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Abstract
Standard techniques for model checking stochastic multi-agent systems usually assume the transition probabilities describing 
the system dynamics to be stationary and completely specified. As a consequence, neither non-stationary systems nor systems 
whose stochastic behaviour is partially unknown can be treated. So far, most of the approaches proposed to overcome this 
limitation suffer from complexity issues making them poorly efficient in the case of large state spaces. A fruitful but poorly 
explored way out is offered by the formalism of imprecise probabilities and the related imprecise Markov models. The aim 
of this paper is to show how imprecise probabilities can be fruitfully involved to model-check multi-agent systems charac-
terised by non-stationary behaviours. Specifically, the paper introduces a new class of multi-agent models called Imprecise 
Probabilistic Interpreted Systems and their relative extensions with rewards. It also introduces a proper logical language to 
specify properties of such models and corresponding model checking algorithms based on iterative procedures to compute 
probabilistic and epistemic inferences over imprecise Markov models.

Keywords  Probabilistic model checking · Imprecise Markov chains · Probabilistic interpreted systems · Imprecise 
probabilities

Introduction

Probabilistic model checking is a verification technique to ana-
lyse the behaviour of stochastic agents and check whether they 
satisfy some given desirable properties. It relies on: (i) a formal 
model of the agent; (ii) a formal specification of the desirable 
properties; and (iii) algorithms to perform an exhaustive model 
exploration and verify whether the specified properties are met.

Markov models are the reference formalism usually 
involved in modelling the stochastic behaviour of agents. 

These include both discrete and continuous-time Markov 
chains and their several extensions [1]. Different approaches 
exist to specify properties of these models: graph-oriented 
approaches based on non-deterministic state automata [2, 
3], algebraic approaches based on formalisms like the per-
formance evaluation process algebra [4, 5], and approaches 
based on logical languages, such as the Probabilistic Com-
putational Tree Logic (PCTL) [6] and its various extensions 
[2]. Here, we limit our focus to logical approaches and the 
related semantics and algorithms.

Probabilistic model checking is applied to a variety of 
fields, ranging from software verification [7] and commu-
nication protocols [8–10], to service oriented architectures 
[11–13] and computational biology [14, 15]. Moreover, 
different frameworks have been proposed so far to cope 
with stochastic multi-agent systems. The latter are gener-
ally based on Kripke-like semantic frames and related epis-
temic languages [16]. Among them, the computationally-
grounded weighted doxastic logic proposed in [17] extends 
the well-known Computation Tree Logic (CTL) [2] with a 
weighted doxastic operator to specify single and multi-agent 
beliefs. Similarly, the Probabilistic Computation Tree Logic 
of Knowledge (PCTLK) [18] is a PCTL extension including 
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single and multi-agent epistemic modalities to specify 
different epistemic-probabilistic properties of stochastic 
multi-agent systems. Both formalisms base their semantics 
on probabilistic interpreted systems, a class of structures 
obtained by merging Kripke structures [16] with Markov 
models.

Despite its success, probabilistic model checking suffers 
from a well-known limitation: it requires all the transition 
probabilities to be defined by “sharp” (or, “precise”) numeri-
cal values. This constraint might be critical in several appli-
cations as it prevents from modelling both non-stationary 
agents and agents characterised by a partial uncertainty on 
the values of transition probabilities. An appealing way to 
overcome this limitation is represented by so-called para-
metric Markovian models [19], where precise state transition 
probabilities are replaced with unknown parameters. This is 
the solution adopted, for instance, in [20]. However, com-
plexity issues related with the corresponding model check-
ing procedure, based on fraction-free Gaussian elimination, 
limit its applicability only to models of small size.

A less explored alternative is provided by the formalism 
of imprecise probabilities [21] and related imprecise Markov 
models, namely imprecise Markov chains (IMC) and their 
extensions [22–25]. The latter can be seen as the imprecise 
counterparts of standard Markov chains and are obtained 
by replacing single-valued probability distributions with 
so-called credal sets, i.e. sets of probability distributions 
compatible with given constraints [26].

A first attempt to extend probabilistic model checking 
to the framework of imprecise probabilities has been pro-
posed in [22]. The paper introduces an imprecise version of 
PCTL based on IMCs and proves that shifting from precise 
to imprecise models does not increase the time complexity 
of the relevant model checking tasks, which remains poly-
nomial in the number of states of the models. A first exten-
sion of the results in [22] is provided in [25], introducing 
a specific language and the corresponding model checking 
procedure for imprecise Markov reward models (IMRM) 
partially based on the recursive procedures outlined in [27].

In both [22, 25], only single-agent systems are consid-
ered. A multi-agent extension of this formalism is instead 
presented in [28]. In this paper, the authors introduce a class 
of structures to model epistemic-stochastic multi-agent 
systems called imprecise probabilistic interpreted systems 
(IPIS) together with a language to specify their properties 
(called EIPCTL) and relative model checking procedure.

The present work introduces a new framework that com-
bines and extends the results in [25, 28]. The framework 
is based on Imprecise Probabilistic Interpreted Reward 
Systems (IPIRS), a class of imprecise-probabilistic models 
obtained by combining IPISs presented in [28] with IMRMs 
introduced in [25]. A language to specify properties of these 
models, called Epistemic Imprecise Probabilistic Interpreted 

Reward Systems (EIPRCTL) is consequently introduced. 
The latter is obtained by extending the EIPCTL introduced 
in [28] with operators specific for reward properties. Cor-
responding model checking algorithms are then developed 
based on iterative scheme exploiting the same transition 
operator used in [22] for IMCs. Furthermore, preliminary 
computational complexity results included in [22] and [28] 
are generalised, hence proving that shifting from precise to 
imprecise models does not increase the time complexity of 
the relevant model checking tasks with respect to standard 
(precise) models. The developed formalism and algorithms 
are finally tested on a case study borrowed from the medi-
cal domain.

The paper is structured as follows. In “Markov Mod-
els”, we provide a general introduction to different kinds 
of Markov models and related probabilistic inferences. In 
“Imprecise Markov Models”, we introduce different relevant 
kinds of imprecise Markov models and the corresponding 
methods to compute probabilistic inferences over them. In 
“Epistemic Imprecise PRCTL”, we define the syntax and 
semantics of EIPRCTL. In “Model Checking”, we develop 
a model checker for EIPRCTL exploiting procedures for the 
computation of probabilistic and epistemic inferences in 
imprecise Markov models introduced in “Imprecise Markov 
Models”. In “A Case Study on Healthcare Budgeting”, we 
offer an example of application based on a case study bor-
rowed from the medical domain. Finally, in “Conclusions”, 
we conclude with some remarks about further potential 
applications and developments of our framework. The proofs 
of the theorems are all reported in the Appendix A.

Markov Models

Markov Chains

Let S be a finite non-empty set of possible states. We are 
interested in modelling stochastic agents that, at each dis-
crete-time t ∈ ℕ , shift from a state s ∈ S to another, not 
necessarily different, state s� ∈ S . We assume the stochastic 
behaviour of an agent to be time-homogeneous, that is, the 
probability of a transition from s to s′ is independent of the 
time t at which it occurs, and memory-less, that is, the prob-
ability of each transition is independent of the previously 
occurred transitions. Under these conditions, the behaviour 
of the agent can be described in terms of a discrete-time 
Markov chain (DTMC).

Definition 1  (Discrete-time Markov chain) A discrete-time 
Markov chain M

����
 is a tuple:

M
����

∶= ⟨S,T , �⟩,
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where:

•	 S is a finite non-empty set of states;
•	 T ∶ S × S → [0, 1] is a transition matrix that assigns a 

probability value to each transition s, s� ∈ S × S;
•	 � ∶ S → [0, 1] is a probability distribution that assigns an 

initial probability value to each s ∈ S.

Given a DTMC M
����

 , we call path a function � ∶ ℕ ↦ S 
whose values are the states reached by M

����
 at the various 

time-steps t. Accordingly, each path � describes a possible 
temporal evolution of the Markov chain and corresponds to 
an infinite countable sequence of states. In what follows, nota-
tion �(t) is used to refer to the state of the path � at time t, 
while Paths(s) denotes the set of all paths � originating in a 
given state s ∈ S (i.e. such that �(0) = s ). The set of all pos-
sible paths � of a given DTMC M

����
 is denoted by ΠM

���� 
and represents the set of all possible outcomes in the temporal 
evolution of the Markov chain.

To relate paths with probabilities, we endow ΠM
���� with 

a �-algebra and augment it to a probability space as follows. 
Given a path � of M

����
 , a finite prefix 𝜋̂ of � is any sequence 

(�(0),… ,�(t)) originating in �(0) and including a finite num-
ber of subsequent states of � . The set of all finite prefixes of a 
given path � is denoted by pref (�) , while the set of all finite 
prefixes 𝜋̂ originating in a given state s ∈ S is denoted by 
Pathsfin(s) (see, [2,  Sec. 10.1]).

Definition 2  (Cylinder set) The cylinder set Cyl(𝜋̂) induced 
by a finite prefix 𝜋̂ is defined as

That is, Cyl(𝜋̂) is the set of all paths whose common prefix 
is 𝜋̂ [2, Def. 10.9].

Definition 3  (�-algebra of a Markov Chain) The �-algebra 
associated with a DTMC M

����
 , denoted �M

���� , is the 
smallest �-algebra that contains all cylinder sets Cyl(𝜋̂) , 
where 𝜋̂ ranges over all finite prefixes of M

����
.

From basic concepts of probability and Definition 3, it fol-
lows that there exists a unique probability measure PM

���� on 
the �-algebra �M

���� such that (see, [2, Sec. 10.1]):

where:

Cyl(𝜋̂) ∶=
{
𝜋 ∈ ΠM

���� ∣ 𝜋̂ ∈ pref (𝜋)
}
.

(1)PM���� (Cyl(�̂(0),… , �̂(t))) = �(�̂(0)) ⋅ PM���� (�̂(0),… , �̂(t)),

(2)PM
���� (𝜋̂(0),… , 𝜋̂(t)) ∶=

t−1∏
𝜏=0

T(𝜋̂(𝜏), 𝜋̂(𝜏 + 1)),

while for finite prefixes composed by just one state (i.e. 
𝜋̂ = {s} ), Ps(𝜋̂) = 1 [2, Sec. 10.1].

Also of interest are the probabilities of a path � , respec-
tively a finite prefix 𝜋̂ , conditional on a given initial state 
s ∈ S , which are henceforth denoted by PM

����

s (�) , respec-
tively PM

����

s (𝜋̂).
Over the probability space ⟨ΠM

���� , �M
���� ,PM

����⟩ , 
we define a family {St}t∈ℕ of categorical stochastic 
variables St that range over S  and describe the tem-
poral behaviour of the Markov chain. In this frame-
work, the memory-less condition above mentioned cor-
responds to the Markov property, which establishes 
that: PM

����(St+1 ∣ St,… , S0) = PM
���� (St+1 ∣ St) .  Time-

homogeneity, on the other hand, corresponds to assume 
PM

����(St+1 ∣ St) to be the same for all t.
Let us now consider the usual definition of (discrete-

time) stochastic process.

Definition 4  (Stochastic process) Given a finite non-empty 
set of states S , a discrete-time stochastic process over S , 
here denoted M, is a family of categorical stochastic vari-
ables {St}t∈ℕ ranging over S and defined over a probability 
space ⟨Π, �(�),PM⟩ such that

•	 Π is the set of all paths generated by states in S,
•	 �(Π) is the cylinder �-algebra of Π,
•	 PM is a probability measure over �(Π).

From Definition 4, it follows that each stochastic pro-
cess M is uniquely identified by (i.e. it is in one-to-one 
correspondence with) a probability measure PM . Accord-
ingly, a DTMC with state-space S , initial distribution � 
and transition matrix T can be alternatively regarded as the 
(discrete-time) stochastic process over S uniquely identi-
fied by the probability measure PM generated by � and T 
as by Eqs. (1) and (2).

Definition 5  (Labelled DTMC) A labelled DTMC is a 
DTMC extended with a set of atomic propositions AP and a 
labelling function l ∶ S → 2AP that assigns to each s ∈ S a 
set of atomic propositions l(s) ⊆ AP representing elementary 
facts (or properties) holding in that state.

In the rest of this article, we consider only labelled 
DTMCs. When not differently specified, we use the term 
DTMC to refer directly to their labelled extensions.

Inferences in Markov Chains

We next recall two probabilistic inferences that are of 
central interest in this work, i.e. marginal and hitting 
probability.
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Definition 6  (Marginal probability) Given an event B ⊆ S 
and an initial state s ∈ S , the marginal probability of B with 
respect to time t conditional on S0 = s is defined as follows:

Given an event B ⊆ S and state s ∈ S , we are also inter-
ested in the (conditional) hitting probability hB(s) , alterna-
tively called reachability probability (see, [2, Sec.10.1.1]), 
which is the probability of eventually visiting a state s� ∈ B 
starting from s.

Consider the event “the process eventually reaches B” 
(in model checking literature, this is usually denoted by 
◊B ). In order to define hB(s) , we need first to character-
ise the above event as a measurable set of paths. In fact, 
the latter corresponds to the union of all cylinders Cyl(𝜋̂) 
spanned by finite prefixes 𝜋̂ originating in s and such that 
∃ t ∈ ℕ ∶ 𝜋(t) ∈ B ∧ ∀𝜏 < t, 𝜋(𝜏) ∉ B . Since these sets are 
pairwise disjoint, the hitting probability of B can be defined 
as follows [2, Sec.10.1.1.].

Definition 7  (Hitting probability) Given a DTMC M
����

 , a 
set of states B ⊆ S , and an initial state s ∈ S,

Following [22, 24], we compute marginal and hitting 
probabilities via a transition operator T̂  defined as follows.

Definition 8  (Transition operator) For any real function f of 
S , T̂f  is defined as a function S → ℝ such that

In practice, the transition operator returns the conditional 
expectation of f, i.e. T̂f (s) = E[f (St+1) ∣ St = s] [24]. After t 
time-steps, the transition operator is obtained as follows:

and the respective conditional expectation writes as 
E[f (St) ∣ S0 = s] = (T̂ tf )(s) . Since the marginal probability 
is equivalent to the expectation of the indicator function �B(s) 
that returns one if s ∈ B and zero otherwise, we can compute 
it as

(3)

PM
����

s

(
St ∈ B

)
∶=

∑
𝜋̂∶={𝜋̂(0),…,𝜋̂(t)} s.t. 𝜋̂∈Pathsfin(s) ∧ 𝜋̂(t)∈B

PM
����(𝜋̂) .

hB(s) ∶=
∑

𝜋̂ ∈ Pathsfin(s) ∶ ∃ t ∈ ℕ s.t.

𝜋̂(t) ∈ B ∧ ∀ 𝜏 < t, 𝜋̂(𝜏) ∉ B

PM
����

s
(Cyl(𝜋̂)).

(4)∀s ∈ S ,
(
T̂f

)
(s) ∶=

∑
s�∈S

T
(
s, s�

)
⋅ f
(
s�
)
.

(5)∀s ∈ S ,
(
T̂ tf

)
(s) ∶=

{(
T̂f

)
(s) if t = 1 ,(

T̂
(
T̂ t−1f

))
(s) if t > 1,

(6)Ps

(
St ∈ B

)
= T̂ t

�B(s).

The hitting probability hB is obtained instead by computing 
the minimal non-negative solution1 of the following system 
of linear equations [29,  Th. 1.3.2]:

where Bc is the complement of B, and sums and products 
are intended as element-wise operations on arrays. Standard 
methods solve Eq. (7) in polynomial time with respect to 
|S| [2, p.749]. Here we consider an alternative procedure 
that is easier to be extended to the imprecise-probabilistic 
framework (see, Section  “Imprecise Markov Models”). Let 
ht
B
(s) be the probability of hitting B from s ∈ S within a 

finite number of time-steps t. For t = 0 , we trivially have 
ht
B
(s) = �B(s) . For t > 0 , if s ∉ B , the hitting probability at t 

is obtained by applying the transition operator to ht−1
B

 , while 
if s ∈ B it is simply set to one. Thus,

The hitting probability hB can thus be computed as the fixed 
point t∗ of the iterative schema in Eq. (8).

The time complexity of the above iterative computation 
is polynomial with respect to |S|t∗ . As each iterative step is 
based on solving a system of |S| linear equations, its time 
complexity results polynomial in |S| . Since t∗ further itera-
tions are necessary to reach the fixed point, the overall time 
complexity will result to be polynomial in |S|t∗.

Markov Reward Models

Among the various extensions of Markov chains, let us con-
sider Markov reward models (MRMs) [2]. A MRM is a pair 
⟨M, rew⟩ composed of a Markov chain M with state space 
S and a reward function rew ∶ S ↦ ℕ such that rew(s) rep-
resents the reward earned visiting s, for each state s ∈ S . 
Given an event B ⊆ S and a path � ∈ ΠM

���� , we are inter-
ested in the cumulative reward earned along � until visiting 
an s ∈ B for the first time. The latter is defined as follows.

Definition 9  (Cumulative reward) Given an event B ⊆ S and 
a path � ∈ ΠM

����,

Given the above definition, the expected cumula-
tive reward earned until reaching B starting from s ∈ S , 

(7)hB = �B + �Bc ⋅ T̂hB ,

(8)ht
B
= �B + �Bc ⋅ T̂ht−1B

.

(9)

RewB(𝜋) ∶=

�∑t

𝜏=0
rew(𝜋(𝜏)) if ∃t ∶ 𝜋(t) ∈ B ∧ ∀𝜏 < t, 𝜋(𝜏) ∉ B∑∞

𝜏=0
rew(𝜋(𝜏)) otherwise .

1  By minimal non-negative solution we mean a solution such that (i) 
for each s ∈ S, h

B
(s) ≥ 0 , (ii) given any other non-negative solution 

h
�
B
(s) , then h

B
(s) ≤ h

�
B
(s) for each s ∈ S.
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denoted ExpRewB(s) , is now defined as the expectation2 
of the function RewB conditional on initial state s ∈ S , i.e. 
ExpRewB(s) ∶= E[RewB ∣ S0 = s] [2, Def. 10.71]. Let us now 
discuss more in detail how to compute this value. First of all, 
we need to recall the following result from [2, Sec. 10.5.1]. 
Given an event B ⊆ S , let SB

=1
 indicates the set of all states 

s ∈ S from which it is possible to reach an s� ∈ B almost 
surely, i.e.:

If s ∉ S
B
=1

 , then ExpRewB(s) may not converge to a finite 
value. Following [2,  sec. 10.5.1], we thus assume for con-
venience that, by default, ExpRewB(s) = ∞ for all s ∉ S

B
=1

 . 
For all s ∈ S

B
=1

 , the following result holds [2, Sec. 10.5.1].

Proposition 1  The values xs = E[RewB ∣ S0 = s] for each 
s ∈ S

B
=1

 provide the unique solution of the following equa-
tions system:

There exist several methods to solve the linear system in 
Eq. (10) (see, [2, Sec.10.5.1]). Here, we adopt a recursive 
schema similar to that one involved above for hitting prob-
ability, which is obtained as follows.

For every s ∈ S
B
=1

 , let ExpRew0
B
(s) ∶= rew(s) , and, for 

every t ∈ ℕ, t ≠ 0 , let ExpRewt
B
(s) be defined as

Notice that the functions ExpRewt
B
 are well-defined since if 

s ∈ S
B
=1

 , then s� ∈ S
B
=1

 for every s′ such that T(s, s�) > 0 . Each 
function ExpRewt

B
 can be given a clear interpretation as the 

expected cumulative reward earned until reaching B from s 
within a maximum number of time-steps t, as the following 
result shows.

Theorem 2  For every t ∈ ℕ , it holds that

where for every � ∈ ΠM
���� , Rew0

B
(�) ∶= rew(�(0)) , and for 

every t ∈ ℕ, t ≠ 0,

S
B
=1

∶=
{
s ∈ S ∣ hB(s) = 1

}
.

(10)xs =

�
rew(s) if s ∈ B,

rew(s) +
∑

s�∈SB
=1
T(s, s�)xs� otherwise.

(11)

ExpRewt
B
(s) ∶=

�
rew(s) if s ∈ B ,

rew(s) +
∑

s�∈S T(s, s
�)ExpRewt−1

B
(s�) otherwise.

(12)
(
∀s ∈ S

B
=1

)
ExpRewt

B
(s) = E

[
Rewt

B
∣ S0 = s

]
,

(13)
Rewt

B
(𝜋) ∶=

�
RewB(𝜋) if ∃t∗ ≤ t ∶ (∀𝜏 < t∗) 𝜋(𝜏) ∉ B,𝜋(t∗) ∈ B,∑t

𝜏=0
rew(𝜋(𝜏)) otherwise.

Thanks to Theorem 2, we can now demonstrate the fol-
lowing result proving that the recursive scheme above intro-
duced converges to what we expect.

Theorem 3  E[RewB ∣ S0] restricted to SB
=1

 is a fixed point of 
the iterative scheme (25).

As for hitting probability, we can thus compute ExpRewB 
by iterating the schema in Eq. (25) over increasing values 
of t until convergence.

The last MRM inference we consider is the reward-
bounded hitting probability hr

B
(s) , i.e. the probability of 

reaching B from s before earning a cumulative reward equals 
to r.

As for standard hitting probability, we proceed by 
defining the event “the process reaches B before earn-
ing a cumulative reward equals to r” (usually denoted 
by ◊

≤rB ) as a measurable set of paths. Notably, this 
event corresponds to the union of all cylinder sets Cyl(𝜋̂) 
spanned by finite prefixed 𝜋̂ originating in s and such 
t h a t  ∃t ∈ ℕ ∶ 𝜋̂(t) ∈ B ∧ ∀𝜏 < t, 𝜋̂(𝜏) ∉ B ∧ rew(𝜋̂(0),

… , 𝜋̂(𝜏)) ≤ r . Since these are pairwise disjoint sets, the 
reward-bounded hitting probability of B can be defined as 
follows [2, Sec. 10.5.1]:

Definition 10  (Reward-bounded hitting probability) For all 
s ∈ S:

To introduce a method to compute hr
B
(s) , let us first recall 

the following result from [2, Sec. 10.5.1]. Let h�
B
 denote the 

vector of reward-bounded hitting probability for a reward-
threshold � = 0,… , r . Let SB

>0
 be the set of all states s ∈ S 

such that hB(s) > 0 , i.e. the set of all states s ∈ S such that 
there exists at least one path � originating in s and reaching 
B for some t.

Proposition 4  For each s ∈ S , the value of h�
B
(s) is given by 

the following system of equations:

hr
B
(s) ∶=

∑

𝜋̂ ∈ Pathsfin(s) ∶ ∃t ∈ ℕ s.t.

𝜋̂(t) ∈ B ∧ ∀𝜏 < t 𝜋̂(𝜏) ∉ B∧

rew(𝜋̂(0),… , 𝜋̂(t)) ≤ r

PM
����

s
(Cyl(𝜋̂))

2  Notice that Rew
B
 is not a real-valued function as its value may 

diverge to ∞ for some s ∈ S.
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Trivially, h�
B
= 1 whenever s is already in B and its state-

reward does not overcome the desired threshold � . Differently, 
if s ∈ B but rew(s) > 𝜌 , then we have that the cumulative 
reward earned by the agent already overcomes the specified 
threshold and, thus, h�

B
(s) = 0 . The same also holds when 

s ∉ S
B
>0

 as, in this case, we already know that hB is equal to 
zero and consequently also h�

B
= 0 . In all the remaining cases, 

h
�

B
(s) is computed by iteration over the possible successors of 

s. That is, we take the sum over all s� ∈ S of the probability 
of reaching s′ from s multiplied the probability of reaching B 
from s′ before earning a cumulative reward equal to � − rew(s) . 
Remember that every time the agent transits from a state s to 
one of its successors s� ∈ S , it earns the reward of s. Conse-
quently, the threshold � has to be reduced of a value rew(s) at 
each further iteration from a state s to its successors s′.

Notice that the system in the above proposition is in fact a 
linear system with variables (s, �) ranging in S × {0, 1,… , �} . 
As in the case of standard hitting (see, Eq. (14)), we can solve 
the system by standard methods [2, Sec. 10.5.1]. Here, we 
follow a different strategy based on a recursive schema that 
iterates both over times and rewards. Let ht,�

B
(s) denote the 

probability of hitting B from s before earning cumulative 
reward � and within time-step t. For each t ∈ ℕ , the values of 
h
t,�

B
 computed for � = 0,… , r are collected in S × r matrix that 

we denote by ht,�0∶r
B

.
For t = 0 , we generate ht=0,�0∶r

B
 by computing the vectors 

h
t=0,�

B
 for � = 0,… , r and for each s ∈ S as follows:

Consider that when t = 0 no transition occurs. Hence, we 
clearly have that, for each s ∈ A , ht=0,�

B
(s) is equals to one if s 

belongs to the hitting event B and its reward rew(s) does not 
exceed the specified threshold � , otherwise ht=0,�

B
(s) is zero.

For t > 0 , ht,�0∶r
B

 is generated by computing the various vec-
tors ht,�

B
 for � = 0, 1,… , r via the following recursive schema 

applied to each s ∈ S:

The first two cases follow from considerations analogous 
to those leading to Eq. (15). In the third case, we obtain 
the value of ht,�

B
(s) from ht−1,�−rew(s)

B
 via one-step application 

(14)

h
𝜌

B
(s) =

⎧⎪⎨⎪⎩

1 if s ∈ B and rew(s) ≤ 𝜌

0 if rew(s) > 𝜌 or s ∉ S
B
>0∑

s�∈S T(s, s
�)h

𝜌−rew(s)

B
(s�) otherwise.

(15)h
t=0,�

B
(s) =

{
1 if s ∈ B and rew(s) ≤ �

0 otherwise.

(16)

h
t,𝜌

B
(s) =

⎧⎪⎨⎪⎩

1 if s ∈ B and rew(s) ≤ 𝜌

0 if hB(s) = 0 or rew(s) > 𝜌∑
s�∈S T

�
s, s�

�
h
t−1,𝜌−rew(s)

B

�
s�
�
otherwise.

of the transition operator. As the reward is cumulative, 
the threshold � is decreased by the reward of the current 
state. The values of ht−1,�−rew(s)

B
 are provided by the matrix 

h
t−1,�0∶r
B

 that we generate at time-step t − 1 . Specifically, 
h
t−1,�−rew(s)

B
(s�) corresponds to the cell identified by the |s′|

-row and the |� − rew(s)|-column of the matrix ht−1,�0∶r
B

 . For 
all s ∈ S , the procedure converges to a finite value, as proved 
by the following theorem.

Theorem 5  Let ⟨M, rew⟩ be a MRM, B ⊆ [S] , and � ∈ ℕ . 
There is a t∗ ∈ ℕ such that for all � ≥ 0:

As for standard hitting, we can, therefore, compute hr
B
 

simply by iterating ht,�0∶r
B

 over increasing values of t until 
convergence.

Probabilistic Interpreted Systems

Probabilistic Interpreted Systems (PISs) [18] are another 
MC extension we consider. PISs are a class of semantic 
frames used in computational logic for modelling epis-
temic and probabilistic properties of stochastic multi-agent 
systems. Consider a finite non-empty set of agents A . The 
possible configurations of each agent a ∈ A are described 
by a finite non-empty set of local states Sa . The set of 
global states S describing the possible configurations of 
the whole multi-agent system is obtained as the Cartesian 
product S ∶= ×a∈AS

a . Accordingly, each s ∈ S is a tuple 
⟨sa1 , sa2 ,… , san⟩ of |A| local states. Hence, formally, we have 
the following definition.

Definition 11  A PIS is defined as a tuple:

where:

•	 A is a finite non-empty set of agents;
•	 S is a finite non-empty set of global states;
•	 {Ta}a∈A  is  a  family of  t ransi t ion matr ices 

Ta ∶ S × S → [0, 1];
•	 {Pa}a∈A is a family of initial probability distributions 

Pa ∶ S ↦ [0, 1];
•	 AP is a set of atomic propositions;
•	 l ∶ S → 2AP is the labelling function.

For each agent a ∈ A , we also introduce an epistemic 
equivalence relation ∼a⊆ S × S such that

(17)h
t∗+�,�0∶r
B

= h
t∗,�0∶r
B

.

(18)M
���

∶=
⟨
A,S, {Ta}a∈A, {P

a}a∈A,AP, l(s)
⟩
,

s ∼a s� iff sa = s�a.
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The latter denotes that two global states s, s′ are epistemi-
cally indistinguishable by an agent a if and only if they are 
identical as far as the agent knows. The equivalence relation 
∼a induces a partition Eq∼a over S . The elements of this par-
tition are denoted by eq∼i , and are called epistemic equiva-
lence classes (EEC). They consist of sets of global states 
that are epistemically indistinguishable among each others 
by a. Specific equivalence relations can be also defined to 
model different kinds of multi-agent knowledge in a group 
of agents Γ ⊆ A , including:

•	 Everybody Knows ∼Γ
E
∶=

⋃
∀a∈Γ ∼a;

•	 Common Knowledge ∼Γ
C
∶= it(

⋃
∀a∈Γ ∼a) , where it 

denotes the iterative closure;
•	 Distributed Knowledge ∼Γ

D
∶=

⋂
∀a∈Γ ∼a.

Each relation induces a partition whose elements are the 
respective EECs eq∼Γ

E , eq∼Γ
C , and eq∼Γ

D for groups of agents 
Γ ⊆ A.

From the transition matrices associated with each agent, a 
global transition matrix T

���
 describing the stochastic behav-

iour of the whole multi-agent system can be obtained by 
logarithmic pooling as follows:

where � is a normalising constant.
A global initial probability distribution P

���
 is similarly 

defined:

Furthermore, the global transition matrix T
���

 and the global 
initial probability distribution identify a particular MC 
⟨S, �

���
, T

���
,AP, l⟩ called the embedded MC of the PIS. The 

latter is used to compute probabilistic inferences concerning 
the overall stochastic behaviour of the multi-agent system.

A pair ⟨M
���

, rew⟩ of a PIS M
���

 and a reward function 
rew ∶ S ↦ ℕ , is called a Probabilistic Interpreted Reward 
System (PIRS).

Imprecise Markov Models

In this section, we provide imprecise-probabilistic coun-
terparts for the Markov models presented in the previous 
section. This basically corresponds to replace the (sharp) 
specifications of the probabilistic parameters with set-valued 
ones. We also show how the efficient inference algorithms 
described in the previous section can be extended to such 
generalised setup, thus allowing for the computation of the 
bounds with respect to the set-valued specification, without 
increased computational costs. These results partially rely on 

(19)T
���

(
s, s�

)
∶= �

∏
a∈A

Ta
(
s, s�

)
,

(20)P
���

(s) ∶= ��
∏
a∈A

Pa(s) .

recent works about imprecise Markov models [24, 27]. Note 
that the imprecise Markov models we consider follow the so-
called measure-theoretic interpretation [24] and relies on the 
formalism of credal sets [30]. The alternative game-theoretic 
formalisation [31] is briefly mentioned without going into 
details insofar the two formalisms are equivalent for the infer-
ence tasks relevant for this work, as proved in [32].

Imprecise Transition Matrices

Given a variable S, a Credal Set (CS) K(S) is a set of prob-
ability mass functions over S. The upper expectation of a real-
valued function f of S with respect to CS K(S) is intended as 
E[f (S)] ∶= supP(S)∈K(S)

∑
s∈S f (s) ⋅ P(s) (the lower expectation 

E[f (S)] is analogously defined). Here we only consider closed 
and convex CSs induced by a finite number of linear con-
straints. These are polytopes in the probability simplex with 
a finite number of extreme points collected in a set Ext[K(S)]. 
For these CSs, upper (lower) expectations can be equivalently 
obtained by taking the maximum (minimum) with respect 
to the precise expectations computed on the extreme points. 
Conditional CSs might be defined analogously [33].

In this framework, an imprecise transition matrix T  is defined 
as a collection of conditional CSs {K(S�|s)}s∈S , each one rep-
resenting a separately specified row of the matrix. This allows 
for defining precise transition matrices whose rows are obtained 
by taking a P(S�|s) ∈ K(S�|s) for each s ∈ S . Each one of these 
matrices represents a stochastic behaviour compatible with the 
“imprecise” specification given by T .

Imprecise Markov Chains

As a first example of imprecise Markov model, we con-
sider (discrete-time) imprecise Markov chains (IMCs), thus 
providing an imprecise-probabilistic version of the models 
introduced in Section  “Markov Chains”. Note that there 
exist two main ways of formalising IMCs in the literature. 
On the one hand, the measure-theoretic characterisation 
defines an IMC as a family of (discrete-time) Markov mod-
els compatible with beliefs about initial and transition prob-
abilities. On the other hand, the game-theoretic characterisa-
tion is grounded on the game-theoretic view of probability 
popularised in [31] that, applied to the theory of stochas-
tic processes directly leads to imprecise models.3 The two 
characterisations are different but have been recently proved 
to coincide for all expectations on the following domains: 
(i) monotone pointwise limits of finitary real-valued func-
tions, and (ii) bounded below Borel-measurable variables 
[32]. In this work we focus on measure-theoretic IMCs only. 

3  See [34, 35] for an in-depth discussion on the relation between 
measure-theoretic and game-theoretic IMCs.
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However, all the inferences we consider fall under (i) and 
thus, for the purposes of our work, the two characterisations 
can be considered equivalent.

Given a CS K(S0) and an imprecise transition matrix T  , 
both defined over S , the (discrete-time) IMC M induced by 
K(S0) and T  can be defined as the largest set of (discrete-
time) stochastic processes that are compatible with K(S0) 
and T .

The term “compatible” here deserves an exact characteri-
sation. In literature, indeed there exist at least two different 
criteria for establishing compatibility, which depends on 
the imprecise interpretation of the notion of stochastic irrel-
evance, and, consequently, of the Markov property one con-
siders [36]. The two notions of irrelevance typically involved 
for IMCs are strong independence and epistemic irrelevance. 
The former is defined via product-independence of the CS 
extreme points: we say that K(S) and K(S�) are strong-
independent if and only if, for all P(S) ∈ Ext[K(S)] and all 
P(S�) ∈ Ext[K(S�)] , it holds that P(S, S�) = P(S) ⋅ P(S�) . The 
latter is defined via conditioning: we say that K(S) is epis-
temically irrelevant for K(S�) if and only if K(S� ∣ s) = K(S�) 
for each s ∈ S.4 Notice that, unlike strong independence, 
epistemic irrelevance is asymmetric, i.e. the irrelevance of 
K(S) for K(S�) does not entail the irrelevance of K(S�) for 
K(S).

Following [27, 38], and also the early work of [22], in 
this paper we focus on epistemic irrelevance. Notably, by 
exploiting the results in [30], the imprecise-probabilistic 
inferences considered in the rest of this paper can easily 
proved to be independent of the specific characterisation we 
adopt. Epistemic irrelevance leads to an imprecise charac-
terisation of the Markov property practically correspond-
ing to assume that “whenever the agent knows the current 
state, then her beliefs about future states are not altered upon 
learning what states were visited in the past” [36, p. 265]. 
A formal definition of IMC can thus be given as follows:5

Definition 12  (Imprecise Markov chain under epistemic 
irrelevance) Given K(S0) and T  , an IMC M (under epis-
temic irrelevance) is defined as the largest set of all, poten-
tially non-Markov, non-homogeneous, stochastic processes 
for which, for all t ∈ ℕ and all s0,… , st ∈ S

t , there is some 
T ∈ T  such that P(St+1 = s� ∣ S0∶t = s0∶t) = T(s0∶t, s

�) for all 
s� ∈ S.

Furthermore, each IMC is uniquely identified by a set 
of probability measures PM ∶ �(Π) → [0, 1] that we denote 
by KM . Each PM ∈ KM uniquely identifies a (potentially 

non-Markov and non-homogeneous) stochastic process com-
patible with the IMC identified by KM . The IMC identified 
by KM is also uniquely identified by KM

s
 , which is the credal 

set including all the conditional probability distribution PM
s

 
obtained by conditioning the various PM ∈ KM on a given 
initial state s ∈ S . As detailed in the next section, inferences 
in IMCs are consequently intended as the computation of 
lower and upper expectations with respect to such credal set.

Before moving on, notice that, as in the precise case, we 
are interested here in labelled IMCs, i.e. IMCs augmented 
with a finite set of atomic propositions AP and a labelling 
function l ∶ S → 2AP . In what follows, when using the term 
IMC, we always refer to labelled IMCs.

Inference in Imprecise Markov Chains

To compute inferences in IMCs, let us first introduce the 
analogous of the transition operator in Eq. (4). This is 
obtained by taking the bounds with respect to all the possible 
(precise) specifications of transition probabilities consistent 
with the imprecise transition matrix of the IMC. For upper 
bounds, this corresponds to the following non-linear upper 
operator:

while an analogous definition, with the minimum replacing 
the maximum, holds for the lower operator T  [27, Eq. 1]. 
Equation (21) can be computed by solving |S| linear pro-
gramming tasks whose feasible regions are the conditional 
CSs in the definition of T  . This is possible, in particular, 
because we assume (Section  “Imprecise Transition Matri-
ces”) that each row of T  is separately specified and consists 
of a conditional CS K(S� ∣ s) described by a finite number of 
linear constraints.

An iterated application of the above operators can be used 
to compute the bounds of the probability of reaching a given 
set of states after a number of time-steps t, as shown by the 
following result.

Theorem  6  Given an event B ⊆ S and a time t ∈ ℕ , let 
Ps(st ∈ B) denote the upper bound for the probability of reach-
ing B after t time-steps when starting from s. It holds that:

A similar result allows to obtain the lower probability 
by means of the lower operator. For the sake of concise-
ness, in the rest of the paper, we only report the results for 
upper probabilities, expectations and transition operators. 
The lower bounds can always be obtained by replacing the 
upper transition operator with its lower analogous.

(21)
(
Tf
)
(s) ∶= max

T(s,S�)∈T(s,S�)

∑
s�∈S

T
(
s, s�

)
⋅ f
(
s�
)
,

(22)Ps

(
st ∈ B

)
= T

t
�B(s).

4  For a more detailed characterisation of the difference between these 
notions, we refer to [37].
5  This definition is as in [27]. An analogous definition is given in 
[24].
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For what concerns the upper hitting probability, the latter 
can be regarded as the upper bound of the hB defined in Eq. 
(7) with respect to the set KM , as detailed in the following 
definition.

Definition 13  (Upper hitting probability) Given a IMC M , 
a set of states B ⊆ S , and an initial state s ∈ S:

The latter can be compute as the minimal solution of the 
following system of equations [24, Corollary 19] (See also 
[27]).

Differently from the precise case, the system in Eq. (23) is 
non-linear and cannot be solved by the standard methods 
typically used in the precise case. Nevertheless, as we show 
below, it is possible to apply a schema analogous to that in 
Eq. (8) and compute hB by recursion over increasing values 
of t (see, Ref. [24]). Let h

t

B
 denote the upper hitting probabil-

ity of B for a finite number of time-steps t ∈ ℕ conditional on 
S0 = s . For t = 0 , we trivially have that h

t=0

B
= �B . For t > 0 , 

we have instead the following recursion:

In practice, the procedure consists of t iterated applications 
of the transition operator T  and, consequently, requires the 
solution of |S| ⋅ t linear programming tasks. The time com-
plexity of the procedure is, therefore, polynomial in |S| ⋅ t , 
exactly as in the precise case.

As for standard DTMCs, it is proved that the least fixed 
point of Eq. (24) is the minimal non-negative solution of 
the schema in Eq. (23) (see, [24, Prop 16]). We can thus 
compute hB simply by iterating the schema in Eq. (24) over 
increasing values of t until converge. The overall time com-
plexity results polynomial in |S|t∗ as in the precise case. 
Each iteration step is based on a one-step application of the 
upper transition operator T  and requires the solution of |S| 
linear optimisation tasks: its time complexity is, therefore, 
polynomial in |S| . As t∗ further iterations are necessary to 
reach convergence, the overall time complexity results poly-
nomial in |S|t∗.

Imprecise Markov Reward Models

The imprecise Markov reward models (IMRMs) are 
the first extension of IMCs we consider. The latter can 
be defined as the imprecise counterpart of a MRM and 

hB(s) ∶= max
PM
s
∈KM

∑

𝜋̂ ∈ Pathsfin(s) ∶ ∃ t ∈ ℕ s.t.

𝜋̂(t) ∈ B ∧ ∀ 𝜏 < t, 𝜋̂(𝜏) ∉ B

PM
s
(Cyl(𝜋̂))

(23)hB = �B + �BcT hB.

(24)h
t

B
= �B + �BcT h

t−1

B
.

consists of a pair ⟨M, rew⟩ of a IMC M and a reward 
function rew ∶ S → ℝ . For IMRMs, we characterise 
the expected cumulative reward ExpRewB by its upper 
and lower bounds, respectively denoted ExpRewB and 
ExpRewB . As in the precise case, we restrict the latter to 
only s ∈ S

B
=1

 , where SB
=1

 is now defined as the set of all 
s ∈ S such that h

B
(s) = 1.

Given an event B ⊆ S and a path � ∈ ΠM
����� , let us con-

sider the cumulative reward RewB(�) earned along � until 
visiting an s ∈ B for the first time, as in Definition 9. The 
upper ExpRewB(s) expected cumulative rewards earned 
until reaching B starting from s ∈ S can be defined as the 
upper expectation of RewB conditional on the initial state 
s ∈ S , i.e. ExpRewB(s) ∶= E[RewB|s].

Inspired by Theorem 3 valid for the precise case, we 
introduce an imprecise version of the recursive scheme 
presented in Eq. (10). To this end, let ExpRew0

B
(s) ∶= rew(s) 

for every s ∈ S
B
=1

 . Instead, for each t ∈ ℕ, t ≠ 0 , let 
ExpRewt

B
(s) be defined as follows:

Similarly to the precise case, ExpRewt
B
 can be given a clear 

interpretation via the following theorem.

Theorem 7  For every t ∈ ℕ , it holds that

where for each � ∈ ΠM
����� , Rew0

B
(�) ∶= rew(�(0)) , and for 

each t ∈ ℕ, t ≠ 0,

By exploiting Theorem 7, we can now demonstrate the 
following result proving that the recursive schema above 
introduced converges to what expected.

Theorem 8  E[RewB ∣ S0] restricted to SB
=1

 is a fixed point of 
the iterative scheme (25).

To conclude, let us focus on the imprecise counterpart 
of reward-bounded hitting probability hr

B
 and its upper 

bound h
r

B
 , which we defined as follows.

Definition 14  (Upper hitting probability) Given a IMC M , 
a set of states B ⊆ S , a reward-threshold r, and an initial 
state s ∈ S:

(25)

ExpRewt
B
(s) ∶=

{
rew(s) if s ∈ B ,

rew(s) +
(
T ExpRewt−1

B

)
(s) otherwise,

(26)(∀s ∈ SB
=1
) ExpRewt

B
(s) = E

[
Rewt

B
∣ S0 = s

]
,

(27)Rew
t

B
(𝜋) ∶=

⎧
⎪⎨⎪⎩

Rew
B
(𝜋) if ∃t∗ ≤ t ∶ (∀𝜏 < t∗)

𝜋(𝜏) ∉ B,𝜋(t∗) ∈ B,∑t

𝜏=0
rew(𝜋(𝜏)) otherwise.
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Similarly to the precise case (see Proposition 4), the values 
of h

�

B
(s) for all s ∈ S and � ∶= 0, 1,… , r provide a solution 

to the following system of equations:

To compute h
r

B
 , we can, therefore, use a recursive schema 

analogous to that presented in “Markov Reward Models”. 
First, we define a matrix h

t,�0∶r

B
 whose cells are the values of 

h
t,�

B
(s) computed for each s ∈ S and for � = 0,… , r.
For t = 0 , we generate h

t,�0∶r

B
 by computing the vectors h

t=0,�

B
 

for � = 0,… , r as in Eq. (15).
For increasing values of t, h

t,�0∶r

B
 is generated by computing 

the vectors h
t,�

B
 for � = 0,… , r as follows:

As in the precise case, the values of ht−1,�−rew(s)
B

(s�) for all 
s� ∈ S are provided by the matrix h

t−1,�0∶r that we generate 
at time-step t − 1 . The recursion is based on iterated applica-
tions of the upper transition operator T  , each one based on 
solving |S| linear programming tasks.

To compute h
r

B
(s) for all s ∈ S , we proceed as in the precise 

case, that is, we iterate h
t,�0∶r

B
 over increasing values of t until 

convergence. Hence, for each s ∈ S , h
r

B
(s) is given by the s-cell 

of the r-vector of the matrix h
t∗,�0∶r

B
 , where t∗ is the convergence 

time-step. The convergence of the procedure is granted by the 
following theorem:

Theorem 9  Let (M, rew) be a IMRM, B ⊆ [S] , and � ∈ ℕ , 
there is a t∗ ∈ ℕ such that for all � ≥ 0:

The overall time complexity of the procedure is polynomial 
in |S|t∗ for a reasoning analogous to that stated for Eq. (24).

h
r

B
(s) ∶= max

PM
s
∈KM

∑

𝜋̂ ∈ Pathsfin(s) ∶ ∃t ∈ ℕ s.t.

𝜋̂(t) ∈ B ∧ ∀𝜏 < t 𝜋̂(𝜏) ∉ B∧

rew(𝜋̂(0),… , 𝜋̂(t)) ≤ r

PM
����

s
(Cyl(𝜋̂)).

(28)
h
�
B(s) =

⎧

⎪

⎨

⎪

⎩

1 if s ∈ B and rew(s) ≤ r
0 if rew(s) > � or s ∉ >0

max
T(s,S′)∈ (s,S′)

∑

s′∈ T
(

s, s′
)

h
�−rew(s)
B

(

s′
)

otherwise .

(29)h
t,�
B (s) =

⎧

⎪

⎨

⎪

⎩

1 if s ∈ B and rew(s) ≤ �
0 if rew(s) > � or s ∉ >0

max
T(s,S′)∈ (s,S′)

∑

s′∈ T
(

s, s′
)

ht−1,�−rew(s)B

(

s′
)

otherwise.

(30)h
t∗+�,�0∶r

B
= h

t∗,�0∶r

B
.

Imprecise Probabilistic Interpreted Systems

The second IMC extension we consider are imprecise proba-
bilistic interpreted systems (IPISs) [28]. The latter are defined 
as multi-agent systems composed by agents whose stochastic 
behaviour is described in terms of IMCs. An IPIS under this 
interpretation is constructed as follows. For each agent a ∈ A , 
let {Ka(S� ∣ s)}s∈S denote a family of CSs including, for each 

s ∈ S , all the transition probability mass functions Pa(S� ∣ s) 
that are compatible with some agent’s probabilistic beliefs. To 
obtain an IPIS, we replace all the transition matrices Ta, a ∈ A 
in a standard PIS with corresponding (row-stochastic) impre-
cise transition matrices Ta ∶= {Ka(S� ∣ s)}s∈S , whose rows 
correspond to the transition CSs Ka(S� ∣ s) for all s ∈ S . The 
overall stochastic behaviour of the entire multi-agent system 
is then described by a global imprecise transition matrix T

����
 

which can be obtained following different approaches. The 

most conservative approach consists of defining T
����

 as a col-
lection of ∣ S ∣ conditional CSs K

����
(S� ∣ s) , each one being 

defined as 
⋃

a∈A Ka(S� ∣ s) . While natural, this approach 
always implies an increase of the degree of imprecision, 
defined in terms of the size of the credal sets.

Another approach to obtain T
����

 consists of computing, for 
each transition s, s� ∈ S × S , the credal version of the logarithmic 
pooling of the family of conditional CSs {Ka(S� ∣ s) ∶ a ∈ A} . 
In general, this is defined as the element-wise application of the 
standard logarithmic pooling to the elements of the credal sets. 
This element-wise approach, however, might comport exponential 
complexity with respect to the number of agents in the model. A 
similar problem also occurs when considering alternative strate-
gies, such as the one proposed in [39] within the framework of 
general credal networks. An efficient way to overcome the prob-
lem we adopt here consists in considering an outer approximation 
of the lower and upper bounds of the credal logarithmic pooling 
achieved as follows:

(31)

T
����

�
s, s�

�
∶=

∏
a∈A T

a�
s, s�

�
∏

a∈A T
a
(s, s�) +

∑
s��≠s�

∏
a∈A T

a(s, s��)
.
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The lower bound is analogously computed. The obtained 
global matrix T

����
 consists of an imprecise transition matrix 

T
����

 whose entries are intervals (m, n) ⊆ [0, 1] whose extremes 
are given by the lower T

����
(s, s�) and the upper T

����
(s, s�) 

bounds of the transition probabilities. As in the precise case, 
the global matrix describes the embedded IMC of the IPIS that 
is used to compute probabilistic inferences arising with the 
overall stochastic behaviour of the multi-agent system.

Imprecise Probabilistic Interpreted Reward Systems

The last class of IMC-based structures we consider are 
imprecise-probabilistic interpreted reward systems (IPIRSs). 
The latter are defined as pairs ⟨M

����
, rew⟩ of a IPIS M

����
 

and a reward function rew ∶ S ↦ ℕ . As for IPISs, the global 
transition matrix T

�����
 of an IPIRS is obtained by combining 

the credal transition matrices Ta of the various agents i ∈ A.
Notice that all the various imprecise Markov models 

above introduced can be seen as components of an IPIRS. 
Specifically, an IPIRS (M

����
, rew) includes an IPIS M

����
 

that is composed by several IMCs M , one for each agent 
of the system. On the other hand, an IPIRS (M

����
, rew) 

includes several IMRMs, one for each agent in the system, 
composed by an IMC M and the reward function rew. This 
work focuses on only IPIRS and their properties. Neverthe-
less, the various results obtained for IPIRSs can be easily 
transferred to IMCs, IMRMs, and IPISs.

Epistemic Imprecise PRCTL

This section presents Epistemic Imprecise Probabilistic 
Reward Computation Tree Logic (EIPRCTL), an epistemic 
and imprecise-probabilistic extension of the PCTL intro-
duced in [6] suitable to specify epistemic, probabilistic, and 
reward properties of non-stationary (or not fully specifiable) 
stochastic multi-agent systems. The language is targeted on 
IPIRSs but can be also applied to the other kinds of impre-
cise Markov models previously introduced. Notably, proper-
ties of IMCs, IMRMs, and IPISs can be specified via specific 
languages, such as IPCTL [22], IPRCTL [25], and EIPCTL 
[28], which can be obtained as EIPRCTL fragments.

EIPRCTL Syntax

The EIPRCTL syntax is recursively defined as follows:

𝜙 ∶=

�
⊤ ∣ p ∣ ¬𝜙 ∣ 𝜙1 ∧ 𝜙2 ∣ P∇b

𝜓 ∣ P∇b𝜓 ∣ PJ𝜓

E
∇r
𝜙 ∣ E∇r𝜙 ∣ EJ𝜙 ∣ Ka𝜙 ∣ EΓ𝜙 ∣ CΓ𝜙 ∣ DΓ𝜙

,

𝜓 ∶= ○ 𝜙 ∣ 𝜙1

⋃
𝜙2 ∣ 𝜙1

⋃≤t
𝜙2 ∣ 𝜙1

⋃
≤r 𝜙2,

𝜖 ∶= Ba
∇b
𝜙 ∣ Ba

∇b
𝜙,

where p ∈ AP , b ∈ [0, 1] , J ⊆ [0, 1] , a ∈ A , Γ ⊆ A , and ∇ 
is a short notation for {<,≤,=,≥,>}.

The language is composed by � , � and �-formulae. The 
former extend classical propositional logic with usual opera-
tors for single-agent knowledge Ka , common knowledge CΓ , 
and distributed knowledge DΓ , and with the following proba-
bilistic modalities:

•	 P
∇b
� : the lower probability of reaching a path that satis-

fies � is ∇b;
•	 P∇b� : the upper probability of reaching a path that satis-

fies � is ∇b;
•	 PJ� : the probability of reaching a path that satisfies � 

belongs to the closed interval J ⊆ [0, 1];
•	 E

∇r
� : the lower bound of the expected cumulative reward 

earned by the system until reaching a state that satisfies 
� is ∇r;

•	 E∇r� : the upper bound of the expected cumulative reward 
earned by the system until reaching a state that satisfies 
� is ∇r;

•	 EJ� : the expected cumulative reward earned by the sys-
tem until reaching a state that satisfies � belongs to the 
closed interval J ⊆ [0, 1];

The �-formulae are standard CTL path-formulae [2, p. 313] 
used to represent properties of paths:

•	 ○� : in the next state of the path � holds;
•	 �1

⋃
�2 �1 : �1 holds along the path until �2 holds;

•	 �1

⋃≤t
�2 : there exists a time-step  � ≤ t such that �2 

holds in the �-step of the path and �1 holds in all the 
previous time-steps;

•	 �1

⋃
≤r �2 : �1 holds in all states of the path until a cumu-

lative reward lower then or equals to r is earned then �2 
holds.

Finally, �-formulae include the two following weighted-
belief modalities:6

•	 Ba
∇b
� : agent a believes that the lower probability of hit-

ting � eventually in the future is ∇b;
•	 Ba

∇b
� : agent a believes that the upper probability of hit-

ting � eventually in the future is ∇b.

EIPRCTL Semantics

Let us introduce a proper semantics for EIPRCTL formulae 
based on IPIRSs. This can be seen as a generalisation of the 

6  In the rest of this work, we refer to such doxastic formulae as 
imprecise-probabilistic beliefs.
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semantics proposed in [22] for IMCs and those proposed in 
[18] for standard (precise) PISs.

Semantics of State‑Formulae

We start by presenting satisfiability conditions for Boolean, 
probabilistic, and epistemic �-formulae separately.

Definition 15  (Semantics of Boolean formulae) Given an 
IPIRS ⟨M

����
, rew⟩ and a state s ∈ S , the following condi-

tions hold:

Definition 16  (Semantics of probabilistic formulae) Given 
an IPIRS ⟨M

����
, rew⟩ and a state s ∈ S , the following con-

ditions hold:

⟨M
����

, rew⟩, s ⊧ p iff p ∈ l(s),

⟨M
����

, rew⟩, s ⊧ ¬𝜙 iff ⟨M
����

, rew⟩, s ⊧̸ 𝜙,

⟨M
����

, rew⟩, s ⊧ 𝜙1 ∧ 𝜙2 iff ⟨M
����

, rew⟩, s ⊧ 𝜙1

and ⟨M
����

, rew⟩, s ⊧ 𝜙2.

⟨M
����

, rew⟩, s ⊧ P
∇b
𝜓 iff P

�����
(s ⊧ 𝜓)∇b,

⟨M
����

, rew⟩, s ⊧ P∇b𝜓 iff P
�����

(s ⊧ 𝜓)∇b,

⟨M
����

, rew⟩, s ⊧ PJ𝜓 iff

� ⟨M
����

, rew⟩, s ⊧ P
≥min J

𝜓 and

⟨M
����

, rew⟩, s ⊧ P
≤max J𝜓 .

For the probabilistic formulae, the satisfiability conditions 
refer to the lower and upper bounds of P

�����
(s ⊧ 𝜓) , where 

P
�����

(s ⊧ 𝜓) is the probability that a path 𝜋 ⊧ 𝜓 belongs to 
the set of paths originating in s conditional to S0 = s.7 Simi-
larly to standard PCTL [2], the computation of the lower 
and upper bounds of P

�����
(s ⊧ 𝜓) varies depending on � . 

We further analyse this point in Section “Model Checking” 
dedicated to model checking procedures.

Definition 17  (Semantics of expected reward formulae) Let 
Sat(�) be the set of all states that satisfy � . Given an IPISR 
(M

����
, rew) and state s ∈ S , the following condition holds:

.
Definition 18  (Semantics of epistemic formulae) Given an 
IPIRS (M

����
, rew) , an agent i ∈ A or a group of agents 

Γ ⊆ A , and a state s ∈ S , the following conditions hold:

Semantics of Path‑Formulae

Definition 19  (Semantics of �-formulae) Given an IPIRS 
(M

����
, rew) and a path � , the following conditions hold:

Semantics of Weighted‑Belief Formulae

The �-formulae are doxastic formulae that specify the prob-
abilistic beliefs of a specific agent concerning the overall 
behaviour of the multi-agent system. They are expressed 
in terms of the lower and upper bounds of Pa(s ⊧ ⊤

⋃
𝜙) , 

that is, the probability according to the agent a that the 
multi-agent system eventually visit a state s′ ⊧ 𝜙 starting 
from s ∈ S . This probability is computed analogously to 
P
�����

(s ⊧ 𝜋 ⊧ ⊤
⋃

𝜙) in Definition 16, but replacing the 
global transition matrix T

����
 with a local transition matrix 

T
a that describes the specific stochastic behaviour of the 

⟨M
����

, rew⟩, s ⊧ E∇r𝜙 iff ExpRewSat(𝜙)(s)∇r,

⟨M
����

, rew⟩, s ⊧ E
∇r
𝜙 iff ExpRewSat(𝜙)(s)∇r,

⟨M
����

, rew⟩, s ⊧ EJ𝜙 iff

� ⟨M
����

, rew⟩, s ⊧ E
≥min J

𝜙 and

⟨M
����

, rew⟩, s ⊧ E
≤max J𝜙.

⟨M
����

, rew⟩, s ⊧ Ka𝜙 iff ∀s�, s ∼a s� ∶ s� ⊧ 𝜙,

⟨M
����

, rew⟩, s ⊧ EΓ𝜙 iff ∀s�, s ∼Γ
E
s� ∶ s� ⊧ 𝜙,

⟨M
����

, rew⟩, s ⊧ CΓ𝜙 iff ∀s�, s ∼Γ
C
s� ∶ s� ⊧ 𝜙,

⟨M
����

, rew⟩, s ⊧ DΓ𝜙 iff ∀s�, s ∼Γ
D
s� ∶ s� ⊧ 𝜙.

⟨M
����

, rew⟩,𝜋 ⊧ ○𝜙 iff ⟨M
����

, rew⟩,𝜋(1) ⊧ 𝜙,

⟨M
����

, rew⟩,𝜋 ⊧ 𝜙1

⋃≤t
𝜙2 iff ∃𝜏 ≤ t ∶

� ⟨M
����

, rew⟩,𝜋(𝜏) ⊧ 𝜙2 and

∀𝜏� < 𝜏 ∶ ⟨M
����

, rew⟩,𝜋(𝜏) ⊧ 𝜙1,

⟨M
����

, rew⟩,𝜋 ⊧ 𝜙1

⋃
𝜙2 iff ∃t ≥ 0 ∶

� ⟨M
����

, rew⟩,𝜋(t) ⊧ 𝜙2 and

∀𝜏 ∶ 0 ≤ 𝜏 < t ⟨M
����

, rew⟩,𝜋(𝜏) ⊧ 𝜙1,

⟨M
����

, rew⟩,𝜋 ⊧ 𝜙1

⋃
≤r 𝜙2 iff ∃t ∈ ℕ ∶

⎧
⎪⎨⎪⎩

⟨M
����

, rew⟩,𝜋(t) ⊨ 𝜙2 and

∀𝜏 < t ∶ ⟨M
����

, rew⟩,𝜋(𝜏) ⊨ 𝜙1

and Rew(𝜋, t) ≤ r.

7  Here the subscript �PIRS denotes the fact that this probability is 
computed through the global transition matrix T

�����
 describing the 

stochastic behaviour of the whole multi-agent system.
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single-agent a ∈ A . Obviously, since we are considering 
imprecise models, we are interested in computing the lower 
and upper bounds of Pa(s ⊧ ⊤

⋃
𝜙) . These are denoted, 

respectively, by Pa(s ⊧ ⊤
⋃

𝜙) and P
a
(s ⊧ ⊤

⋃
𝜙) . The spe-

cific procedure to compute those bounds is further detailed 
in Section “Model Checking”. Here we focus only on the 
satisfiability conditions for � formulae, defined as follows:

Definition 20  (Satisfiability of �-formulae) Given an IPIRS 
(M

����
, rew) , and a state s ∈ S,

Model Checking

In the present section, we explain how to check systems 
modelled by IPISRs against properties specified in the 
EIPRCTL language. The procedure we present is obtained 
by extending the well-known parsing-tree algorithm origi-
nally introduced for model checking with CTL formulae [2]. 
We start by briefly recalling the structure and functioning of 
the parsing-tree. Then, we extend the algorithm introducing 
a series of new sub-routines to solve specific model checking 
tasks related to the different kinds of EIPRCTL formulae.

Parsing Tree

Let Λ be a short notation for either a �-formula or an �
-formula. Given an IPISR ⟨M

����
, rew⟩ , a state s ∈ S , and 

a formula Λ , a model checking algorithm is an automatic 
procedure to verify whether ⟨M

����
, rew⟩, s ⊧ Λ holds. The 

standard algorithm for CTL and its extension exploits the 
parse tree of Λ generated by decomposing Λ in its various 
sub-formulae as in Fig. 1 [2,  p. 336]. The algorithm works 
as follows: 

1.	 Generate the parse tree of Λ , recursively decomposing 
Λ in its sub-formulae � until only atoms remain.

⟨M
����

, rew⟩, s ⊧ Ba
∇b
𝜙 iff ∀ s� ∶ s ∼a s�, Pa

�
s ⊧ ⊤

⋃
𝜙
�
∇b,

⟨M
����

, rew⟩, s ⊧ Ba

∇b
𝜙 iff ∀ s� ∶ s ∼a s�, P

a�
s ⊧ ⊤

⋃
𝜙
�
∇b.

2.	 Traverse the parse tree of Λ visiting all the sub-formulae 
� , starting from the leaves and working backwards to the 
roots,

3.	 At each sub-formula � , calculate the set of states that 
satisfy � , denoted Sat(�) , by checking whether s ⊧ 𝜆 for 
all s ∈ S,

4.	 Calculate Sat(Λ) by composition of the various Sat(�),
5.	 Check whether s ∈ Sat(Λ).

The algorithm includes a specific sub-routine to compute 
Sat(Λ) for each specific kind of sub-formula �.

Boolean Formulae

For Boolean formulae, Sat(�) is computed as follows:

Probabilistic Formulae

For formulae of the kind P
∇b
� , P∇b� and PJ� , the set Sat(�) 

is obtained by computing the lower and upper bounds of 
P
����

(s ⊧ 𝜓) for each s ∈ S and then check whether they sat-
isfy the specified threshold ∇b . The specific procedure to 
compute the lower and upper bounds of P

����
(s ⊧ 𝜓) varies 

depending on the specification of �.
Next If � ∶= ○� , then P

�����
(s ⊧ 𝜓) corresponds to 

Ps(s1 ∈ Sat(�)) and its upper (lower) bound can be com-
puted as in Eq. (22).

Time-Bounded Until If � = �1

⋃≤t
�2 , then P

�����
(s ⊧ 𝜓) 

corresponds to the probability of hitting Sat(�2) within a 
finite number of time-steps t conditional on S0 = s and with 
the additional condition that all the states visited before 
reaching Sat(�2) are in Sat(�1) . For each s ∈ S , we denote 
such probability by ht

Sat(�2)∣Sat(�1)
(s) . A recursive schema 

analogous to that in Eq. (24) can be formulated to compute 
h
t

Sat(�2)∣Sat(�1)
 . Let �Sat(�1)⧵Sat(�2)

 denote the indicator vector 
whose values are one for all s ∈ Sat(�1)⧵Sat(�2) and 0 oth-
erwise. A slightly modified version of the algorithm in (24) 
for computing h

t

Sat(�2)∣Sat(�1)
 by recursion over increasing val-

ues of t is achieved as follows:

As in Eq. (24), the initialisation is given by the indicator 
function of Sat(�2) while the recursive steps consist of 

Sat(⊤) ∶= S,

Sat(p) ∶=
{
s ∈ S ∶ p ∈ li(s)

}
,

Sat
(
𝜙1 ∧ 𝜙2

)
∶= Sat

(
𝜙1

)
∩ Sat

(
𝜙2

)
,

Sat(¬𝜙) ∶= S ⧵ Sat(𝜙).

(32)
h
t

Sat(�2)∣Sat(�1)
∶= �Sat(�2)

+ �Sat(�1)⧵Sat(�2)

(
T
����

h
t−1

Sat(�2)∣Sat(�1)

)
.

P≥0.9p
⋃
(q ∨ r) ∨Kap

P≥0.9p
⋃
(q ∨ r) Kap

p q ∨ r p

q r

Fig. 1   Parse-tree of a formula
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iterated applications of the upper transition operator to the 
hitting vector computed at the precedent time-step t − 1 . 
The only relevant difference with the analogous scheme 
presented in Section “Imprecise Markov Chains” consists 
of the indicator vector �Sat(�1)⧵Sat(�2)

 that replaces the indi-
cator vector �Bc of the complement of the hitting event B. 
In the general scheme, �Bc limits the iteration considering 
only paths that have not already visited an s ∈ B . Here, by 
using �Sat(�1)⧵Sat(�2)

 , we limit the iteration to only those paths 
whose actual and previous states are all in Sat(�1) and that 
have not already reached a state s ∈ Sat(�2) . Notice that 

Eq. (32) is the imprecise analogous of the system of linear 
equations used to compute in P(s ⊧ 𝜙1

⋃
𝜙2) in the precise 

case, as reported in [2, Sec. 10.2.1]. Finally, as for Eq. (24), 
the computation of Eq. (32) is based on solving |S|t linear 
programming tasks and its time complexity is, thus, poly-
nomial in |S| t.

Until If � ∶= �1

⋃
�2 , then P

�����
(s ⊧ 𝜓) corresponds to 

the probability of hitting Sat(�2) conditional on S0 = s and 
with the additional requirement that all the states visited 
before reaching Sat(�2) are in Sat(�1) . To compute the lower 
and upper bounds of this probability, we simply iterate the 
schema in Equation (32) over increasing values of t until 
convergence.

Reward‑Bounded Until  If � ∶= �1

⋃
≤r �2 , then 

P
�����

(s ⊧ 𝜙1

⋃
≤r 𝜙2) corresponds to the reward-bounded 

hitting probability of Sat(�2) with the additional condition 
that all the states visited before reaching Sat(�2) are in 
Sat(�1) . We denote this probability by hr

Sat(�2)∣Sat(�1)
 . To 

compute the upper (lower) bound of the latter, we involve a 

sightly modified version of the procedure introduced in Eqs. 
(28) and (29)

Let h
t,�0∶r

Sat(�2)∣Sat(�1)
 be a matrix whose cells are the values of 

h
t,�

Sat(�2)∣Sat(�1)
(s) computed for each s ∈ S  and for 

� ∶ 0, 1,… , r.
For t = 0 , we generate h

t,�0∶r

Sat(�2)∣Sat(�1)
 by computing the vec-

tors h
t=0,�

Sat(�2)∣Sat(�1)
 for � = 0, 1,… , � . as in Eq. (15).

For t > 0 , we generate h
t,�0∶r

Sat(�2)∣Sat(�1)
 by computing the 

various vectors h
t,�

B
 for � = 0, 1,… , r as follows:

The schema is analogous to that in Eq. (29). The only rele-
vant difference is the additional clause prescribing that 
h
t,�

B
(s) = 0 also for all s ∈ Sat(�1)⧵Sat(�2) , whereas in Eq. 

(29) h
t,�

B
(s) = 0 only for s ∈ S such that either h

B
(s�) = 0 or 

rew(s) > r . The additional clause blocks the recursion for the 
successors of the initial state that do not belong to Sat(�1) . 
Indeed, if a certain successor s� ∉ Sat(�1) ⧵ Sat(�2) is 
reached at a certain time-step � of the iteration, then 
hr
Sat(�2)∣Sat(�1)

(s�) takes value zero and the recursion from that 
state is stopped. In such a way, it is possible to account for 
the additional requirement that all states visited before 
reaching the hitting event Sat(�2) are in Sat(�1) . Notice that 
the slightly modification does not alter the general results 
about h

r

B
 reported above. In particular, the time complexity 

of the procedure remains polynomial in |S|t∗ (with t∗ denot-
ing the convergence time-steps) as it practically depends on 
the iterative step Tht−1,�−rew(s)

B
(s) , which is the same both in 

Eq. (29) and (33).

(33)

h
t,𝜌

Sat(𝜙2)∣Sat(𝜙1)
(s) =

⎧⎪⎨⎪⎩

1 if s ∈ Sat(𝜙2) and rew(s) ≤ 𝜌 ,

0 if h(s) = 0 or s ∉ Sat(𝜙1) ⧵ Sat(𝜙2) or rew(s) > 𝜌 ,

Th
t−1,𝜌−rew(s)

B
(s) otherwise .

Fig. 2   Model-checking algo-
rithm for epistemic formulae
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Expected Reward Formulae

For formulae of the kind E
∇r
� ∣ E∇r� ∣ EJ� , the procedure 

to determine Sat(�) is based on computing the lower or the 
upper bounds of ExpRewSat(�)(s) , with Sat(𝜆) ⊆ S following 
the procedure in Eq. (25).

Epistemic Formulae

For formulae of the kind Ki� ∣ CΓ� ∣ DΓ� , the sub-routine to 
compute Sat(�) is based on the algorithm reported in Fig. 2.

Let � be a short notation for Ki ∣ EΓ ∣ CΓ ∣ DΓ , and let 
∼� be a short notation for ∼i∣∼Γ

E
∣∼Γ

C
∣∼Γ

D
 . Given an epis-

temic equivalence relation ∼� , we denote by Eq∼� the parti-
tion induced on S by ∼� . Each element of Eq∼� is an EEC 
that we denote by eq∼� . The algorithm in Fig. 2, works as 
follows: 

1.	 It takes in input an IPIRS M
�����

 and a formula ��;
2.	 It computes Sat(�) by recursively calling the respective 

sub-routine;
3.	 For each eq∼�

∈ Eq∼
� , it checks whether eq∼𝜅

⊆ Sat(𝜙) . 
If this is the case, then the algorithm adds the whole 
equivalence class eq∼� to Sat(��).

The main advantage of this procedure is that it does not 
consider single states s ∈ S but works directly on EECs. 
This strategy drastically reduces the time necessary for the 
execution of the procedure, which ultimately results polyno-
mial in |S|n , with n denoting the nesting-depth of �� , i.e. the 
number of nested instances of epistemic operators occurring 
in the formula. For more details on this procedure, we refer 
to [40,  Sec. 2.1].

Imprecise Weighted-Belief Formulae

For �-formulae, the procedure to compute Sat(�) requires to 
compute the upper (lower) bounds of Pa(s ⊧ ⊤

⋃
𝜙) for each 

s� ∈ eqa(s) . In practice, these correspond to the lower and 
upper bounds of ha

Sat(�2)
 , that is, the hitting probability of 

event Sat(�2) computed through the local transition matrix 
T
a of the agent a. The procedure to compute Pa(s ⊧ ⊤

⋃
𝜙) 

is totally analogous to that for computing P
�����

(s ⊧ ⊤
⋃

𝜙) 
reported above, with the relevant difference that we use the 
local transition matrix Ta instead of the global transition 
matrix T

����
.

A Case Study on Healthcare Budgeting

We present a first validation of EIPRCTL based on a slightly 
modified version of the MRM originally proposed in [41]. 
MRMs are used in that work to estimate the recovery costs 
for patients in geriatric departments. Two kinds of recovery 
are considered: short-term recoveries for acute cares have 
a daily cost estimated as £100, while long-term recoveries 
cost £50 per day. From a cumulative perspective, long-term 
recoveries are more expensive, since those patients typically 
remain in the hospitals for longer periods.

The evolution across time of health conditions of a patient 
can be described through a MC with three states: acute care 
A, long-term care L, and discharge or death D. Transitions 
from L to A are considered impossible, while D acts as an 
absorbing state. A parametrized version of the transition 
matrix for this model is in Fig. 3. The parameters have the 
following interpretation: the conversion rate � corresponds 
to the probability of passing from a short-term to a long-
term recovery, while the dismissing rates � and � correspond 
to the probability of being discharged/die, respectively, in a 
short and long-term recovery. Rates � , � and � vary depend-
ing on the patient and disease. An assessment of these 
parameters for three different departments is in Table 1.

The reward rew associated with each state repre-
sents the daily cost per patient. In a scale where one is 
assumed to correspond to one pound, the daily costs per 
patient are described by a function such that rew(A) = 100 , 
rew(L) = 50 , and rew(D) = 0 . When a patient is dismissed 
or death she no longer has a cost for the hospital. Following 
these specifications, it is possible to construct a (precise) 
MRM ⟨M, rew⟩ able to predict the expected cumulative cost 
incurred by the hospital for each patient up to the time of the 
patient’s discharge or death. Suppose that the total amount 
of financial resources per patient available to the hospital is 
� ∶= £40, 000 . We are interested in verifying whether the 

Fig. 3   Transitions in a three-state MRM

Table 1   Conversion and dismissing rates

Rate ( %) Department 1 Department 2 Department 3

� 1.750 3.540 2.810
� 0.031 0.187 0.149
� 0.120 0.130 0.180
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expected cumulative cost per patient is sustainable, i.e. it 
does not exceed the amount of resources available. This cor-
responds to check whether:

for both s = A , i.e. for a patient initially recovered in acute 
care, and s = L , i.e. for a patient initially recovered in long-
term care.

The MRM in [41] presents an important limitation, that 
is, it considers precise values for the transition rates � , � 
and � , which is tantamount to assuming that the probability 
of a patient to change her health-condition is always the 
same independently from time. This assumption is clearly 
problematic. For example, it is obvious that the probability 
to die for patients in long-term cares increases with time. 
Imprecise probabilistic models allow us to overcome this 
limitation by considering, instead of precise values, prob-
ability intervals within which the transition rates can fluctu-
ate over time.

In practice, we define an imprecise transition matrix for 
each department obtained by a perturbation of the values 
of each column of Table 1. As a perturbation method for 
converting a probability mass function into a credal set, 
we simply adopt a linear-vacuous contamination [21]. The 
methods works as follows. If P(S) is a PMF over S, the CS 
K(S) (see Section “Imprecise Transition Matrices”) becomes 
the CS that includes all the PMFs obtained as a mixture 
(1 − �)P(S) + �P�(S) , where P�(S) is any probability mass 
function and the parameter � ∈ [0, 1] defines the level of 
imprecision in the CS (e.g. K(S) = {P(S)} for � = 0 , while 
for � = 1 we get the vacuous CS). In our example, we assume 
a perturbation level � = 0.03 . Hence, by applying the above 
contamination model to each row of the three precise transi-
tion matrices described in Table 1, we obtain three imprecise 
transition matrices Ta, a ∈ {1, 2, 3} (where a is the number 
of the department to which the matrix refers).

Given that the costs associated with each state in the 
model remain the same as above, we have now obtained 
three different IMRMs, each describing the scenario related 
to one of the three departments. We are still interested in 
checking whether, given a patient, the expected cumulative 
cost incurred until the patient is dismissed or dies does not 
overcome the available resources. However, we neither know 
from which one of the three departments the patient comes 
nor whether it is recovered in acute (A) or long-term (L) 
care. We can model this scenario as follows.

First, instead of considering a specific transition matrix 
T
a, a ∈ {1, 2, 3} , we consider an aggregated model where 

ExpRewD(s) ≤ �,

the global imprecise transition matrix is a pooling of the 
imprecise transition matrices of each department.

Such a global imprecise transition matrix TIPIS can be 
obtained by the logarithmic pooling as in Eq.(31). As an 
alternative, more cautious, estimate, we also consider instead 
a conservative pooling consisting in taking as aggregated 
model the union of the probability intervals of the imprecise 
transition matrices of the different departments.

Finally, the fact that, independently from which is the 
department the patient comes from, we cannot know whether 
the patient is recovered in acute or long-term cares corre-
sponds to assume that A ∼a L,∀a ∈ {1, 2, 3} , i.e. states 
labelled by A and L are indistinguishable. We have now 
obtained a description of the considered scenario in terms 
of an IPISR ⟨M

����
, rew⟩.

Checking whether the upper maximum expected cumu-
lative cost incurred by the hospital until a patient is dis-
missed or dies is sustainable corresponds, therefore, to 
verify whether or not the formula E

≤�D holds in the model 
⟨M

����
, rew⟩ for each state s in the equivalence class {A,L} . 

To check this formula, we apply the procedure discussed 
in Section “Model Checking”. The algorithms described 
in Section “Imprecise Markov Models” are finally used to 
compute the upper bounds of ExpRewD(s) for both s = A and 
s = L.8 The most cautious bounds returned by the conserva-
tive pooling are:

As expected, the cumulative costs for patients initially 
admitted in acute care are lower and not exceeding the 
resources available to the hospital. The same does not hap-
pen for patients initially admitted in long-term care.

The management of the hospital might consequently need 
to check how likely is the fact that the cumulative costs for 
an hospitalised patient are exceeding the available resources. 
We do that by checking that the probability of a patient to 
be dismissed/died before the cumulative cost overcomes 
the available resources is sufficiently high, e.g. greater 
than or equal to a threshold � ∶= 0.95 . This corresponds to 
check whether the formula P

≥𝜋
⊤
⋃

≤𝜌 D holds in the model 
⟨M

����
, rew⟩ and for each state s in the equivalence class 

{A,L} . Remarkably, by means of the algorithms described in 
Section “Imprecise Markov Models” we obtain that the for-
mula is satisfied for both initial states. The resources overrun 
is, therefore, a relatively unlikely event for the hospital.

(34)ExpRewD(A) = £29�561,

(35)ExpRewD(L) = £42�343.

8  Code available here https://​github.​com/​IDSIA-​papers/​2021-​
ISIPTA-​IPRCTL.

https://github.com/IDSIA-papers/2021-ISIPTA-IPRCTL
https://github.com/IDSIA-papers/2021-ISIPTA-IPRCTL
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Conclusions

An intrinsic limitation of probabilistic model checking is 
related to its fundamental reliance on the use of standard 
Markov models, which can notoriously model only station-
ary agents whose transition probabilities are all specified 
by known numerical values. To overcome this limitation, 
we have presented a novel framework based on the theory 
of imprecise probabilities and the related imprecise Markov 
models. More specifically, we have explained how the use 
of imprecise Markov models allows us to apply probabilistic 
model checking methods to both non-stationary agents and 
agents whose transition probabilities are not fully known 
without comporting computational complexity issues. The 
key point is that both probabilistic and reward inferences 
in imprecise Markov models can be computed by itera-
tively solving linear programming tasks. This allows us 
to solve relevant model checking tasks without increasing 
the computational complexity of the relative procedures, 
which always remains polynomial in the number of states 
of the models. The paper focuses specifically on stochas-
tic multi-agent systems, but the framework it introduces is 
useful also for single stochastic agents. The main limita-
tion is that, so far, we considered only discrete-time mod-
els. Recent developments [38] in the study of imprecise 
continuous-time Markov chains (CTMC) strongly suggest 
that an analogous framework can be introduced for con-
tinuous-time models, which are of fundamental relevance 
for applications in fields like computational and systems 
biology [14, 15]. In the model checking community, some 
works concerning non-stationarity issues in continuous-time 
Markov models have been recently proposed. In [42], for 
example, non-stationary agents are modelled via uncertain 
CTMCs, which are CTMCs whose transition probabilities 
vary non-deterministically in time within bounded continu-
ous intervals. Although uncertain and imprecise CTMCs are 
similar, they are not equivalent formalisms. Notably, while 
an uncertain CTMC can be regarded as the largest family of 
precise CTMCs compatible with the bounds of the intervals, 
an imprecise CTMC is the largest family of all, potentially 
non-Markov, non-homogeneous, processes compatible with 
given constraints. In other words, imprecise CTMCs are 
more expressive and potentially useful for a wider range of 
applications. So far, however, there are no works specifically 
concerning model checking with imprecise CTMCs.

To conclude, another important development to consider 
might concern the development of an imprecise-probabilistic 
framework for Markov decision-processes, notably for the 
relevance of the latter and their natural connection with the 
field of Reinforcement Learning [43].

Appendix A

Proof of Theorem 2  The proof is analogous to the one of [24, 
Lemma 9] given for a similar result. The statement is proven 
by induction. First, we prove the induction base:

Next, note that for every t ∈ ℕ, t ≠ 0 , the value of 
Rewt

B
 on any � is completely determined by the values 

�(0), ..., �(t) ∈ S . Thus, we can alternatively interpret Rewt
B
 

as a function on St+1 . Moreover, for any t ∈ ℕ, t ≠ 0 and 
s0, ..., st ∈ St+1 , we observe that

with Rew0
B
(s0) = rew(s0) . By exploiting this observation, we 

can proceed with the induction step. Assuming that the state-
ment is true for t − 1 , with t ∈ ℕ, t ≠ 0 , we prove that it is 
also true for t. First, for every s ∈ SB

=1
 , we have that

where in the last step we use the law of iterated expec-
tations (or [24, Prop. 39] and [24, Prop. 4]). Clearly, 
E[Rewt−1

B
([Si]

t
i=1

) ∣ [Si]
1
i=0

] does not depend on the initial 
state S0 , hence

N o w,  E[Rewt−1
B

([Si]
t−1
i=0

) ∣ S0 = s] = ExpRewt−1
B

(s)  f o r 
every s ∈ SB

=1
 by the inductive hypothesis. Hence, plug-

ging this back into the expression we obtained for 
E[Rewt

B
([Si]

t
i=0

) ∣ S0 = s] , we have

for all s ∈ SB
=1

 , by using the fact that a transition matrix for 
an homogeneous Markov chain encodes 1 time-step expecta-
tion [24, Sec. 2.1]. 	�  ◻

.

(A1)

(
∀s ∈ SB

=1

)
E
[
Rew0

B
∣ S0 = s

]
= rew(s) =∶ ExpRew0

B
(s).

(A2)Rewt
B

(
[si]

t
i=0

)
= rew(s0) + IBc (s0)Rew

t−1
B

(
[si]

t
i=1

)
,

E
[

Rewt
B

(

[Si]ti=0
)

∣ S0 = s
]

= E
[

rew(s) + IBc (s)Rewt−1
B

(

[Si]ti=1
)

∣ S0 = s
]

= rew(s) + IBc (s)E
[

Rewt−1
B

(

[Si]ti=1
)

∣ S0 = s
]

= rew(s) + IBc (s)E
[

E
[

Rewt−1
B

(

[Si]ti=1
)

∣ [Si]1i=0
]

∣ S0 = s
]

,

E
[

Rewt−1
B

(

[Si]ti=1
)

∣ [Si]1i=0
]

= E
[

Rewt−1
B

(

[Si]ti=1
)

∣ S1
]

= E
[

Rewt−1
B

(

[Si]t−1i=0
)

∣ S0
]

.

E
[

Rewt
B

(

[Si]ti=0
)

∣ S0 = s
]

= rew(s) + IBc (s)E
[

ExpRewt−1
B (S1) ∣ S0 = s

]

= rew(s) + IBc (s)
[

T̂ExpRewt−1
B

]

(s) = :ExpRewt
B(s),
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P r o o f  o f  T h e o r e m   3   F i r s t ,  n o t i c e  t h a t 
limt→+∞ Rewt

B
= RewB  .  Hence,  for  every s ∈ S

B
=1

 , 
limt→+∞ E[Rewt

B
∣ S0 = s] = E[RewB ∣ S0 = s] 

by the monotone convergence theorem since 
0 ≤ Rew0

B
≤ Rew1

B
≤ ... ≤ RewB (or [24, Prop. 7] and [24, 

Prop. 4]). From Th. 2, it follows that ExpRewt
B
 are also non 

decreasing and non-negative. Hence, by using as well the 
continuity of T̂ with respect to non decreasing and non nega-
tive sequences, we find that

where the third and fifth step follow from Theorem 2, while 
the fourth step follows from the definition of ExpRewt

B
 . 	

� ◻

Proof of Theorem 5  It is actually enough to verify that, given 
a MRM (M, rew) and B ⊆ [S] , for all s ∈ S and all r ∈ ℕ , 
it holds that

Let s ∈ S , B ⊆ S and r ∈ ℕ . We show that, for all t ∈ ℕ , 
the time-bounded hitting probability ht,r

B
(s) is equivalent to 

the time-bounded hitting probability ht
B∗ (s) of an alternative 

event B∗ computed on the alternative MRM (M∗, rew∗) , with 
M∗ ∶= ⟨S∗, T∗⟩ . Such structure is construct as follows. Let 
r∗ ∶= r + sups�∈S rew(s

�) . We first inductively define S∗ . Set 
X0 ∶= {(s, rew(s))} , and for every n > 0,

The idea is that each set Xn+1 ⧵ Xn contains pairs (s�, k) where 
s′ is the last node belonging to a path of length n − 1 starting 
in s and whose cumulated reward is k ≤ r∗.

Notice that the sequence (X� ∶ � ∈ ℕ) is increasing mono-
tone. Moreover for every n, Xn ⊆ {(s��, k) ∈ S × ℕ ∣ k ≤ r∗} , 
where the latter is a finite set. Hence, there is � such that 
X� = X�+1 , and define S∗ ∶= X� ∪ {⊥} , where ⊥ is some 
new “sink” state. For the remaining functions, we define, 
for (s��,m), (s�, k) ≠ ⊥ , rew∗((s�, k)) ∶= rew(s�) and

whereas we set rew∗(⊥) ∶= 0,

E
[
RewB ∣ S0

]
∣
SB
=1

= lim
t→+∞

E
[
Rewt

B
∣ S0

]
∣
SB
=1
= lim

t→+∞
ExpRewt

B

= lim
t→+∞

(
rew

SB
=1
+ IBc T̂ExpRew

t−1

B

)

= rew
SB
=1
+ IBc T̂E

[
RewB ∣ S0

]
∣
SB
=1
,

(A3)∃t∗ ∈ ℕ ∶ ∀� ≥ 0 , h
t∗+�,r

B
(s) = h

t∗,r

B
(s) .

X
n+1 ∶=Xn

∪ {(s��, k) ∈ S × ℕ ∣ ∃(s�,m) ∈ X
n
s.t.

m ≤ r and k = rew(s�) + m}.

T∗((s�, k), (s��,m)) ∶=

{
T
(
s�, s��

)
if m = rew

(
s��
)
+ k,

0 else;

T∗(⊥, ◦) ∶=

{
1 if ◦ = ⊥,

0 else;

and T∗((s�, k),⊥) ∶= 1 −
∑

(s��,m)≠⊥ T
∗((s�, k), (s��,m)) . Thus, 

(M∗, rew∗) is essentially the tree unravelling around s of 
(M, rew) up to a cumulation of rewards bounded by r∗ . That 
is, every finite path 𝜋̂ in M starting in s such that rew(𝜋̂) ≤ r 
corresponds to a finite path 𝜋∗ in M∗ starting in (s, rew(s)) 
with Ps(𝜋̂) = P(s,rew(s))(𝜋

∗) and rew(𝜋̂) = rew∗(𝜋∗) . Vice 
versa, every finite path 𝜋∗ in M∗ starting in (s, rew(s)) such 
that rew∗(𝜋∗) ≤ r corresponds to a finite path 𝜋̂ in M starting 
in s with Ps(𝜋̂) = P(s,rew(s))(𝜋

∗) and rew(𝜋̂) = rew∗(𝜋∗) . Given 
this observation, let B∗ ∶= {(s��, k) ∈ S

∗ ∣ s�� ∈ B, k ≤ r} . We 
first notice that for every t ∈ ℕ:

Claim: Let s� ∈ S . Assume there is a finite path 𝜋̂(0)… 𝜋̂(�) 
with 𝜋̂(0) = s , 𝜋̂(�) = s� , k ∶= rew(𝜋̂) ≤ r∗ , then Eq. (A4) is 
actually a consequence of the following list of facts: 

1.	 If hB(s�) = 0 or rew(s�) > r then ht,�
B
(s�) = h

t,�

B∗ ((s
�, k))

= h
t

B∗ ((s
�, k)) = 0 , for every � ≤ r and every t ∈ ℕ,

2.	 Else, if k > r , then ht,�
B∗ ((s

�, k)) = ht
B∗ ((s

�, k)) = 0 , for 
every �, t ∈ ℕ,

3.	 Else for every t ∈ ℕ

Proof of Claim. The first two items being clear (e.g. 
the second is simply due to the fact that (s�, k) ∉ B∗ 
and hB∗ ((s�, k)) = 0 ), we verify the last one. First 
notice that k = rew(𝜋̂) ≤ r  . This means that s� ∈ B 
if and only if (s�, k) ∈ B∗ . We now reason by induc-
tion on t. For t = 0 , we have that all terms are either 
equals to 1 or 0. However, given that k ≤ r  and 
t h e n c e  rew(s�) = rew∗((s�, k)) ≤ r + rew(s�) − k   , 
the identities hold. We now verify the induc-
tion step, and therefore, suppose that for t ∈ ℕ , 
h
t,r+rew(s��)−m

B
(s��) = h

t,(r+rew(s��)−m)

B∗ ((s��,m)) = ht
B∗ ((s

��,m))   , 
for every (s��,m) ∈ S

∗ such that hB(s��) ≠ 0 , rew(s��) > r and 
m ≤ r . Let � ∶= r + rew(s�) − k . Hence rew(s�) ≤ � . Also, 
remember that by hypothesis hB(s�) > 0 , meaning that

If s� ∈ B , reasoning as before, Eq. (A4) holds. We thus 
consider the case when s� ∉ B , and terms ht,�−rew(s

�)

B
(s��) . 

Let (s��,m) ∈ S
∗ , with m − rew(s��) = k , meaning that 

(A4)h
t,r

B
(s) = h

t,r

B∗ ((s, rew(s))) = ht
B∗ ((s, rew(s))).

(A5)
h
t,(r+rew(s�)−k)
B

(s�) = h
t,(r+rew(s�)−k)
B∗

((
s�, k

))
= ht

B∗

((
s�, k

))
.

h
t+1,�

B

�
s�
�
=

�
1 if s� ∈ B∑

s��∈S T
�
s�, s��

�
h
t,�−rew(s�)
B

�
s��
�
otherwise.
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h
t,�−rew(s�)

B
(s��) = h

t,r−k

B
(s��) = h

t,r+rew(s��)−m

B
(s��)  .  N o t i c e 

t h a t  by  d e f i n i t i o n  T(s�, s��) = T∗((s�, k), (s��,m))  . 
T h e r e f o r e ,  i f  w e  p r o v e  t h a t 
h
t,r+rew(s��)−m

B
(s��) = h

t,(r+rew(s��)−m)

B∗ ((s��,m)) = ht
B∗ ((s

��,m)) 
we are done. Now, let � ∶= r − k ≥ 0 ,  as k ≤ r  . 
T h e re fo re ,  r + rew(s��) − m = r − k = �  .  We  r e a -
son by cases. If hB(s��) = 0 or rew(s��) > r ≥ 𝜖 , then 
h
t,�

B
(s��) = h

t,�

B∗ ((s
��,m)) = ht

B∗ ((s
��,m)) = 0 . Else, assume 

m = rew(s��) + k > r . This means rew(s��) > r − k = 𝜖 , and 
therefore, ht,�

B
= (s��) = h

t,�

B∗ ((s
��,m)) = ht

B∗ ((s
��,m)) = 0 . Else, 

m = rew(s��) + k ≤ r , and conclude by induction hypothesis.
We finally end the main proof by applying Eq. (A4) 

to the fact that, by the convergence of standard hitting 
probability, there is t∗ ∈ ℕ such that, for every � ≥ 0 , 
ht

∗+�
B∗ ((s, rew(s))) = ht

∗

B∗ ((s, rew(s))) . 	� ◻

Proof of Theorem 6  We have Ps(St ∈ B) ∶= E[�B(s) ∣ S0 = s] 
by definition of upper probability. By defini-
tion of upper conditional expectation, we have 
i n s t e a d  E[�B(st) ∣ S0 = s] ∶= T

t
�B(s0)  .  H e n c e , 

Ps(st ∈ B) = E[�B(s) ∣ S0 = s] = T
t
�B(s0) . 	�  ◻

Proof of Theorem 7  The proof is analogous to the one of 
[24, Lemma 9] given for a similar result. Notice that results 
and lemmas from [24] that we will use in the following are 
originally formulated for game-theoretic IMCs. As from 
results proved in [32], for the domain of functions we con-
sider in what follows, the measure-theoretic and the game-
theoretic formulations can be considered equivalent. We give 
the proof for ExpRewt

B
 , the one for ExpRewt

B
 will follow an 

analogous reasoning.
The statement is proven by induction and we first prove 

the induction base. To this end, note that Rew0
B
 only depends 

on the state S0 , so, it holds that

Next, as in the proof of Theorem 2, we interpret Rewt
B
 

as a function on St+1 . Moreover, for any t ∈ ℕ, t ≠ 0 and 
s0, ..., st ∈ St+1 , we rewrite Rewt

B
([si]

t
i=0

) as

with Rew0
B
(s0) = rew(s0) . Exploiting this observation, we 

can proceed with the induction step. Assuming that the state-
ment is true for t − 1 , with t ∈ ℕ, t ≠ 0 , we prove that it is 
also true for t. First, for every s ∈ SB

=1
 , we have that

(A6)

(
∀s ∈ SB

=1

)
E
[
Rew0

B
∣ S0 = s

]
= rew(s) =∶ ExpRew0

B
(s).

(A7)Rewt
B

(
[si]

t
i=0

)
= rew(s0) + IBc (s0)Rew

t−1
B

(
[si]

t
i=1

)
,

where the last step is based on [24, Prop. 38].
Now, E[Rewt−1

B
([Si]

t
i=1

) ∣ [Si]
1
i=0

] does not depend on the 
initial state S0 , hence

Now, E[Rewt−1
B

([Si]
t−1
i=0

) ∣ S0 = s] = ExpRewt−1
B

(s) for every 
s ∈ SB

=1
 by the inductive hypothesis. Plugging this back into 

the expression we obtained for E[Rewt
B
([Si]

t
i=0

) ∣ S0 = s] , we 
have

for all s ∈ SB
=1

 , where the second step uses [24, Eq. 6]. 	
� ◻

Proof of Theorem 8  The proof follows the one of [24, Prop. 
10] and considerations below.

As we know from the proof of Theorem  3, 
limt→+∞ Rewt

B
= RewB  .  Hence,  for  every s ∈ S

B
=1

 , 
limt→+∞ E[Rewt

B
∣ S0 = s] = E[RewB ∣ S0 = s] by [24, Prop. 

7], since 0 ≤ Rew0
B
≤ Rew1

B
≤ ... ≤ RewB . From Theorem 7 

it also follows that ExpRewt
B
 are also non decreasing and 

non-negative. Hence, by using as well the continuity of T  
with respect to non decreasing and non-negative sequences, 
see [24, Lemma 1], we find that

where in the last step we use again Theorem 7. 	�  ◻

Proof of Theorem 9  The proof is completely analogous to that 
of Theorem 5. 	�  ◻

E
[
Rew

t

B

(
[S

i
]t
i=0

)
∣ S0 = s

]

= E
[
rew(s) + I

Bc (s)Rew
t−1
B

(
[S

i
]t
i=1

)
∣ S0 = s

]

= rew(s) + I
Bc (s)E

[
Rew

t−1
B

(
[S

i
]t
i=1

)
∣ S0 = s

]

= rew(s) + I
Bc (s)E

[
E
[
Rew

t−1
B

(
[S

i
]t
i=1

)
∣ [S

i
]1
i=0

]
∣ S0 = s

]
,

E
[
Rew

t−1
B

(
[S

i
]t
i=1

)
∣ [S

i
]1
i=0

]

= E
[
Rew

t−1
B

(
[S

i
]t
i=1

)
∣ S1

]
=

= E
[
Rew

t−1
B

(
[S

i
]t−1
i=0

)
∣ S0

]
.

E
[
Rewt

B

(
[Si]

t
i=0

)
∣ S0 = s

]

= rew(s) + IBc (s)E
[
ExpRewt−1

B
(S1) ∣ S0 = s

]

= rew(s) + IBc (s)
[
T ExpRewt−1

B

]
(s) =∶ ExpRewt

B
(s),

E
[
RewB ∣ S0

]
∣SB

=1

= lim
t→+∞

E
[
Rewt

B
∣ S0

]
∣SB

=1
= lim

t→+∞
ExpRewt

B

= lim
t→+∞

(
rewS

B
=1
+ IBcT ExpRewt−1

B

)

= rewS
B
=1
+ IBcT E

[
RewB ∣ S0

]
∣SB

=1
,
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