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Bayesian Networks are probabilistic graphical models that represent conditional independence
relationships among variables as a directed acyclic graph (DAG), where edges can be interpreted
as causal effects connecting one causal symptom to an effect symptom. These models can help
overcome one of the key limitations of partial correlation networks whose edges are undirected.
This tutorial aims to introduce Bayesian Networks to identify admissible causal relationships
in cross-sectional data, as well as how to estimate these models in R through three algorithm
families with an empirical example data set of depressive symptoms. In addition, we discuss
common problems and questions related to Bayesian networks. We recommend Bayesian
networks be investigated to gain causal insight in psychological data.
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The last decade has seen the emergence of a new frame-
work for the study of psychopathology: network theory, which
conceptualizes an episode of disorder as issuing from inter-
actions among its constituent symptoms (Borsboom, 2017;
Borsboom & Cramer, 2013) . Network theory comes with
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a set of statistical techniques called network analysis, where
the networks that represent interactions among symptoms are
composed of nodes (the symptoms themselves) and edges
(connections among symptoms). In contrast to social net-
works, whose nodes (persons) and edges (e.g., friendships)
are observable, psychopathology networks require statistical
estimation to discern the unobservable connections between
symptoms. Most network structures in the psychopathol-
ogy field encode pairwise interactions among symptoms (Ep-
skamp & Fried, 2018), and use a general class of models
called pairwise Markov Random Fields.

Gaussian Graphical Models (GGMs), also called partial
correlation networks, are the most common way of estimating
network structures in many areas of psychopathology, such as
posttraumatic stress disorder (Fried et al., 2018; McNally et
al., 2015), depression (Briganti, Scutari, et al., 2021; Fried et
al., 2016) and bipolar disorders (Curtiss et al., 2019). Other
pairwise Markov Random Fields include Ising Models to
estimate pairwise interactions from binary data (Briganti &
Linkowski, 2020; Ising, 1925; Kruis & Maris, 2016; van
Borkulo et al., 2014) and mixed graphical models to deal with
mixed data (Haslbeck & Fried, 2017 ; Haslbeck & Waldorp,
2016). However, the causal interpretation of these models is
limited: because their edges are undirected, it is impossible to
tell whether symptom X is more likely to cause or be caused
by symptom Y because edges have no direction and thus can-
not encode this information. Furthermore, assuming a partial
correlation network when the underlying model contains di-
rected edges can lead to spurious causal connections. We can
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overcome these problems with the help of Bayesian networks
(BNs), which are derived from the principles of causal rea-
soning (Pearl, 2009; Pearl & Mackenzie, 2018). That is, they
can ascertain both the direction and the magnitude of causal
effects (Maathuis et al., 2018). BNs are defined by a directed
acyclic graph (DAG) and by the joint probability distribution
of the variables under investigation. The role of the DAG is to
express the conditional independence relationships between
the variables (nodes) by using graphical separation (Koller
& Friedman, 2009; Lauritzen, 1996; Pearl, 1988; Scutari &
Denis, 2021). In other words, if two variables are separated
in the DAG by some other variables, they are independent in
probability conditional on (that is, after controlling for) those
other variables. Hence, the role of the probability distribu-
tion is to express the magnitude of the causal effects linking
the variables that are not graphically separated. Since BNs
contain only directed edges, they are ideal for modeling the
admissible causal relationships in observational data, thereby
complementing insights provided by partial correlation net-
works. BNs should not be confused with pairwise Markov
Random Fields estimated with Bayesian methods: these have
been recently introduced in the network psychopathology lit-
erature in both methodological and applied research (Briganti,
Williams, et al., 2020; Williams & Mulder, 2020a, 2020b).

Using BNs for rigorous causal inference requires several
strong assumptions (Maathuis et al., 2018), such as the exis-
tence of a DAG underlying the data; sufficiency, that is, all the
causes of a given variable are measured (which means that
there are no latent variables and there is no selection bias);
and faithfulness, that is, all the variables that are connected
in a given way in the network are probabilistically dependent.
To augment probabilistic inference with causal meaning the
faithfulness and sufficiency assumptions need to be further
strengthened into causal faithfulness and causal sufficiency,
which will be discussed in more detail (see Section "Struc-
ture Learning", subsection "Assumption needed for structure
learning"). These assumptions of having an underlying DAG
and causal sufficiency are difficult to verify in psychological
data: for instance, we do not know whether symptoms from
a checklist or psychometric measure or structured diagnostic
interview assessing a mental disorder interact as a DAG ex-
cept in very specific cases, such as the relationship between a
traumatic event (the cause) and PTSD symptoms (McNally,
Heeren, et al., 2017). In most cases, such as depression, we
do not know whether a given symptom unilaterally influences
another (as in a DAG), whether two symptoms mutually in-
fluence each other (as in a partial correlation network), or
whether there is one or more latent variables causing symp-
toms (as within the latent variable framework). The faithful-
ness assumption will likely be violated in a data set where the
data generating process is such that A → B, B→ C, A → C,
as the causal relationships are counterbalanced (Andersen,
2013; Cartwright & McMullin, 1984).

The insights that BNs can bring to the field of network
psychopathology can be helpful in various situations, such as
performing inference on the network structure based on its
estimates. Edge weights are used, for instance, to identify the
most central (i.e., interconnected) nodes in a network (Elliott
et al., 2019): summing edge weights (strength centrality) or
estimating the shared variance R2 (predictability) are the two
most common ways of gauging the importance of symptoms
(Boccaletti et al., 2006; Haslbeck & Fried, 2017). Central
symptoms are highly connected, with many connections or
several strong ones. If such symptoms are the source of acti-
vation that maintains an episode of disorder, then successfully
reducing their severity ought to cause a beneficial therapeutic
cascade resulting in recovery from illness. Accordingly, they
would be ideal therapeutic targets. Unfortunately, because
the edges in partial correlation networks are undirected, it is
impossible to tell whether a high-centrality symptom is the
source of activation or the recipient of activation. Only if it is
the source does it make sense to consider it a high- priority tar-
get for clinical intervention. Yet because they have often been
theorized as potential targets for clinical intervention, central-
ity estimates are defined to operate on undirected networks
and thus do not take edge directions into consideration. In
other words, they do not ascertain whether central symptoms
cause or are caused by many symptoms in the network; if a
symptom is well-connected because it is highly controllable
(that is, caused by several symptoms connected to it), acting
on it is unlikely to affect other symptoms. Since interpreting
network structures is an important part of any network study,
complementing the study of interaction among symptoms
with further causal insight is essential.

Only a handful of studies have applied BNs in psy-
chopathology research. These have concerned dissociation
(Cernis et al., 2021), self-harm (Hinze et al., 2021), paranoia
(Bird et al., 2019), psychosis (Kuipers et al., 2019; Moffa et
al., 2017), obsessive-compulsive disorder (Jones et al., 2018;
McNally, Mair, et al., 2017), bipolar disorder (McNally et
al., 2021), rumination (Bernstein et al., 2017), depression
(Briganti, Scutari, et al., 2021), PTSD (McNally, Heeren, et
al., 2017), and alexithymia (Briganti, Scutari, et al., 2020).
In these studies, BNs illuminated potential causal relations
among symptoms in cross-sectional data sets. However, the
authors often varied in their computational methods, thereby
underscoring the need for an accessible tutorial reference for
researchers keen to apply BNs to study mental disorders. The
present work aims to fill this gap by introducing BNs, by
providing key commands in the R environment for statistical
computing (R Core Team, 2020) to estimate BNs from data,
and by addressing the main strengths and limitations of BNs
in psychopathology.

This tutorial builds on previous empirical studies that ap-
plied the two main approaches for estimating BNs: constraint-
based algorithms (Briganti, Scutari, et al., 2020, 2021) and
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score-based (McNally, Heeren, et al., 2017; McNally, Mair,
et al., 2017; Moffa et al., 2017). This tutorial complements
these applied works by offering a principled introduction to
BNs and on how to interpret them in psychological data.

This article is structured as follows. First, we will introduce
BNs and their main theoretical properties. We will then out-
line both constraint-based and score-based structure learning
algorithms as well as their implementation in R, illustrating
them with data and code. Finally, we will discuss the inter-
pretation of BNs in observational studies as well as answer
common questions researchers may have about BNs. More
extended exposition on these topics appear in specialized
textbooks (Koller & Friedman, 2009; Neapolitan, 2004; Pearl,
2009; Scutari & Denis, 2021) and in an accessible trade book
for the general reader (Pearl & Mackenzie, 2018).

Bayesian Networks

Definition

BNs are defined as the combination of a network struc-
ture, specifically a DAG, and a probability distribution. The
DAG provides a high-level abstraction useful for qualitative
reasoning in the context of exploratory analysis and for test-
ing hypotheses about how symptoms relate to one another.
The probability distributions of the symptoms quantify those
relationships in terms of their magnitude and direction.

Directed Acyclic Graphs

The network structure of a BN is a mathematical object
G = (V, A) consisting of a set of nodes V = {v1, v2, . . . , vN}

(where N is the number of nodes) and of a set of edges or
arcs A = {(v1, v2) , (v2, v3) , . . .} that represent all connections
between two nodes. Given V , a graph is uniquely identified
by A. In the case of a DAG, the edges can only be directed,
that is,

(
vi, v j

)
,

(
v j, vi

)
, vi → v j, with the assumption that

two nodes are only connected by one edge. In each edge
vi → v j, vi is called the "parent" node and v j is called the
"child" node. DAGs are also acyclic: they do not contain any
loops, that is, edges from a node to itself vi → vi; or any cycle,
that is, sequences of edges that start and end on the same node,
such as vi → v j → · · · → vk → vi. The primary role of the
DAG in a BN is to express the set of conditional independence
of relationships among variables (that is, variables that do not
cause each other).

Markov blankets

The DAG of a BN is an independence map of the probabil-
ity distribution of the variables Xi, which are represented in
the networks by the nodes vi; retrieving such a map means de-
termining which nodes are conditionally (in)dependent. This
is achieved by using d separation, which defines graphical
separation for DAGs and provides a way to algorithmically

determine whether two nodes in a network are (in)dependent
or conditionally (in)dependent (Geiger et al., 1990). Formally,
two nodes vi and v j are d-separated by a conditioning set of
nodes S if conditioning on all members of S block all paths
(sequence of nodes and edges with vi as starting node and v j

as ending node, that do not necessarily follow the direction
indicated by edges) between vi and v j. A collider does not gen-
erate an unconditional association between the variables that
determine it (Greenland et al., 1999; Pearl, 1988). In Figure
1, three examples of a basic three-node DA G are illustrated,
as well as how they differ in conditional independences.

The set S that makes a node vi independent of all other
nodes in G is known as the Markov blanket of vi. By the
Markov property, the Markov blanket includes a node’s par-
ents, children, and spouses, that is, children’s other parents.
The Markov blanket is useful in investigating a target node of
interest while ignoring the rest of the BN; all nodes outside of
the Markov blanket are independent from the node of interest
after controlling for those in the Markov blanket itself.

The Markov Property

If two nodes are not connected by an edge in a BN, then
they are either independent or conditionally independent given
some other nodes: this is called the local Markov property
(Korb & Nicholson, 2010; Lauritzen, 1996). The global
Markov property is a stronger version of the local property
and generalizes it to sets of variables: any two subsets of
variables are conditionally independent given a separating
subset (Föllmer, 1980; Lauritzen, 1996). Graphical separation
implies probabilistic independence 1

vi yG v j

∣∣∣vk ⇒ vi yP v j

∣∣∣ vk

(where HG means graphical separation and yP probabilis-
tic independence), making the network itself a clear represen-
tation of the conditional independence relationships between
nodes. For this reason, the DAG is called an independence
map of the variables.

The Markov property makes it possible to write 2

Pr(X,Θ) =

N∏
i=1

Pr
(
Xi | ΠXi ; ΘXi

)
decomposing the larger model Pr(X,Θ) into a set of

smaller models Pr
(
Xi | ΠXi ; ΘXi

)
one for each variable Xi con-

ditional on its parents ΠXi in the DAG (Korb & Nicholson,
2010), Θ and ΘXi denote the parameters of the respective

1If two nodes vi and v j are separated in the graph, then their
probabilities are also independent.

2The joint probability of the set of variables X and its parameters
is equal to the product of probabilities of each of the smaller models
Pr

(
Xi | ΠXi ; ΘXi

)
for each variable Xi given its parents ΠXi and its

parameters ΘXi .
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Figure 1
This figure depicts three forms of a DA G composed of three nodes, X, Y, and Z. The DAG on the left is also called a chain. The
DAG in the middle is called a common cause model ( Z is the common cause of X and Y ). The DAG on the right is called
a collider ( X and Y cause Z ). In the DAG on the left and the one in the middle, X and Y are not independent, but they are
conditionally independent given Z. In the DAG on the right, X and Y are independent, but they are not conditionally independent
given Z.

models. These smaller models are individually much simpler
than Pr(X,Θ); and they are topical, in the sense that they
focus on a single variable and its relations with variables that
surround it in the DAG. This factorization follows from the
Markov property of BNs, and it is only possible because of the
absence of loops and cycles in the graph. Figure 2 represents
a toy example Bayesian Network of four nodes from specific
manic symptoms from the Young Mania Rating Scale (Young
et al., 1978), and an example of how a probability distribution
in a DAG is factorized (Briganti, Kornreich et al., 2021).

Figure 2 also shows a fundamental type of relationship
in a BN, represented by the three nodes Increased Energy,
Language-Thought Disorder, and Speech Disorder. Both In-
creased Energy and Language-Thought Disorder have an edge
pointing to Speech Disorder and they are not adjacent, that
is, they do not share an edge with one another. This pattern
of edges is commonly known as a v-structure, or a collider,
and it is one of the building blocks of BNs. In a collider
(A → C ← B), four conditional independences are found:
A and C are dependent, B and C are dependent, A and B
are independent, and A and B are dependent conditional on
C. This means that two independent variables, A and B, can
become dependent when one conditions on C, because ob-
serving the common consequences of two independent causes
can modify their probability (Pearl, 2009). The two causes (
A and B ) are therefore negatively partially correlated (if they
are both positive or both negative), which is counter-intuitive;
conditioning on the common effect (C) in the collider (that
is, studying the associations while conditioning on the effect)
leads to different estimates compared to studying the two
causes individually. This phenomenon is known as collider
bias (Berkson, 1946), and in network analysis it is known to
induce spurious edges among nodes, and likely affects the
generalizability of results when applied to the wrong popula-
tion (De Ron et al. 2019; McNally, 2021). DAGs are tools
that can help researchers identify instances of collider bias.

Equivalence classes

Although a factorization of the probability distribution of
X is uniquely identified by a DAG, a DAG is not uniquely
identified by a factorization of the probability distribution. For
instance, patterns of edges like v j → vi → vk, v j ← vi ← vk

and v j ← vi → vk lead to equivalent probability distributions.
Hence several edges in a DAG can be reversed without

changing the conditional (in) dependence relationships in X.
In other words, if no new v-structure (or cycle) is created,
we are just producing equivalent DAG representations of the
same set of conditional (in)dependence relationships. All such
DAGs are then part of an equivalence class that is uniquely
identified by the undirected graph underlying these DAGs
and by the v-structures. The direction of other edges is ei-
ther uniquely identified because one of two directions would
introduce a new v-structure or a cycle (these are sometimes
called compelled edges), or completely undetermined. This
results into a completed partially directed graph (Castelletti
et al., 2018; Chickering, 2002a).

Probability distributions for Bayesian Networks

In this section, we introduce the most common probability
distributions used in BNs as well as their limitations.

The three most common probability distributions for BNs
are discrete, ordinal, Gaussian, and conditional linear Gaus-
sian (Scutari & Denis, 2021). These probability distributions
satisfy the following requirements: first, the structure of the
BN should be learned efficiently from data by using statistical
tests or goodness-of-fit measures; second, the BN should
be flexible, that is, distributional assumptions should not be
too strict; third, the BN should be easy to query to perform
inference.

Discrete and Ordinal Bavesian Networks

In discrete BNs, local distributions of Xi | ΠXi are com-
posed of conditional probability tables for each node given
all other parent nodes, that is, the configuration of values of
its parents (Spirtes & Meek, 1995). Learning the structure
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Figure 2
A Bayesian network of four nodes representing manic symptoms from the Young Mania Rating Scale, namely Elevated
Mood, Increased Energy, Language-Thought Disorder, Speech Disorder. Elevated Mood has two directed edges towards
Increased Energy and Language-Thought Disorder, and Speech-Disorder receives two directed edges from Increased Energy
and Language-Thought Disorder. Increased Energy and Language-Thought Disorder are d-separated given Elevated Mood
and Speech Disorder. Elevated Mood and Speech Disorder constitute the Markov blanket of both Increased Energy and
Language-Thought Disorder. Increased Energy, Language-Thought Disorder and Speech Disorder constitute a v-structure
(collider).

of BNs from discrete variables is particularly useful in the
case of psychological data since most measurement tools are
scored on Likert scales. Although using discrete variables is a
helpful solution so that dependencies need not be linear, there
may be some loss of information, particularly in the case of
ordinal variables (such with Likert scales) that will be treated
as categorical, since the ordinality of data is lost, as shown in
the related domain of GGMs (Isvoranu & Epskamp, 2021).

Moreover, to deal with this problem, many applied re-
searchers treat Likert data as continuous in estimating network
models (Briganti et al., 2018, 2019). This is why investigators
have tested how well one can estimate BNs from ordinal data
(Cui et al., 2016; Luo et al., 2020; Musella, 2013; Tsagris et
al., 2018).

Gaussian Bayesian Networks

Gaussian BNs (which are different from Bayesian GGMs)
follow a multivariate normal distribution with mean µ and a
variance-covariance matrix Σ, X ∼ N(µ,Σ), with a precision
matrix Ω computed as the inverse of the variance-covariance
matrix Ω = Σ−1. The partial correlation coefficients ρi j, which
model the residual correlation between two nodes after con-
trolling all other nodes, are computed from the precision
matrix as ρi j = −Ωi j/

√
ΩiiΩ j j where Ωi j is the element of

Ω. If vi and v j are d-separated in the DAG (or in the case of
violation of the faithfulness assumption), the absence of an
edge vi → v j in the DAG between the two nodes by definition
implies the conditional independence

(
ρi j = 0

)
between the
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two variables Xi and X j given all subsets of the remaining
variables (we refer the reader to the section regarding the
Inductive Causation Algorithm to have a better understanding
on why going through all subsets of variables is necessary).
From this, it follows that most edges of a Gaussian BN be-
long to a sub-space of a GGM (a partial correlation network),
except specific independence relationships, such as a collider
structure. On the other hand, cycles can be represented in a
GGM but not a Gaussian BN.

As for the local distributions, Xi | ΠXi are linear regression
models with ΠXi acting as regressors. This assumes that all
dependencies are linear (Grzegorczyk, 2010), a requisite for
the distribution of X to be multivariate normal. This may
be advantageous in modeling Likert scales, but only if these
scales are designed so that the items on the scale increase in
linear increments (that is, item 2 implies twice the intensity
of item 1, item 3 implies three times the intensity of item 1,
and so forth). When this is not the case, the numbering of the
items on the Likert scale leads the BN to incorrectly interpret
the items as equidistant from each other and the resulting
estimates of the ρi j will be biased.

Gaussian BNs have two main limitations. First, few real-
world multivariate data sets follow a multivariate Gaussian
distribution (the same applies to partial correlation networks
since the probability distribution is the same). Second, com-
puting partial correlations can be challenging in data sets
with a large number of variables because of singularities, that
is, perfect linear relationships between two variables (Lin
et al., 2014). Although exact linear correspondence rarely
occurs, relationships that are almost singular may result in
numerical precision issues and may make BNs difficult and
time-consuming to learn.

Conditional Linear Gaussian Bayesian Networks

Conditional Linear Gaussian BNs contain both discrete
and continuous nodes and subsume both Discrete BNs and
Gaussian BNs. In terms of local distributions, discrete nodes
have conditional probability tables, whereas continuous nodes
have a set of linear regression models, one for each configura-
tion of the discrete parents, and with the continuous children
as regressors (Cowell, 2005). In such networks, continuous
nodes cannot be parents of discrete nodes, which is a strong
limitation for treating mixed data: only a given set of edges
can exist in the DAG, which is an important limitation on
what models can be encoded by the network structure.

Structure learning of Bayesian Networks

Structure learning algorithms learn the structure of BNs
from data, possibly integrating external expert knowledge if
available. Constraint-based algorithms use statistical tests to
learn conditional independence relationships (the constraints
themselves); scorebased algorithms rank candidate DA Gs
based on some goodness-of-fit criterion; hybrid algorithms

use conditional independence tests to exclude most candidate
DAGs, and then perform a score-based search on those that
are still under consideration. In addition, specific edges can be
whitelisted (included) or blacklisted (excluded) in candidate
DA Gs by default based on prior knowledge: this helps the
structure learning algorithm in its choice of good candidate
models (Scutari & Denis, 2021).

All algorithms in this section are implemented in the R
package bnlearn (Scutari, 2010), version 4.7. Two other
packages that implement some algorithms for BNs are pcalg
(Kalisch et al., 2012; Kalisch & Bühlmann, 2007) and BiDAG
(Suter et al., 2021).To showcase the functions and their output,
we use a data set consisting of seven key items from the 20
item Zung Self-Rating Depression Scale (Zung, 1965) from
1090 subjects. A detailed description of the data appears
elsewhere (Briganti, Scutari, et al., 2021). In this case, we
selected only seven nodes out of the 20 nodes in the scale to
simplify the data visualization in the tutorial. The data and the
code accompanying this tutorial are available in our repository
on the Open Science Framework (https://osf.io/fne9m/), with
information related to the package versions used to perform
the different analyses (Briganti, 2021). To read the data, one
can use the following commands

library("readr")
data <- read_table("data.csv", sep= ";",

header=TRUE)
# this loads the data

Assumptions in structure learning

Most structure learning algorithms make several funda-
mental assumptions (Dawid 2010; De Campos & Ji, 2011;
Maathuis et al., 2018):

- The underlying structure that is to be learned is indeed a
DAG.

- There is no selection bias and there are no latent or con-
founding variables, that is, all the common causes of all mea-
sured variables have been measured: this assumption is also
known as causal sufficiency.

- Only the variables that are d-separated in a DAG will be
independent, the others will be dependent: this assumption is
also known as causal faithfulness, which is the converse of
the Markov property.

- The only relationships between the random variables in
X should be conditional independencies, the only kind of
relationships that can be encoded by BNs. - Each node in
the network must represent one random variable in X : there
should not be multiple nodes which are deterministic func-
tions of the same random variable in X (such as a sum score
of two variables). This is usually the case in psychological
networks since separate symptoms are used as input.

- Observations must be independent realizations; if not, the
network should be otherwise defined, such as a dynamic BN
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in the case of temporal dependence, since observations are
not independent as a single subject is measured over multiple
occasions (Song et al. 2009).

- The global probability distribution P(X) must be strictly
positive: that is, every combination of every possible value of
the variables in X must represent an event that is observable in
principle; this is needed to have uniquely determined Markov
blankets and therefore an identifiable model. This is always
the case in psychological data, since we measure events that
patients report (e.g., fatigue) or that we observe (e.g., crying).

Most, but not all, algorithms require satisfaction of these
assumptions, and some are incapable of testing whether the
assumptions hold. Algorithms in the Fast Causal Inference
(FCI) family are consistent when selection bias occurs or
when a latent common cause is present. Using this kind of
approach has multiple implications for drawing inferences.
For instance, a directed edge from node A to node B in the
presence of latent variables entails that A is a cause of B, but
does not entail that A is a direct cause of B (Maathuis et al.,
2018).

For examples of data sets where the assumption of inde-
pendent realizations is violated due to temporal dependencies
among variables, see studies on time-series networks (Bring-
mann et al., 2013; Epskamp, 2020) or panel data networks
(Briganti, Kornreich, et al., 2021).

Stability in structure learning algorithms

The structure of BNs may vary when performing a learning
algorithm several times.

For cross-sectional studies, it is desirable to study a "sta-
ble" network structure, that is, a set of edges and directions
that is unlikely to vary. Stability is an important topic in
network analysis: researchers need to study stable networks
whose structure is likely to be influenced by factors such as
sample size. For partial correlation networks, one can use
bootstrapping methods to evaluate the stability of network
estimates (Epskamp et al., 2018). It is possible to directly
account for stability in structure learning in a similar way: the
same algorithm learns a sufficiently large number of BNs from
bootstrap samples and we only consider edges that appear in
a proportion of BNs higher than some threshold. Previous
empirical papers (Briganti, Scutari, et al., 2020, 2021) only
included edges that appeared in more than 85% of networks
(this is called strength), and whose direction appeared in more
than 50% of networks (this is called minimum direction). We
recommend that researchers only report stable BNs obtained
in this way, and that they should use 100-200 bootstrap sam-
ples to ensure the proportion of BNs in which each edge
appears are estimated accurately. In addition, the proportion
of times each edge was included in the stable BNs can be
reported.

Constraint-based algorithms

Constraint-based algorithms are based on Pearl and
Verma’s (1991) work on causal graphical models. This class
of algorithms identifies conditional independences (the "con-
straints") with statistical tests and connects nodes that are
not independent. The algorithms determine the sequence of
tests that will be applied to the data, typically starting from
marginal tests (that is, not conditioning on any variable) and
gradually increasing their complexity (adding conditioning
variables) to maximize speed and statistical power while en-
suring the accuracy of the learned networks.

Tests for Conditional Independence.

Two random variables X and Y are conditionally indepen-
dent given a third random variable Z if, given knowledge of Z,
knowledge of whether X occurs provides no information on
the likelihood of Y occurring, and knowledge of whether Y
occurs provides no information on the likelihood of X occur-
ring (Dawid, 1979). Testing for conditional independence is a
necessary step for constraint-based algorithms because condi-
tional independence relationships themselves constitute the
constraint. We hereby cite three default conditional indepen-
dence test in bnlearn; further details appear in comprehensive
reviews of the topic (Edwards, 2012). The asymptotic χ2 mu-
tual information test is the default for categorical and mixed
variables: it is an information-theoretic distance measure re-
lated to the deviance of the tested models and proportional to
the log-likelihood ratio (the two differ by a factor), with the
degrees of freedom equal to the number of free parameters in
the two models (under the assumption that all parameters can
be estimated). The Hotelling’s exact test is the default for con-
tinuous variables: it is the multivariate version of the Student’s
t for testing the null hypothesis that the correlation is null. The
Jonckheere-Terpstra test is the default for ordinal variables: it
is a trend test that generalizes the Wilcoxon test (which only
tolerates one ordinal variable compared to a binary factor) to
two ordinal variables. A comprehensive review of methods
to test for conditional independence exceeds the scope of this
tutorial, but appears in the bnlearn manual (Scutari, 2010)

The Inductive Causation algorithm.

The Inductive Causation (IC) algorithm (Pearl & Verma,
1991) was the first and simplest structure learning constraint-
based algorithm. Although more modern algorithms are
preferable for practical applications, all evolved from IC and
thus share the same fundamental steps; hence we will describe
IC in detail for illustrative purposes. The algorithm starts from
a complete graph in which each variable is connected to all
other variables by an undirected edge. First, for each pair of
variables A and B in X, the algorithm searches for a set SAB

such that A and B are independent given SAB and such that
A and B are not part of it (A, B < SAB). Edges between all
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such pair of variables are removed. The algorithm composes
SAB starting from a list of no variables (with an empty SAB )
then each single variable other than A and B in X, then with
a combination of other variables, until all combinations have
been tried to remove the edge. Because of this, algorithms
derived from the IC have one weakness: the complexity in
the number of nodes in a graph (Li et al., 2019). Second, for
each pair of variables that are not connected by an edge but
are both connected to a common neighbor C, the algorithm
checks whether C ∈ SAB : if C < SAB, then the direction of
edge A −C becomes A→ C and that of edge C − B becomes
C ← B. Thirdly, the direction of the edges that are still
undirected is set following two rules: if A is adjacent to B and
there is a strictly directed path from A to B (that is, all edges
in the path are directed), then A− B becomes A→ B; if A and
B are not adjacent but A→ C and C − B, then C − B becomes
C → B. This step ends the algorithm which then returns the
completed partially directed graph in which only those edge
directions that can be uniquely identified from the data are
represented.

The IC algorithm is implemented by the Peter & Clark (PC)
algorithm (Spirtes et al., 1993b), which starts from a saturated
network and then performs tests that gradually increase the
number of conditioning nodes. Constraint based algorithms
treat BNs as perfect maps 3, that is 3

A yP B |C ⇔ A yG B|C

This is assumption is also called faithfulness, and it is
analogous to causal faithfulness from a purely probabilistic
perspective. This assumption cannot be empirically verified.
However, the assumption has the advantage of not requir-
ing a strictly positive P(X) to have uniquely defined Markov
blankets.

In the R package bnlearn version 4.7 (Scutari, 2010), the
PC algorithm is implemented in the pc.stable() function. To
plot the graph in a consistent fashion with all other network
analyses in psychological literature, we use the qgraph pack-
age version 1.9 (Epskamp et al., 2012).

First, we load the necessary packages, that is, bnlearn and
qgraph.

library("bnlearn")
# this loads the bnlearn package
library("qgraph")
# this loads the qgraph package

Second, we perform the PC algorithm to learn the structure
of the BN.

BNpc <- pc.stable(data)
# this performs the algorithm
qgraph(BNpc)
# this plots the network

Third, we obtain a stable BN.

BST <- boot.strength(data,
# this includes data
R = 200,
# number of boots
algorithm = "pc.stable")

# this sets the algorithm
# note that boot.strength may give warnings

Fourth, we include the edges that appear in 85% of net-
works and whose direction appears in more than 50% of
networks, and we compute the averaged network.

bst1 <- BST[BST$strength > 0.85 &
# this sets the strength

BST$direction > 0.5, ]
# this sets the minimum direction
avgnet1 <- averaged.network(BST,

threshold = 0.85)
# compute the average network

Finally, we plot the averaged network with qgraph.

qgraph(avgnet1, layout="circle")
# this plots the network with qgraph

The resulting network can be visualized in Figure 3.

Other constraint-based algorithms.

Other well-known constraint-based algorithms include the
Grow-Shrink (GS) algorithm (Margaritis, 2003) and the Incre-
mental Association (IAMB) sets of algorithms (Tsamardinos
et al., 2003), which first learn the Markov blanket for each
node in the network to reduce the number of tests required by
the IC algorithm. The initial network is assumed not to have
any edges.

BNgs <- gs(data)
# this performs the GS algorithm
BNiamb <- iamb(data)
# this performs the IAMB algorithm

Score-based algorithms

Score-based structure learning algorithms assign a score to
each candidate BN.

Network scores focus on the DAG as a whole (as opposed
to individual constraints) and are goodness-of-fit statistics that
assess how well the DAG mirrors the dependence structure in
the data (Scutari & Denis, 2021). Two methods for scoring

3The probabilistic independence of A and B given C is true if and
only if the graphical independence of A and B is true.
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Figure 3
A BN learned through the PC algorithm (left) compared to a regularized partial correlation network (right). Edge thickness and
color saturation denote the edge weight.

are the Bayesian Information Criterion (BIC) and posterior
probabilities from flat priors (Daly et al., 2011; Friedman &
Koller, 2003; Geiger & Heckerman, 2002; Goudie & Mukher-
jee, 2016; Grzegorczyk & Husmeier, 2008; Heckerman &
Geiger, 1995; Kuipers et al., 2018b; Madigan et al., 1995;
Pensar et al., 2020). Score-based algorithms are typically
applications of heuristic search algorithms, which are not
guaranteed to return the highest-scoring DAG. Exact search
algorithms, which do provide this guarantee, are markedly
slower than heuristic algorithms and are not feasible for many
practical applications (Cussens, 2012; Koivisto & Sood, 2004;
Scanagatta et al., 2015; Suzuki, 2017). Hence, we will not
consider them further.

The Hill-Climbing algorithm.

The Hill-Climbing (HC) algorithm (Russell & Norvig,
2002) is a greedy search algorithm that explores DAGs by
single-edge additions, removals, and reversals. First, the al-
gorithm chooses an initial candidate network structure G (it
chooses by default the empty DAG) and computes its score
Score (G). Second, it sets maxscore = S core(G) 4. Third,
the algorithm computes the score of the modified networks
G∗ obtained by every possible edge addition, deletion or re-
versal that does not result in a cyclic network. If any G∗ has
Score (G∗) > Score(G), the new score is updated in maxscore

= Score (G∗) and G∗ becomes the new candidate network.
Finally, the algorithm returns the final network when no G∗

has a higher score than G.

BNhc <- hc(data)
# this performs the HC algorithm

Other score-based algorithms.

Three well-known score-based algorithms include the
Greedy Equivalence Search (Chickering, 2002b), a HC al-
gorithm over equivalence classes instead of graphs (which
minimizes the search space), the Tabu Search (Glover, 1990),
a modified HC algorithm that does not stop at the first DAG
for which every possible edge addition, deletion, or reversal
does not improve the score, but further explores the space of
DAGs to find a better DAG; and genetic algorithms (inspired
by evolutionary biology) that perturb (mutation) and combine
(crossover) features through several generations of structures
while retaining those yielding better scores (Davis, 1991).

4maxscore represents the maximum score computed from a net-
work structure; the goal of the algorithm is to find a modified network
structure that will have a higher score than maxscore, then updates
maxscore as it goes, until it finds the highest score possible.
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BNtabu <- tabu(data)
# this performs the Tabu algorithm

Hybrid algorithms

Hybrid algorithms combine the two previous classes of
constraint-based and scorebased algorithms: they are the state
of the art for many problems (Scutari & Denis, 2021). They
work by learning some conditional independence constraints
to reduce the number of candidate networks prior to finding
the network that maximizes a given score function (Kuipers
et al., 2018a; Tsamardinos et al., 2006).

The Sparse Candidate algorithm.

The Sparse Candidate algorithm (Friedman et al., 1999)
was the first example of this approach in the literature. It is
an iterative algorithm that restricts the parents of each vari-
able to belong to a small subset of candidates. First, in a
network G, the algorithm restricts the candidate parents for
a node Xi ∈ X to the parents of Xi in G in a set Ci. Second,
the algorithm finds the network structure G∗ that maximizes
Score (G∗) among the networks in which the parents of each
node Xi are included in the corresponding set Ci, then sets
the new network G∗ = G. After the steps are repeated, the
algorithm returns the graph G.

The Sparse Candidate algorithm is implemented in the
rsmax2() function, which performs the step of restricting and
maximizing only once as further steps rarely yield better
DAGs (Friedman et al., 2013).

BNrs <- rsmax2(data)
# this computes the rsmax2 algorithm

Common issues to consider when learning BNs

Choice of algorithm

Which approach should psychopathologists choose to learn
the structure of a BN? The number of possible configurations
of algorithms, scores, conditional independence tests, and all
the tuning parameters that accompany them is indeed over-
whelming. A comprehensive simulation study showed that
there were no systematic differences in performance or sen-
sitivity to error in real-world data when comparing the three
classes of learning algorithms (Scutari et al., 2018). If we
consider individual algorithms, none consistently outperforms
the others discussed here. This is also the case in our own
example data set: the three classes of algorithms retrieve very
similar structures, albeit with some differences in edge direc-
tions (see Figure 4). A nother comprehensive comparison of
different structure learning algorithms showed that choosing
an algorithm also depends on its reliability and resilience,
and that synthetic performance may overestimate real-world
performance (Constantinou et al., 2021).

Although researchers should clearly present the algorithm
chosen for structure learning and report the stable network
structures, we recommend that they also perform the two
other classes of structure learning algorithms as robustness
checks. This would disclose the edge directions that vary
among algorithms.

Assumptions needed for causal inference

BNs whose DAGs are in the same equivalence class are
probabilistically indistinguishable: it is impossible to choose
one over the other from data without resorting to additional
expert knowledge. Therefore, inferring causal relationships
from observational data should be done very carefully: the
causal effects whose direction is supported by the data are
those that correspond to edges with a defined direction in the
completed partial DAG for the equivalence class. Further-
more, to defend a causal interpretation of a BN we need to
satisfy three assumptions.

First, each variable Xi is conditionally independent of its
direct and indirect effects and from other variables given its
direct causes: this is known as the causal Markov assumption.

Second, there is a DAG faithful to the probability dis-
tribution of X such that the dependencies arising from d-
separations in the DAG are the only ones in the probability
distribution. The faithfulness assumption for causal inference
implies that any population produced by the DAG has the
same conditional independence relationships obtained by ap-
plying d-separation to it. However, this assumption can be
challenged by selection bias; that is, the population can be
"unfaithful" to the DAG. When estimating DAGs representing
the causal relationships among symptoms of mental disorders
or psychological constructs, the population could be unfaith-
ful to the DAG if it were estimated from a specific subsample.
For example, a network structure of depressive symptoms in
manic patients will show different conditional independence
relationships than a network structure estimated from unipolar
depressive patients. For further details concerning selection
bias in network psychopathology, we refer to more complete
overviews of the topic (De Ron et al., 2019; McNally, 2021).

Third, there must be no latent variable that acts as a
confounding factor thus introducing spurious dependencies
among the observed variables, which translate to spurious
arcs in the BN A confounding variable A is such that, in a
path A→ B→ C, A→ C : this is also known as a backdoor
path from A to C. In psychological data sets, confounding
variables are an important issue since in many cases all rele-
vant variables are not measured or included in a model. This
assumption also concerns many studies designed from a latent
variable point of view whereby items or symptoms presump-
tively reflect unobserved factors that cause their emergence
and covariance. A possible solution to help overcome this
issue is eliminating topological overlap among nodes (Fried &
Cramer, 2017). That is, we can create composite variables to
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Figure 4
BNs learned with the constraint-based PC algorithm (left), the score-based HC algorithm (middle), and the hybrid RS algorithm
(right)

ensure that items tapping the same construct do not appear as
individual, near- synonymous nodes. Hence, each node would
constitute a composite variable representing a domain. This
has been done with both Gaussian Graphical Models and BNs
(Briganti et al. 2019 ; Briganti, Scutari, et al., 2020; Briganti
& Linkowski, 2019). Another way of reducing the number of
network components is by using the goldbricker method in the
networktools package (Jones, 2017) that identifies colinear
network components (i.e., topologically overlapping items).

These assumptions are difficult to verify in real-world set-
tings, and the best solution to tackle them is by using block-
ing in a carefully planned experimental design to screen out
confounding factors via randomization, which severs any in-
coming causal link between the randomized variables and
possible exogenous effects, but it is never applied to crosssec-
tional network studies. In the best-case scenario, scientific
experiments can identify a small set of BNs that plausibly fit
the data from a causal point of view.

What kind of data are needed for learning?

The data used to learn the structure of a BN and to estimate
its parameters are a key driver of the quality of the models we
can obtain.

For structure learning, it is important that we have enough
data to rank networks accurately using scores and to ensure
that the conditional independence tests we use to assess con-
straints have sufficiently low rates of type-I and type-II errors.
The ability of structure learning algorithms to recover from
errors (that is, incorrectly including or excluding edges in
the DAG) is limited, which makes it important to limit the
possibility of such errors occurring. For parameter learning,

it is important to have enough data to detect the effect of the
parents of each child and to estimate them with sufficient
precision. In both cases, we may draw from existing liter-
ature on power and sample size calculations for linear and
logistic regressions (Demidenko, 2007; Dupont & Plummer
Jr, 1998). When the sign of the effect associated with each
edge is important, we may complement traditional power
calculations by assessing type-S errors (Gelman & Carlin,
2014). In both cases, it is important to remember that both
structure and parameter learning operate at the level of the
local distributions Xi | ΠXi : we only need a sample size large
enough to handle the most complex of them. If we assume
that the network we are estimating is sparse, so that all nodes
have a limited number of parents (say, less than 5 ), then the
sample size required to learn a BN does not necessarily scale
with the number of variables.

The number of variables will still determine the compu-
tational speed of estimating the model. Different structure
learning algorithms will entail different trade-offs between
speed and accuracy (Scutari et al., 2018). However, in general
the complexity of most structure learning is quadratic in the
number of variables if we assume that the network we are
trying to learn is sparse. In other words, heuristic score-
based algorithms with compute O

(
N2

)
network scores, and

constraint-based algorithms will perform O
(
N2

)
conditional

independence tests. If we do not assume the sparsity of the
network, then the complexity becomes larger O

(
eN

)
making

it difficult to perform learning in the first place. Similar con-
siderations pertain to parameter learning: if nodes have few
parents, then local distributions will have few parameters and
it is possible to estimate them efficiently. Interestingly, the
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increase in the number of network scores or conditional inde-
pendence tests evaluated during structure learning does not
increase the likelihood of errors, as the literature on multiple
error adjusting would suggest. It is widely recognized that
all structure learning algorithms in this paper are empirically
self-adjusting for multiplicity, even though no theoretical char-
acterization of this phenomenon is available in the literature.

The quality of the data is also important. For instance, it is
possible to learn BNs from incomplete data (i.e., not all values
are observed for all variables in all observations) by incorpo-
rating Expectation-Maximization and other classic statistical
techniques in structure and parameter learning (Scutari, 2020).
It is also possible to learn BNs from the heterogeneous data
that arise from trials in which observations are collected under
different conditions or with different protocols (Azzimonti et
al., 2020). However, handling such issues requires additional
assumptions on how the data deviate from the aforementioned
assumptions and it reduces power in both structure and pa-
rameter learning.

Bayesian networks or pairwise Markov Random Fields?

Empirical researchers may ask whether it is better to per-
form a network analysis using BNs or pairwise Markov Ran-
dom fields, and how to compare the results from each ap-
proach. The difference between the two models from the
example data set is shown in Figure 3 .

Although pairwise Markov Random Fields allow for study-
ing the interplay among different symptoms, and identify the
most interconnected symptoms (Haslbeck & Fried, 2017),
they cannot distinguish whether the interconnected symptoms
are more likely to cause or be caused by surrounding variables:
BNs can identify which causal relationships are admissible
in the data set, and therefore complement the information
given by current network inference measures estimated from
pairwise Markov Random Fields, given the several critical
assumptions, in particular the acyclicity and the absence of
latent variables..

The same applies to colliders (A → C ← B), which are
important structures albeit scarcely discussed in the network
literature: in pairwise Markov Random Fields, underlying col-
lider structures can introduce spurious negative edges among
variables (De Ron et al., 2019). This means researchers may
conclude from a pairwise Markov Random Field that two
symptoms A and B are negatively connected (that is, when
symptom A is strong, symptom B is more likely to be weak,
and vice versa) when in reality a BN may show an underlying
collider structure that has A and B as unconnected parents of a
third node C, if a BN is the true underlying structure. Finally,
researchers should choose the model (pairwise or directed)
that fits best their study goal and design (Borsboom et al.,
2021): for instance, researchers may prefer BNs for studying
the effect of intervention as nodes in a network (Blanken et
al., 2019; Kossakowski et al., 2019; Mooij et al., 2020).

Assessing goodness of fit

It is common practice to assess how well a statistical model
fits the data, as well as how well it predicts new data, to es-
tablish its practical relevance in the literature. This is more
complicated for BNs than it is for classic statistical models
for two reasons: their use of DAGs to model a multivariate
distribution and the lack of a single variable of interest in
learning.

First, it important to note that a network score assigned to
specific DAG is not itself useful for assessing the goodness of
fit of a single model. It is not defined on a normalized scale:
it becomes larger and larger in magnitude as the sample size
increases and can become smaller and smaller in magnitude
the more values the variables can take. Network scores are
only useful to compare different DAGs, which is their task
in structure learning. Reporting network scores relative to a
pre-determined reference network can only be useful when
such a network can be established in a rigorous way, which is
not usually possible without substantial expert knowledge.

Bootstrap resampling and model averaging can reliably
assess whether the edges in the BN are reliably supported
by the data, rather than the result of statistical noise or mea-
surement error. At a higher level, we can also check that
most edges make sense to experts in the substantive domain
(e.g., PTSD), or blacklisting clinically implausible edges and
compare the scores of BNs with and without such expert
knowledge (McNally, 2016).

BST <- boot.strength(data, R = 200,
algorithm = "pc.stable",
debug = TRUE,
cpdag = TRUE)

# compute the edge strengths
avgnet1 <- averaged.network(BST,

threshold = 0.85)
# compute the average network
astr1 <- arc.strength(avgnet1,

data,
"bic-g")

# compute edge strengths

Checking the parameters of the BN is more straightforward,
in the sense that each

Pr
(
Xi | ΠXi

)
is either a conditional probability table in dis-

crete BNs (Spirtes & Meek, 1995),
a linear model in Gaussian BNs (Grzegorczyk, 2010) or

a collection of linear models in conditional Gaussian BNs
(Cowell, 2005), which have been all studied in detail in the
statistics literature (Koller & Friedman, 2009; Maathuis et al.,
2018; Neapolitan, 2004; Pearl 2009; Scutari & Denis, 2021).
There are substantial practical guidelines on how to assess
goodness of fit in such cases. In a Gaussian BN, each parent
is associated with a regression coefficient that expresses how



BAYESIAN NETWORKS 13

its effect on the child increases or decreases for a unit change
in that parent. Furthermore, the standard error associated with
the node describes its noisiness in terms of the amount of
variance that is not explained by the parents. In a discrete
BN, conditional probabilities are assigned to each value that
the node takes given the configuration of the values of its
parents. In a conditional Gaussian BN, discrete nodes have
the same parameters as the nodes of the discrete BN and
continuous nodes have the same parameters as the nodes in a
Gaussian BN, possibly in a mixture: hence their interpretation
is analogous. This does not, unfortunately, apply to the entire
BN.

Finally, we can use BNs as expert systems and run queries
on various combinations of nodes and check whether their
answers make sense to domain experts. In this context, a
query consists in computing the probability of some event
involving some variable of interest taking place (for instance,
a given score on a symptom X) given some evidence on other
variables (for instance, given scores on other symptoms Y
and Z ). If experts can quantify their confidence in observing
events under a set of specific circumstances, based on their
domain knowledge, we can measure the discrepancy between
their confidence and the BN’s confidence as a measure of
goodness-of-fit. This approach rests, of course, on the avail-
ability of reliable expert knowledge on the phenomenon being
modeled since we are treating it as a surrogate of ground truth.

Conclusion

This work contains an introduction to BNs as well as a tu-
torial on estimating them in R using the three main families of
structure-learning algorithms: constraint-based, scorebased,
and hybrid algorithms. The network obtained contains di-
rected edges, which can be interpreted as admissible causal
relationships among symptoms of mental disorders under
several assumptions. BNs are models that can complement
the popular partial correlation networks in the broad frame-
work proposed by the network theory of mental disorders
(Borsboom, 2017).

The field of network analysis is new and uniform methods
for investigating DAGs remain unestablished. Our tutorial
aims to offer an introduction to the topic as well as accessible
methods to conduct these analyses.
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Appendix A

Patterns of edges like v j → vi → vk, v j ← vi ← vk and
v j ← vi → vk lead to equivalent probability distributions.

The product of the probability of v j, the probability of vi

given v j and the probability of vk given vi, which describes
the probability of v j → vi → vk is equal to: 1) the product of
the probability of v j, the joint probability of vi and v j divided
by the probability of v j, and the joint probability of vi and vk

divided by the probability of vi; 2 ) the product of the joint
probability of vi and v j divided by the probability of vi, and the
joint probability of vi and vk; 3 ) the product of the probability
of vi, the probability of v j given vi, and the probability of vk

given vi, which describes the probability of v j ← vi → vk; 4
) the product of the probability of vk, the probability of v j

given vi, and the probability of vi given vk, which describes
the probability of v j ← vi ← vk

Pr
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)
Pr

(
vi | v j

)
Pr (vk | vi)︸                             ︷︷                             ︸
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) Pr
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)
Pr (vk | vi)︸                             ︷︷                             ︸
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=
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