007 1.74 ± 0.02 0.96 ± 0.0
minVar 45.8 ± 1.0 -39976.0 ± 22.6 0.294 ± 0.003 0.607 ± 0.006 0.387 ± 0.003 1.4 ± 0.03 0.93 ± 0.0
GPoE 45.6 ± 0.8 -39976.0 ± 22.6 0.302 ± 0.003 0.6 ± 0.006 0.409 ± 0.005 1.43 ± 0.02 0.97 ± 0.0
BCM 45.7 ± 0.9 -39976.0 ± 22.6 0.316 ± 0.005 0.615 ± 0.009 0.416 ± 0.007 2.47 ± 0.1 0.82 ± 0.01
RBCM 45.7 ± 0.9 -39976.0 ± 22.6 0.312 ± 0.004 0.647 ± 0.008 0.425 ± 0.006 1.61 ± 0.05 0.91 ± 0.01
GRBCM 59.4 ± 1.1 -39976.0 ± 22.6 0.31 ± 0.004 0.642 ± 0.008 0.421 ± 0.005 1.5 ± 0.04 0.92 ± 0.01
CPoE(1) 45.1 ± 0.3 -40075.2 ± 22.1 0.289 ± 0.003 0.596 ± 0.006 0.38 ± 0.004 1.35 ± 0.03 0.94 ± 0.0
CPoE(2) 70.3 ± 0.6 -39571.2 ± 65.5 0.287 ± 0.004 0.589 ± 0.007 0.38 ± 0.005 1.36 ± 0.03 0.93 ± 0.0
CPoE(3) 123.8 ± 1.4 -39439.5 ± 98.8 0.282 ± 0.004 0.575 ± 0.008 0.372 ± 0.006 1.37 ± 0.04 0.92 ± 0.01

Table C.10. Results for dataset casp.
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