
Vol.:(0123456789)

SN Computer Science (2023) 4:443
https://doi.org/10.1007/s42979-023-01817-x

SN Computer Science

ORIGINAL RESEARCH

Imprecise Probabilistic Model Checking for Stochastic Multi‑agent
Systems

Alberto Termine1,2  · Alessandro Antonucci2 · Giuseppe Primiero1 · Alessandro Facchini2

Received: 4 February 2022 / Accepted: 26 March 2023
© The Author(s) 2023

Abstract
Standard techniques for model checking stochastic multi-agent systems usually assume the transition probabilities describing
the system dynamics to be stationary and completely specified. As a consequence, neither non-stationary systems nor systems
whose stochastic behaviour is partially unknown can be treated. So far, most of the approaches proposed to overcome this
limitation suffer from complexity issues making them poorly efficient in the case of large state spaces. A fruitful but poorly
explored way out is offered by the formalism of imprecise probabilities and the related imprecise Markov models. The aim
of this paper is to show how imprecise probabilities can be fruitfully involved to model-check multi-agent systems charac-
terised by non-stationary behaviours. Specifically, the paper introduces a new class of multi-agent models called Imprecise
Probabilistic Interpreted Systems and their relative extensions with rewards. It also introduces a proper logical language to
specify properties of such models and corresponding model checking algorithms based on iterative procedures to compute
probabilistic and epistemic inferences over imprecise Markov models.

Keywords  Probabilistic model checking · Imprecise Markov chains · Probabilistic interpreted systems · Imprecise
probabilities

Introduction

Probabilistic model checking is a verification technique to ana-
lyse the behaviour of stochastic agents and check whether they
satisfy some given desirable properties. It relies on: (i) a formal
model of the agent; (ii) a formal specification of the desirable
properties; and (iii) algorithms to perform an exhaustive model
exploration and verify whether the specified properties are met.

Markov models are the reference formalism usually
involved in modelling the stochastic behaviour of agents.

These include both discrete and continuous-time Markov
chains and their several extensions [1]. Different approaches
exist to specify properties of these models: graph-oriented
approaches based on non-deterministic state automata [2,
3], algebraic approaches based on formalisms like the per-
formance evaluation process algebra [4, 5], and approaches
based on logical languages, such as the Probabilistic Com-
putational Tree Logic (PCTL) [6] and its various extensions
[2]. Here, we limit our focus to logical approaches and the
related semantics and algorithms.

Probabilistic model checking is applied to a variety of
fields, ranging from software verification [7] and commu-
nication protocols [8–10], to service oriented architectures
[11–13] and computational biology [14, 15]. Moreover,
different frameworks have been proposed so far to cope
with stochastic multi-agent systems. The latter are gener-
ally based on Kripke-like semantic frames and related epis-
temic languages [16]. Among them, the computationally-
grounded weighted doxastic logic proposed in [17] extends
the well-known Computation Tree Logic (CTL) [2] with a
weighted doxastic operator to specify single and multi-agent
beliefs. Similarly, the Probabilistic Computation Tree Logic
of Knowledge (PCTLK) [18] is a PCTL extension including

This article is part of the topical collection “Advances in Multi-
Agent Systems Research: EUMAS 2021 Extended Selected Papers”
guest edited by Davide Grossi, Ariel Rosenfeld and Nimrod Talmon.

 *	 Alberto Termine
	 alberto.termine@idsia.ch

1	 Logic Uncertainty Information and Computation (LUCI) lab,
Department of Philosophy “Piero Martinetti”, University
of Milan, Via Festa del Perdono, 7, 20122 Milan, Lombardy,
Italy

2	 Dalle Molle Institute for Artificial Intelligence Research
(IDSIA USI-SUPSI), Polo universitario Lugano, Campus
Est, Via la Santa, 1, Lugano‑Viganello, 6962 Lugano, Ticino,
Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01817-x&domain=pdf
http://orcid.org/0000-0001-5993-0948

	 SN Computer Science (2023) 4:443 443   Page 2 of 21

SN Computer Science

single and multi-agent epistemic modalities to specify
different epistemic-probabilistic properties of stochastic
multi-agent systems. Both formalisms base their semantics
on probabilistic interpreted systems, a class of structures
obtained by merging Kripke structures [16] with Markov
models.

Despite its success, probabilistic model checking suffers
from a well-known limitation: it requires all the transition
probabilities to be defined by “sharp” (or, “precise”) numeri-
cal values. This constraint might be critical in several appli-
cations as it prevents from modelling both non-stationary
agents and agents characterised by a partial uncertainty on
the values of transition probabilities. An appealing way to
overcome this limitation is represented by so-called para-
metric Markovian models [19], where precise state transition
probabilities are replaced with unknown parameters. This is
the solution adopted, for instance, in [20]. However, com-
plexity issues related with the corresponding model check-
ing procedure, based on fraction-free Gaussian elimination,
limit its applicability only to models of small size.

A less explored alternative is provided by the formalism
of imprecise probabilities [21] and related imprecise Markov
models, namely imprecise Markov chains (IMC) and their
extensions [22–25]. The latter can be seen as the imprecise
counterparts of standard Markov chains and are obtained
by replacing single-valued probability distributions with
so-called credal sets, i.e. sets of probability distributions
compatible with given constraints [26].

A first attempt to extend probabilistic model checking
to the framework of imprecise probabilities has been pro-
posed in [22]. The paper introduces an imprecise version of
PCTL based on IMCs and proves that shifting from precise
to imprecise models does not increase the time complexity
of the relevant model checking tasks, which remains poly-
nomial in the number of states of the models. A first exten-
sion of the results in [22] is provided in [25], introducing
a specific language and the corresponding model checking
procedure for imprecise Markov reward models (IMRM)
partially based on the recursive procedures outlined in [27].

In both [22, 25], only single-agent systems are consid-
ered. A multi-agent extension of this formalism is instead
presented in [28]. In this paper, the authors introduce a class
of structures to model epistemic-stochastic multi-agent
systems called imprecise probabilistic interpreted systems
(IPIS) together with a language to specify their properties
(called EIPCTL) and relative model checking procedure.

The present work introduces a new framework that com-
bines and extends the results in [25, 28]. The framework
is based on Imprecise Probabilistic Interpreted Reward
Systems (IPIRS), a class of imprecise-probabilistic models
obtained by combining IPISs presented in [28] with IMRMs
introduced in [25]. A language to specify properties of these
models, called Epistemic Imprecise Probabilistic Interpreted

Reward Systems (EIPRCTL) is consequently introduced.
The latter is obtained by extending the EIPCTL introduced
in [28] with operators specific for reward properties. Cor-
responding model checking algorithms are then developed
based on iterative scheme exploiting the same transition
operator used in [22] for IMCs. Furthermore, preliminary
computational complexity results included in [22] and [28]
are generalised, hence proving that shifting from precise to
imprecise models does not increase the time complexity of
the relevant model checking tasks with respect to standard
(precise) models. The developed formalism and algorithms
are finally tested on a case study borrowed from the medi-
cal domain.

The paper is structured as follows. In “Markov Mod-
els”, we provide a general introduction to different kinds
of Markov models and related probabilistic inferences. In
“Imprecise Markov Models”, we introduce different relevant
kinds of imprecise Markov models and the corresponding
methods to compute probabilistic inferences over them. In
“Epistemic Imprecise PRCTL”, we define the syntax and
semantics of EIPRCTL. In “Model Checking”, we develop
a model checker for EIPRCTL exploiting procedures for the
computation of probabilistic and epistemic inferences in
imprecise Markov models introduced in “Imprecise Markov
Models”. In “A Case Study on Healthcare Budgeting”, we
offer an example of application based on a case study bor-
rowed from the medical domain. Finally, in “Conclusions”,
we conclude with some remarks about further potential
applications and developments of our framework. The proofs
of the theorems are all reported in the Appendix A.

Markov Models

Markov Chains

Let S be a finite non-empty set of possible states. We are
interested in modelling stochastic agents that, at each dis-
crete-time t ∈ ℕ , shift from a state s ∈ S to another, not
necessarily different, state s� ∈ S . We assume the stochastic
behaviour of an agent to be time-homogeneous, that is, the
probability of a transition from s to s′ is independent of the
time t at which it occurs, and memory-less, that is, the prob-
ability of each transition is independent of the previously
occurred transitions. Under these conditions, the behaviour
of the agent can be described in terms of a discrete-time
Markov chain (DTMC).

Definition 1  (Discrete-time Markov chain) A discrete-time
Markov chain M

����
 is a tuple:

M
����

∶= ⟨S,T , �⟩,

SN Computer Science (2023) 4:443 	 Page 3 of 21  443

SN Computer Science

where:

•	 S is a finite non-empty set of states;
•	 T ∶ S × S → [0, 1] is a transition matrix that assigns a

probability value to each transition s, s� ∈ S × S;
•	 � ∶ S → [0, 1] is a probability distribution that assigns an

initial probability value to each s ∈ S.

Given a DTMC M
����

 , we call path a function � ∶ ℕ ↦ S
whose values are the states reached by M

����
 at the various

time-steps t. Accordingly, each path � describes a possible
temporal evolution of the Markov chain and corresponds to
an infinite countable sequence of states. In what follows, nota-
tion �(t) is used to refer to the state of the path � at time t,
while Paths(s) denotes the set of all paths � originating in a
given state s ∈ S (i.e. such that �(0) = s ). The set of all pos-
sible paths � of a given DTMC M

����
 is denoted by ΠM

����
and represents the set of all possible outcomes in the temporal
evolution of the Markov chain.

To relate paths with probabilities, we endow ΠM
���� with

a �-algebra and augment it to a probability space as follows.
Given a path � of M

����
 , a finite prefix 𝜋̂ of � is any sequence

(�(0),… ,�(t)) originating in �(0) and including a finite num-
ber of subsequent states of � . The set of all finite prefixes of a
given path � is denoted by pref (�) , while the set of all finite
prefixes 𝜋̂ originating in a given state s ∈ S is denoted by
Pathsfin(s) (see, [2, Sec. 10.1]).

Definition 2  (Cylinder set) The cylinder set Cyl(𝜋̂) induced
by a finite prefix 𝜋̂ is defined as

That is, Cyl(𝜋̂) is the set of all paths whose common prefix
is 𝜋̂ [2, Def. 10.9].

Definition 3  (�-algebra of a Markov Chain) The �-algebra
associated with a DTMC M

����
 , denoted �M

���� , is the
smallest �-algebra that contains all cylinder sets Cyl(𝜋̂) ,
where 𝜋̂ ranges over all finite prefixes of M

����
.

From basic concepts of probability and Definition 3, it fol-
lows that there exists a unique probability measure PM

���� on
the �-algebra �M

���� such that (see, [2, Sec. 10.1]):

where:

Cyl(𝜋̂) ∶=
{
𝜋 ∈ ΠM

���� ∣ 𝜋̂ ∈ pref (𝜋)
}
.

(1)PM���� (Cyl(�̂(0),… , �̂(t))) = �(�̂(0)) ⋅ PM���� (�̂(0),… , �̂(t)),

(2)PM
���� (𝜋̂(0),… , 𝜋̂(t)) ∶=

t−1∏
𝜏=0

T(𝜋̂(𝜏), 𝜋̂(𝜏 + 1)),

while for finite prefixes composed by just one state (i.e.
𝜋̂ = {s} ), Ps(𝜋̂) = 1 [2, Sec. 10.1].

Also of interest are the probabilities of a path � , respec-
tively a finite prefix 𝜋̂ , conditional on a given initial state
s ∈ S , which are henceforth denoted by PM

����

s (�) , respec-
tively PM

����

s (𝜋̂).
Over the probability space ⟨ΠM

���� , �M
���� ,PM

����⟩ ,
we define a family {St}t∈ℕ of categorical stochastic
variables St that range over S and describe the tem-
poral behaviour of the Markov chain. In this frame-
work, the memory-less condition above mentioned cor-
responds to the Markov property, which establishes
that: PM

����(St+1 ∣ St,… , S0) = PM
���� (St+1 ∣ St) . Time-

homogeneity, on the other hand, corresponds to assume
PM

����(St+1 ∣ St) to be the same for all t.
Let us now consider the usual definition of (discrete-

time) stochastic process.

Definition 4  (Stochastic process) Given a finite non-empty
set of states S , a discrete-time stochastic process over S ,
here denoted M, is a family of categorical stochastic vari-
ables {St}t∈ℕ ranging over S and defined over a probability
space ⟨Π, �(�),PM⟩ such that

•	 Π is the set of all paths generated by states in S,
•	 �(Π) is the cylinder �-algebra of Π,
•	 PM is a probability measure over �(Π).

From Definition 4, it follows that each stochastic pro-
cess M is uniquely identified by (i.e. it is in one-to-one
correspondence with) a probability measure PM . Accord-
ingly, a DTMC with state-space S , initial distribution �
and transition matrix T can be alternatively regarded as the
(discrete-time) stochastic process over S uniquely identi-
fied by the probability measure PM generated by � and T
as by Eqs. (1) and (2).

Definition 5  (Labelled DTMC) A labelled DTMC is a
DTMC extended with a set of atomic propositions AP and a
labelling function l ∶ S → 2AP that assigns to each s ∈ S a
set of atomic propositions l(s) ⊆ AP representing elementary
facts (or properties) holding in that state.

In the rest of this article, we consider only labelled
DTMCs. When not differently specified, we use the term
DTMC to refer directly to their labelled extensions.

Inferences in Markov Chains

We next recall two probabilistic inferences that are of
central interest in this work, i.e. marginal and hitting
probability.

	 SN Computer Science (2023) 4:443 443   Page 4 of 21

SN Computer Science

Definition 6  (Marginal probability) Given an event B ⊆ S
and an initial state s ∈ S , the marginal probability of B with
respect to time t conditional on S0 = s is defined as follows:

Given an event B ⊆ S and state s ∈ S , we are also inter-
ested in the (conditional) hitting probability hB(s) , alterna-
tively called reachability probability (see, [2, Sec.10.1.1]),
which is the probability of eventually visiting a state s� ∈ B
starting from s.

Consider the event “the process eventually reaches B”
(in model checking literature, this is usually denoted by
◊B ). In order to define hB(s) , we need first to character-
ise the above event as a measurable set of paths. In fact,
the latter corresponds to the union of all cylinders Cyl(𝜋̂)
spanned by finite prefixes 𝜋̂ originating in s and such that
∃ t ∈ ℕ ∶ 𝜋(t) ∈ B ∧ ∀𝜏 < t, 𝜋(𝜏) ∉ B . Since these sets are
pairwise disjoint, the hitting probability of B can be defined
as follows [2, Sec.10.1.1.].

Definition 7  (Hitting probability) Given a DTMC M
����

 , a
set of states B ⊆ S , and an initial state s ∈ S,

Following [22, 24], we compute marginal and hitting
probabilities via a transition operator T̂ defined as follows.

Definition 8  (Transition operator) For any real function f of
S , T̂f is defined as a function S → ℝ such that

In practice, the transition operator returns the conditional
expectation of f, i.e. T̂f (s) = E[f (St+1) ∣ St = s] [24]. After t
time-steps, the transition operator is obtained as follows:

and the respective conditional expectation writes as
E[f (St) ∣ S0 = s] = (T̂ tf)(s) . Since the marginal probability
is equivalent to the expectation of the indicator function �B(s)
that returns one if s ∈ B and zero otherwise, we can compute
it as

(3)

PM
����

s

(
St ∈ B

)
∶=

∑
𝜋̂∶={𝜋̂(0),…,𝜋̂(t)} s.t. 𝜋̂∈Pathsfin(s) ∧ 𝜋̂(t)∈B

PM
����(𝜋̂) .

hB(s) ∶=
∑

𝜋̂ ∈ Pathsfin(s) ∶ ∃ t ∈ ℕ s.t.

𝜋̂(t) ∈ B ∧ ∀ 𝜏 < t, 𝜋̂(𝜏) ∉ B

PM
����

s
(Cyl(𝜋̂)).

(4)∀s ∈ S ,
(
T̂f

)
(s) ∶=

∑
s�∈S

T
(
s, s�

)
⋅ f
(
s�
)
.

(5)∀s ∈ S ,
(
T̂ tf

)
(s) ∶=

{(
T̂f

)
(s) if t = 1 ,(

T̂
(
T̂ t−1f

))
(s) if t > 1,

(6)Ps

(
St ∈ B

)
= T̂ t

�B(s).

The hitting probability hB is obtained instead by computing
the minimal non-negative solution1 of the following system
of linear equations [29, Th. 1.3.2]:

where Bc is the complement of B, and sums and products
are intended as element-wise operations on arrays. Standard
methods solve Eq. (7) in polynomial time with respect to
|S| [2, p.749]. Here we consider an alternative procedure
that is easier to be extended to the imprecise-probabilistic
framework (see, Section “Imprecise Markov Models”). Let
ht
B
(s) be the probability of hitting B from s ∈ S within a

finite number of time-steps t. For t = 0 , we trivially have
ht
B
(s) = �B(s) . For t > 0 , if s ∉ B , the hitting probability at t

is obtained by applying the transition operator to ht−1
B

 , while
if s ∈ B it is simply set to one. Thus,

The hitting probability hB can thus be computed as the fixed
point t∗ of the iterative schema in Eq. (8).

The time complexity of the above iterative computation
is polynomial with respect to |S|t∗ . As each iterative step is
based on solving a system of |S| linear equations, its time
complexity results polynomial in |S| . Since t∗ further itera-
tions are necessary to reach the fixed point, the overall time
complexity will result to be polynomial in |S|t∗.

Markov Reward Models

Among the various extensions of Markov chains, let us con-
sider Markov reward models (MRMs) [2]. A MRM is a pair
⟨M, rew⟩ composed of a Markov chain M with state space
S and a reward function rew ∶ S ↦ ℕ such that rew(s) rep-
resents the reward earned visiting s, for each state s ∈ S .
Given an event B ⊆ S and a path � ∈ ΠM

���� , we are inter-
ested in the cumulative reward earned along � until visiting
an s ∈ B for the first time. The latter is defined as follows.

Definition 9  (Cumulative reward) Given an event B ⊆ S and
a path � ∈ ΠM

����,

Given the above definition, the expected cumula-
tive reward earned until reaching B starting from s ∈ S ,

(7)hB = �B + �Bc ⋅ T̂hB ,

(8)ht
B
= �B + �Bc ⋅ T̂ht−1B

.

(9)

RewB(𝜋) ∶=

�∑t

𝜏=0
rew(𝜋(𝜏)) if ∃t ∶ 𝜋(t) ∈ B ∧ ∀𝜏 < t, 𝜋(𝜏) ∉ B∑∞

𝜏=0
rew(𝜋(𝜏)) otherwise .

1  By minimal non-negative solution we mean a solution such that (i)
for each s ∈ S, h

B
(s) ≥ 0 , (ii) given any other non-negative solution

h
�
B
(s) , then h

B
(s) ≤ h

�
B
(s) for each s ∈ S.

SN Computer Science (2023) 4:443 	 Page 5 of 21  443

SN Computer Science

denoted ExpRewB(s) , is now defined as the expectation2
of the function RewB conditional on initial state s ∈ S , i.e.
ExpRewB(s) ∶= E[RewB ∣ S0 = s] [2, Def. 10.71]. Let us now
discuss more in detail how to compute this value. First of all,
we need to recall the following result from [2, Sec. 10.5.1].
Given an event B ⊆ S , let SB

=1
 indicates the set of all states

s ∈ S from which it is possible to reach an s� ∈ B almost
surely, i.e.:

If s ∉ S
B
=1

 , then ExpRewB(s) may not converge to a finite
value. Following [2, sec. 10.5.1], we thus assume for con-
venience that, by default, ExpRewB(s) = ∞ for all s ∉ S

B
=1

 .
For all s ∈ S

B
=1

 , the following result holds [2, Sec. 10.5.1].

Proposition 1  The values xs = E[RewB ∣ S0 = s] for each
s ∈ S

B
=1

 provide the unique solution of the following equa-
tions system:

There exist several methods to solve the linear system in
Eq. (10) (see, [2, Sec.10.5.1]). Here, we adopt a recursive
schema similar to that one involved above for hitting prob-
ability, which is obtained as follows.

For every s ∈ S
B
=1

 , let ExpRew0
B
(s) ∶= rew(s) , and, for

every t ∈ ℕ, t ≠ 0 , let ExpRewt
B
(s) be defined as

Notice that the functions ExpRewt
B
 are well-defined since if

s ∈ S
B
=1

 , then s� ∈ S
B
=1

 for every s′ such that T(s, s�) > 0 . Each
function ExpRewt

B
 can be given a clear interpretation as the

expected cumulative reward earned until reaching B from s
within a maximum number of time-steps t, as the following
result shows.

Theorem 2  For every t ∈ ℕ , it holds that

where for every � ∈ ΠM
���� , Rew0

B
(�) ∶= rew(�(0)) , and for

every t ∈ ℕ, t ≠ 0,

S
B
=1

∶=
{
s ∈ S ∣ hB(s) = 1

}
.

(10)xs =

�
rew(s) if s ∈ B,

rew(s) +
∑

s�∈SB
=1
T(s, s�)xs� otherwise.

(11)

ExpRewt
B
(s) ∶=

�
rew(s) if s ∈ B ,

rew(s) +
∑

s�∈S T(s, s
�)ExpRewt−1

B
(s�) otherwise.

(12)
(
∀s ∈ S

B
=1

)
ExpRewt

B
(s) = E

[
Rewt

B
∣ S0 = s

]
,

(13)
Rewt

B
(𝜋) ∶=

�
RewB(𝜋) if ∃t∗ ≤ t ∶ (∀𝜏 < t∗) 𝜋(𝜏) ∉ B,𝜋(t∗) ∈ B,∑t

𝜏=0
rew(𝜋(𝜏)) otherwise.

Thanks to Theorem 2, we can now demonstrate the fol-
lowing result proving that the recursive scheme above intro-
duced converges to what we expect.

Theorem 3  E[RewB ∣ S0] restricted to SB
=1

 is a fixed point of
the iterative scheme (25).

As for hitting probability, we can thus compute ExpRewB
by iterating the schema in Eq. (25) over increasing values
of t until convergence.

The last MRM inference we consider is the reward-
bounded hitting probability hr

B
(s) , i.e. the probability of

reaching B from s before earning a cumulative reward equals
to r.

As for standard hitting probability, we proceed by
defining the event “the process reaches B before earn-
ing a cumulative reward equals to r” (usually denoted
by ◊

≤rB ) as a measurable set of paths. Notably, this
event corresponds to the union of all cylinder sets Cyl(𝜋̂)
spanned by finite prefixed 𝜋̂ originating in s and such
t h a t ∃t ∈ ℕ ∶ 𝜋̂(t) ∈ B ∧ ∀𝜏 < t, 𝜋̂(𝜏) ∉ B ∧ rew(𝜋̂(0),

… , 𝜋̂(𝜏)) ≤ r . Since these are pairwise disjoint sets, the
reward-bounded hitting probability of B can be defined as
follows [2, Sec. 10.5.1]:

Definition 10  (Reward-bounded hitting probability) For all
s ∈ S:

To introduce a method to compute hr
B
(s) , let us first recall

the following result from [2, Sec. 10.5.1]. Let h�
B
 denote the

vector of reward-bounded hitting probability for a reward-
threshold � = 0,… , r . Let SB

>0
 be the set of all states s ∈ S

such that hB(s) > 0 , i.e. the set of all states s ∈ S such that
there exists at least one path � originating in s and reaching
B for some t.

Proposition 4  For each s ∈ S , the value of h�
B
(s) is given by

the following system of equations:

hr
B
(s) ∶=

∑

𝜋̂ ∈ Pathsfin(s) ∶ ∃t ∈ ℕ s.t.

𝜋̂(t) ∈ B ∧ ∀𝜏 < t 𝜋̂(𝜏) ∉ B∧

rew(𝜋̂(0),… , 𝜋̂(t)) ≤ r

PM
����

s
(Cyl(𝜋̂))

2  Notice that Rew
B
 is not a real-valued function as its value may

diverge to ∞ for some s ∈ S.

	 SN Computer Science (2023) 4:443 443   Page 6 of 21

SN Computer Science

Trivially, h�
B
= 1 whenever s is already in B and its state-

reward does not overcome the desired threshold � . Differently,
if s ∈ B but rew(s) > 𝜌 , then we have that the cumulative
reward earned by the agent already overcomes the specified
threshold and, thus, h�

B
(s) = 0 . The same also holds when

s ∉ S
B
>0

 as, in this case, we already know that hB is equal to
zero and consequently also h�

B
= 0 . In all the remaining cases,

h
�

B
(s) is computed by iteration over the possible successors of

s. That is, we take the sum over all s� ∈ S of the probability
of reaching s′ from s multiplied the probability of reaching B
from s′ before earning a cumulative reward equal to � − rew(s) .
Remember that every time the agent transits from a state s to
one of its successors s� ∈ S , it earns the reward of s. Conse-
quently, the threshold � has to be reduced of a value rew(s) at
each further iteration from a state s to its successors s′.

Notice that the system in the above proposition is in fact a
linear system with variables (s, �) ranging in S × {0, 1,… , �} .
As in the case of standard hitting (see, Eq. (14)), we can solve
the system by standard methods [2, Sec. 10.5.1]. Here, we
follow a different strategy based on a recursive schema that
iterates both over times and rewards. Let ht,�

B
(s) denote the

probability of hitting B from s before earning cumulative
reward � and within time-step t. For each t ∈ ℕ , the values of
h
t,�

B
 computed for � = 0,… , r are collected in S × r matrix that

we denote by ht,�0∶r
B

.
For t = 0 , we generate ht=0,�0∶r

B
 by computing the vectors

h
t=0,�

B
 for � = 0,… , r and for each s ∈ S as follows:

Consider that when t = 0 no transition occurs. Hence, we
clearly have that, for each s ∈ A , ht=0,�

B
(s) is equals to one if s

belongs to the hitting event B and its reward rew(s) does not
exceed the specified threshold � , otherwise ht=0,�

B
(s) is zero.

For t > 0 , ht,�0∶r
B

 is generated by computing the various vec-
tors ht,�

B
 for � = 0, 1,… , r via the following recursive schema

applied to each s ∈ S:

The first two cases follow from considerations analogous
to those leading to Eq. (15). In the third case, we obtain
the value of ht,�

B
(s) from ht−1,�−rew(s)

B
 via one-step application

(14)

h
𝜌

B
(s) =

⎧⎪⎨⎪⎩

1 if s ∈ B and rew(s) ≤ 𝜌

0 if rew(s) > 𝜌 or s ∉ S
B
>0∑

s�∈S T(s, s
�)h

𝜌−rew(s)

B
(s�) otherwise.

(15)h
t=0,�

B
(s) =

{
1 if s ∈ B and rew(s) ≤ �

0 otherwise.

(16)

h
t,𝜌

B
(s) =

⎧⎪⎨⎪⎩

1 if s ∈ B and rew(s) ≤ 𝜌

0 if hB(s) = 0 or rew(s) > 𝜌∑
s�∈S T

�
s, s�

�
h
t−1,𝜌−rew(s)

B

�
s�
�
otherwise.

of the transition operator. As the reward is cumulative,
the threshold � is decreased by the reward of the current
state. The values of ht−1,�−rew(s)

B
 are provided by the matrix

h
t−1,�0∶r
B

 that we generate at time-step t − 1 . Specifically,
h
t−1,�−rew(s)

B
(s�) corresponds to the cell identified by the |s′|

-row and the |� − rew(s)|-column of the matrix ht−1,�0∶r
B

 . For
all s ∈ S , the procedure converges to a finite value, as proved
by the following theorem.

Theorem 5  Let ⟨M, rew⟩ be a MRM, B ⊆ [S] , and � ∈ ℕ .
There is a t∗ ∈ ℕ such that for all � ≥ 0:

As for standard hitting, we can, therefore, compute hr
B

simply by iterating ht,�0∶r
B

 over increasing values of t until
convergence.

Probabilistic Interpreted Systems

Probabilistic Interpreted Systems (PISs) [18] are another
MC extension we consider. PISs are a class of semantic
frames used in computational logic for modelling epis-
temic and probabilistic properties of stochastic multi-agent
systems. Consider a finite non-empty set of agents A . The
possible configurations of each agent a ∈ A are described
by a finite non-empty set of local states Sa . The set of
global states S describing the possible configurations of
the whole multi-agent system is obtained as the Cartesian
product S ∶= ×a∈AS

a . Accordingly, each s ∈ S is a tuple
⟨sa1 , sa2 ,… , san⟩ of |A| local states. Hence, formally, we have
the following definition.

Definition 11  A PIS is defined as a tuple:

where:

•	 A is a finite non-empty set of agents;
•	 S is a finite non-empty set of global states;
•	 {Ta}a∈A is a family of t ransi t ion matr ices

Ta ∶ S × S → [0, 1];
•	 {Pa}a∈A is a family of initial probability distributions

Pa ∶ S ↦ [0, 1];
•	 AP is a set of atomic propositions;
•	 l ∶ S → 2AP is the labelling function.

For each agent a ∈ A , we also introduce an epistemic
equivalence relation ∼a⊆ S × S such that

(17)h
t∗+�,�0∶r
B

= h
t∗,�0∶r
B

.

(18)M
���

∶=
⟨
A,S, {Ta}a∈A, {P

a}a∈A,AP, l(s)
⟩
,

s ∼a s� iff sa = s�a.

SN Computer Science (2023) 4:443 	 Page 7 of 21  443

SN Computer Science

The latter denotes that two global states s, s′ are epistemi-
cally indistinguishable by an agent a if and only if they are
identical as far as the agent knows. The equivalence relation
∼a induces a partition Eq∼a over S . The elements of this par-
tition are denoted by eq∼i , and are called epistemic equiva-
lence classes (EEC). They consist of sets of global states
that are epistemically indistinguishable among each others
by a. Specific equivalence relations can be also defined to
model different kinds of multi-agent knowledge in a group
of agents Γ ⊆ A , including:

•	 Everybody Knows ∼Γ
E
∶=

⋃
∀a∈Γ ∼a;

•	 Common Knowledge ∼Γ
C
∶= it(

⋃
∀a∈Γ ∼a) , where it

denotes the iterative closure;
•	 Distributed Knowledge ∼Γ

D
∶=

⋂
∀a∈Γ ∼a.

Each relation induces a partition whose elements are the
respective EECs eq∼Γ

E , eq∼Γ
C , and eq∼Γ

D for groups of agents
Γ ⊆ A.

From the transition matrices associated with each agent, a
global transition matrix T

���
 describing the stochastic behav-

iour of the whole multi-agent system can be obtained by
logarithmic pooling as follows:

where � is a normalising constant.
A global initial probability distribution P

���
 is similarly

defined:

Furthermore, the global transition matrix T
���

 and the global
initial probability distribution identify a particular MC
⟨S, �

���
, T

���
,AP, l⟩ called the embedded MC of the PIS. The

latter is used to compute probabilistic inferences concerning
the overall stochastic behaviour of the multi-agent system.

A pair ⟨M
���

, rew⟩ of a PIS M
���

 and a reward function
rew ∶ S ↦ ℕ , is called a Probabilistic Interpreted Reward
System (PIRS).

Imprecise Markov Models

In this section, we provide imprecise-probabilistic coun-
terparts for the Markov models presented in the previous
section. This basically corresponds to replace the (sharp)
specifications of the probabilistic parameters with set-valued
ones. We also show how the efficient inference algorithms
described in the previous section can be extended to such
generalised setup, thus allowing for the computation of the
bounds with respect to the set-valued specification, without
increased computational costs. These results partially rely on

(19)T
���

(
s, s�

)
∶= �

∏
a∈A

Ta
(
s, s�

)
,

(20)P
���

(s) ∶= ��
∏
a∈A

Pa(s) .

recent works about imprecise Markov models [24, 27]. Note
that the imprecise Markov models we consider follow the so-
called measure-theoretic interpretation [24] and relies on the
formalism of credal sets [30]. The alternative game-theoretic
formalisation [31] is briefly mentioned without going into
details insofar the two formalisms are equivalent for the infer-
ence tasks relevant for this work, as proved in [32].

Imprecise Transition Matrices

Given a variable S, a Credal Set (CS) K(S) is a set of prob-
ability mass functions over S. The upper expectation of a real-
valued function f of S with respect to CS K(S) is intended as
E[f (S)] ∶= supP(S)∈K(S)

∑
s∈S f (s) ⋅ P(s) (the lower expectation

E[f (S)] is analogously defined). Here we only consider closed
and convex CSs induced by a finite number of linear con-
straints. These are polytopes in the probability simplex with
a finite number of extreme points collected in a set Ext[K(S)].
For these CSs, upper (lower) expectations can be equivalently
obtained by taking the maximum (minimum) with respect
to the precise expectations computed on the extreme points.
Conditional CSs might be defined analogously [33].

In this framework, an imprecise transition matrix T is defined
as a collection of conditional CSs {K(S�|s)}s∈S , each one rep-
resenting a separately specified row of the matrix. This allows
for defining precise transition matrices whose rows are obtained
by taking a P(S�|s) ∈ K(S�|s) for each s ∈ S . Each one of these
matrices represents a stochastic behaviour compatible with the
“imprecise” specification given by T .

Imprecise Markov Chains

As a first example of imprecise Markov model, we con-
sider (discrete-time) imprecise Markov chains (IMCs), thus
providing an imprecise-probabilistic version of the models
introduced in Section “Markov Chains”. Note that there
exist two main ways of formalising IMCs in the literature.
On the one hand, the measure-theoretic characterisation
defines an IMC as a family of (discrete-time) Markov mod-
els compatible with beliefs about initial and transition prob-
abilities. On the other hand, the game-theoretic characterisa-
tion is grounded on the game-theoretic view of probability
popularised in [31] that, applied to the theory of stochas-
tic processes directly leads to imprecise models.3 The two
characterisations are different but have been recently proved
to coincide for all expectations on the following domains:
(i) monotone pointwise limits of finitary real-valued func-
tions, and (ii) bounded below Borel-measurable variables
[32]. In this work we focus on measure-theoretic IMCs only.

3  See [34, 35] for an in-depth discussion on the relation between
measure-theoretic and game-theoretic IMCs.

	 SN Computer Science (2023) 4:443 443   Page 8 of 21

SN Computer Science

However, all the inferences we consider fall under (i) and
thus, for the purposes of our work, the two characterisations
can be considered equivalent.

Given a CS K(S0) and an imprecise transition matrix T  ,
both defined over S , the (discrete-time) IMC M induced by
K(S0) and T can be defined as the largest set of (discrete-
time) stochastic processes that are compatible with K(S0)
and T .

The term “compatible” here deserves an exact characteri-
sation. In literature, indeed there exist at least two different
criteria for establishing compatibility, which depends on
the imprecise interpretation of the notion of stochastic irrel-
evance, and, consequently, of the Markov property one con-
siders [36]. The two notions of irrelevance typically involved
for IMCs are strong independence and epistemic irrelevance.
The former is defined via product-independence of the CS
extreme points: we say that K(S) and K(S�) are strong-
independent if and only if, for all P(S) ∈ Ext[K(S)] and all
P(S�) ∈ Ext[K(S�)] , it holds that P(S, S�) = P(S) ⋅ P(S�) . The
latter is defined via conditioning: we say that K(S) is epis-
temically irrelevant for K(S�) if and only if K(S� ∣ s) = K(S�)
for each s ∈ S.4 Notice that, unlike strong independence,
epistemic irrelevance is asymmetric, i.e. the irrelevance of
K(S) for K(S�) does not entail the irrelevance of K(S�) for
K(S).

Following [27, 38], and also the early work of [22], in
this paper we focus on epistemic irrelevance. Notably, by
exploiting the results in [30], the imprecise-probabilistic
inferences considered in the rest of this paper can easily
proved to be independent of the specific characterisation we
adopt. Epistemic irrelevance leads to an imprecise charac-
terisation of the Markov property practically correspond-
ing to assume that “whenever the agent knows the current
state, then her beliefs about future states are not altered upon
learning what states were visited in the past” [36, p. 265].
A formal definition of IMC can thus be given as follows:5

Definition 12  (Imprecise Markov chain under epistemic
irrelevance) Given K(S0) and T  , an IMC M (under epis-
temic irrelevance) is defined as the largest set of all, poten-
tially non-Markov, non-homogeneous, stochastic processes
for which, for all t ∈ ℕ and all s0,… , st ∈ S

t , there is some
T ∈ T such that P(St+1 = s� ∣ S0∶t = s0∶t) = T(s0∶t, s

�) for all
s� ∈ S.

Furthermore, each IMC is uniquely identified by a set
of probability measures PM ∶ �(Π) → [0, 1] that we denote
by KM . Each PM ∈ KM uniquely identifies a (potentially

non-Markov and non-homogeneous) stochastic process com-
patible with the IMC identified by KM . The IMC identified
by KM is also uniquely identified by KM

s
 , which is the credal

set including all the conditional probability distribution PM
s

obtained by conditioning the various PM ∈ KM on a given
initial state s ∈ S . As detailed in the next section, inferences
in IMCs are consequently intended as the computation of
lower and upper expectations with respect to such credal set.

Before moving on, notice that, as in the precise case, we
are interested here in labelled IMCs, i.e. IMCs augmented
with a finite set of atomic propositions AP and a labelling
function l ∶ S → 2AP . In what follows, when using the term
IMC, we always refer to labelled IMCs.

Inference in Imprecise Markov Chains

To compute inferences in IMCs, let us first introduce the
analogous of the transition operator in Eq. (4). This is
obtained by taking the bounds with respect to all the possible
(precise) specifications of transition probabilities consistent
with the imprecise transition matrix of the IMC. For upper
bounds, this corresponds to the following non-linear upper
operator:

while an analogous definition, with the minimum replacing
the maximum, holds for the lower operator T [27, Eq. 1].
Equation (21) can be computed by solving |S| linear pro-
gramming tasks whose feasible regions are the conditional
CSs in the definition of T  . This is possible, in particular,
because we assume (Section “Imprecise Transition Matri-
ces”) that each row of T is separately specified and consists
of a conditional CS K(S� ∣ s) described by a finite number of
linear constraints.

An iterated application of the above operators can be used
to compute the bounds of the probability of reaching a given
set of states after a number of time-steps t, as shown by the
following result.

Theorem 6  Given an event B ⊆ S and a time t ∈ ℕ , let
Ps(st ∈ B) denote the upper bound for the probability of reach-
ing B after t time-steps when starting from s. It holds that:

A similar result allows to obtain the lower probability
by means of the lower operator. For the sake of concise-
ness, in the rest of the paper, we only report the results for
upper probabilities, expectations and transition operators.
The lower bounds can always be obtained by replacing the
upper transition operator with its lower analogous.

(21)
(
Tf
)
(s) ∶= max

T(s,S�)∈T(s,S�)

∑
s�∈S

T
(
s, s�

)
⋅ f
(
s�
)
,

(22)Ps

(
st ∈ B

)
= T

t
�B(s).

4  For a more detailed characterisation of the difference between these
notions, we refer to [37].
5  This definition is as in [27]. An analogous definition is given in
[24].

SN Computer Science (2023) 4:443 	 Page 9 of 21  443

SN Computer Science

For what concerns the upper hitting probability, the latter
can be regarded as the upper bound of the hB defined in Eq.
(7) with respect to the set KM , as detailed in the following
definition.

Definition 13  (Upper hitting probability) Given a IMC M ,
a set of states B ⊆ S , and an initial state s ∈ S:

The latter can be compute as the minimal solution of the
following system of equations [24, Corollary 19] (See also
[27]).

Differently from the precise case, the system in Eq. (23) is
non-linear and cannot be solved by the standard methods
typically used in the precise case. Nevertheless, as we show
below, it is possible to apply a schema analogous to that in
Eq. (8) and compute hB by recursion over increasing values
of t (see, Ref. [24]). Let h

t

B
 denote the upper hitting probabil-

ity of B for a finite number of time-steps t ∈ ℕ conditional on
S0 = s . For t = 0 , we trivially have that h

t=0

B
= �B . For t > 0 ,

we have instead the following recursion:

In practice, the procedure consists of t iterated applications
of the transition operator T and, consequently, requires the
solution of |S| ⋅ t linear programming tasks. The time com-
plexity of the procedure is, therefore, polynomial in |S| ⋅ t ,
exactly as in the precise case.

As for standard DTMCs, it is proved that the least fixed
point of Eq. (24) is the minimal non-negative solution of
the schema in Eq. (23) (see, [24, Prop 16]). We can thus
compute hB simply by iterating the schema in Eq. (24) over
increasing values of t until converge. The overall time com-
plexity results polynomial in |S|t∗ as in the precise case.
Each iteration step is based on a one-step application of the
upper transition operator T and requires the solution of |S|
linear optimisation tasks: its time complexity is, therefore,
polynomial in |S| . As t∗ further iterations are necessary to
reach convergence, the overall time complexity results poly-
nomial in |S|t∗.

Imprecise Markov Reward Models

The imprecise Markov reward models (IMRMs) are
the first extension of IMCs we consider. The latter can
be defined as the imprecise counterpart of a MRM and

hB(s) ∶= max
PM
s
∈KM

∑

𝜋̂ ∈ Pathsfin(s) ∶ ∃ t ∈ ℕ s.t.

𝜋̂(t) ∈ B ∧ ∀ 𝜏 < t, 𝜋̂(𝜏) ∉ B

PM
s
(Cyl(𝜋̂))

(23)hB = �B + �BcT hB.

(24)h
t

B
= �B + �BcT h

t−1

B
.

consists of a pair ⟨M, rew⟩ of a IMC M and a reward
function rew ∶ S → ℝ . For IMRMs, we characterise
the expected cumulative reward ExpRewB by its upper
and lower bounds, respectively denoted ExpRewB and
ExpRewB . As in the precise case, we restrict the latter to
only s ∈ S

B
=1

 , where SB
=1

 is now defined as the set of all
s ∈ S such that h

B
(s) = 1.

Given an event B ⊆ S and a path � ∈ ΠM
����� , let us con-

sider the cumulative reward RewB(�) earned along � until
visiting an s ∈ B for the first time, as in Definition 9. The
upper ExpRewB(s) expected cumulative rewards earned
until reaching B starting from s ∈ S can be defined as the
upper expectation of RewB conditional on the initial state
s ∈ S , i.e. ExpRewB(s) ∶= E[RewB|s].

Inspired by Theorem 3 valid for the precise case, we
introduce an imprecise version of the recursive scheme
presented in Eq. (10). To this end, let ExpRew0

B
(s) ∶= rew(s)

for every s ∈ S
B
=1

 . Instead, for each t ∈ ℕ, t ≠ 0 , let
ExpRewt

B
(s) be defined as follows:

Similarly to the precise case, ExpRewt
B
 can be given a clear

interpretation via the following theorem.

Theorem 7  For every t ∈ ℕ , it holds that

where for each � ∈ ΠM
����� , Rew0

B
(�) ∶= rew(�(0)) , and for

each t ∈ ℕ, t ≠ 0,

By exploiting Theorem 7, we can now demonstrate the
following result proving that the recursive schema above
introduced converges to what expected.

Theorem 8  E[RewB ∣ S0] restricted to SB
=1

 is a fixed point of
the iterative scheme (25).

To conclude, let us focus on the imprecise counterpart
of reward-bounded hitting probability hr

B
 and its upper

bound h
r

B
 , which we defined as follows.

Definition 14  (Upper hitting probability) Given a IMC M ,
a set of states B ⊆ S , a reward-threshold r, and an initial
state s ∈ S:

(25)

ExpRewt
B
(s) ∶=

{
rew(s) if s ∈ B ,

rew(s) +
(
T ExpRewt−1

B

)
(s) otherwise,

(26)(∀s ∈ SB
=1
) ExpRewt

B
(s) = E

[
Rewt

B
∣ S0 = s

]
,

(27)Rew
t

B
(𝜋) ∶=

⎧
⎪⎨⎪⎩

Rew
B
(𝜋) if ∃t∗ ≤ t ∶ (∀𝜏 < t∗)

𝜋(𝜏) ∉ B,𝜋(t∗) ∈ B,∑t

𝜏=0
rew(𝜋(𝜏)) otherwise.

	 SN Computer Science (2023) 4:443 443   Page 10 of 21

SN Computer Science

Similarly to the precise case (see Proposition 4), the values
of h

�

B
(s) for all s ∈ S and � ∶= 0, 1,… , r provide a solution

to the following system of equations:

To compute h
r

B
 , we can, therefore, use a recursive schema

analogous to that presented in “Markov Reward Models”.
First, we define a matrix h

t,�0∶r

B
 whose cells are the values of

h
t,�

B
(s) computed for each s ∈ S and for � = 0,… , r.
For t = 0 , we generate h

t,�0∶r

B
 by computing the vectors h

t=0,�

B

for � = 0,… , r as in Eq. (15).
For increasing values of t, h

t,�0∶r

B
 is generated by computing

the vectors h
t,�

B
 for � = 0,… , r as follows:

As in the precise case, the values of ht−1,�−rew(s)
B

(s�) for all
s� ∈ S are provided by the matrix h

t−1,�0∶r that we generate
at time-step t − 1 . The recursion is based on iterated applica-
tions of the upper transition operator T  , each one based on
solving |S| linear programming tasks.

To compute h
r

B
(s) for all s ∈ S , we proceed as in the precise

case, that is, we iterate h
t,�0∶r

B
 over increasing values of t until

convergence. Hence, for each s ∈ S , h
r

B
(s) is given by the s-cell

of the r-vector of the matrix h
t∗,�0∶r

B
 , where t∗ is the convergence

time-step. The convergence of the procedure is granted by the
following theorem:

Theorem 9  Let (M, rew) be a IMRM, B ⊆ [S] , and � ∈ ℕ ,
there is a t∗ ∈ ℕ such that for all � ≥ 0:

The overall time complexity of the procedure is polynomial
in |S|t∗ for a reasoning analogous to that stated for Eq. (24).

h
r

B
(s) ∶= max

PM
s
∈KM

∑

𝜋̂ ∈ Pathsfin(s) ∶ ∃t ∈ ℕ s.t.

𝜋̂(t) ∈ B ∧ ∀𝜏 < t 𝜋̂(𝜏) ∉ B∧

rew(𝜋̂(0),… , 𝜋̂(t)) ≤ r

PM
����

s
(Cyl(𝜋̂)).

(28)
h
�
B(s) =

⎧

⎪

⎨

⎪

⎩

1 if s ∈ B and rew(s) ≤ r
0 if rew(s) > � or s ∉ >0

max
T(s,S′)∈ (s,S′)

∑

s′∈ T
(

s, s′
)

h
�−rew(s)
B

(

s′
)

otherwise .

(29)h
t,�
B (s) =

⎧

⎪

⎨

⎪

⎩

1 if s ∈ B and rew(s) ≤ �
0 if rew(s) > � or s ∉ >0

max
T(s,S′)∈ (s,S′)

∑

s′∈ T
(

s, s′
)

ht−1,�−rew(s)B

(

s′
)

otherwise.

(30)h
t∗+�,�0∶r

B
= h

t∗,�0∶r

B
.

Imprecise Probabilistic Interpreted Systems

The second IMC extension we consider are imprecise proba-
bilistic interpreted systems (IPISs) [28]. The latter are defined
as multi-agent systems composed by agents whose stochastic
behaviour is described in terms of IMCs. An IPIS under this
interpretation is constructed as follows. For each agent a ∈ A ,
let {Ka(S� ∣ s)}s∈S denote a family of CSs including, for each

s ∈ S , all the transition probability mass functions Pa(S� ∣ s)
that are compatible with some agent’s probabilistic beliefs. To
obtain an IPIS, we replace all the transition matrices Ta, a ∈ A
in a standard PIS with corresponding (row-stochastic) impre-
cise transition matrices Ta ∶= {Ka(S� ∣ s)}s∈S , whose rows
correspond to the transition CSs Ka(S� ∣ s) for all s ∈ S . The
overall stochastic behaviour of the entire multi-agent system
is then described by a global imprecise transition matrix T

����

which can be obtained following different approaches. The

most conservative approach consists of defining T
����

 as a col-
lection of ∣ S ∣ conditional CSs K

����
(S� ∣ s) , each one being

defined as
⋃

a∈A Ka(S� ∣ s) . While natural, this approach
always implies an increase of the degree of imprecision,
defined in terms of the size of the credal sets.

Another approach to obtain T
����

 consists of computing, for
each transition s, s� ∈ S × S , the credal version of the logarithmic
pooling of the family of conditional CSs {Ka(S� ∣ s) ∶ a ∈ A} .
In general, this is defined as the element-wise application of the
standard logarithmic pooling to the elements of the credal sets.
This element-wise approach, however, might comport exponential
complexity with respect to the number of agents in the model. A
similar problem also occurs when considering alternative strate-
gies, such as the one proposed in [39] within the framework of
general credal networks. An efficient way to overcome the prob-
lem we adopt here consists in considering an outer approximation
of the lower and upper bounds of the credal logarithmic pooling
achieved as follows:

(31)

T
����

�
s, s�

�
∶=

∏
a∈A T

a�
s, s�

�
∏

a∈A T
a
(s, s�) +

∑
s��≠s�

∏
a∈A T

a(s, s��)
.

SN Computer Science (2023) 4:443 	 Page 11 of 21  443

SN Computer Science

The lower bound is analogously computed. The obtained
global matrix T

����
 consists of an imprecise transition matrix

T
����

 whose entries are intervals (m, n) ⊆ [0, 1] whose extremes
are given by the lower T

����
(s, s�) and the upper T

����
(s, s�)

bounds of the transition probabilities. As in the precise case,
the global matrix describes the embedded IMC of the IPIS that
is used to compute probabilistic inferences arising with the
overall stochastic behaviour of the multi-agent system.

Imprecise Probabilistic Interpreted Reward Systems

The last class of IMC-based structures we consider are
imprecise-probabilistic interpreted reward systems (IPIRSs).
The latter are defined as pairs ⟨M

����
, rew⟩ of a IPIS M

����

and a reward function rew ∶ S ↦ ℕ . As for IPISs, the global
transition matrix T

�����
 of an IPIRS is obtained by combining

the credal transition matrices Ta of the various agents i ∈ A.
Notice that all the various imprecise Markov models

above introduced can be seen as components of an IPIRS.
Specifically, an IPIRS (M

����
, rew) includes an IPIS M

����

that is composed by several IMCs M , one for each agent
of the system. On the other hand, an IPIRS (M

����
, rew)

includes several IMRMs, one for each agent in the system,
composed by an IMC M and the reward function rew. This
work focuses on only IPIRS and their properties. Neverthe-
less, the various results obtained for IPIRSs can be easily
transferred to IMCs, IMRMs, and IPISs.

Epistemic Imprecise PRCTL

This section presents Epistemic Imprecise Probabilistic
Reward Computation Tree Logic (EIPRCTL), an epistemic
and imprecise-probabilistic extension of the PCTL intro-
duced in [6] suitable to specify epistemic, probabilistic, and
reward properties of non-stationary (or not fully specifiable)
stochastic multi-agent systems. The language is targeted on
IPIRSs but can be also applied to the other kinds of impre-
cise Markov models previously introduced. Notably, proper-
ties of IMCs, IMRMs, and IPISs can be specified via specific
languages, such as IPCTL [22], IPRCTL [25], and EIPCTL
[28], which can be obtained as EIPRCTL fragments.

EIPRCTL Syntax

The EIPRCTL syntax is recursively defined as follows:

𝜙 ∶=

�
⊤ ∣ p ∣ ¬𝜙 ∣ 𝜙1 ∧ 𝜙2 ∣ P∇b

𝜓 ∣ P∇b𝜓 ∣ PJ𝜓

E
∇r
𝜙 ∣ E∇r𝜙 ∣ EJ𝜙 ∣ Ka𝜙 ∣ EΓ𝜙 ∣ CΓ𝜙 ∣ DΓ𝜙

,

𝜓 ∶= ○ 𝜙 ∣ 𝜙1

⋃
𝜙2 ∣ 𝜙1

⋃≤t
𝜙2 ∣ 𝜙1

⋃
≤r 𝜙2,

𝜖 ∶= Ba
∇b
𝜙 ∣ Ba

∇b
𝜙,

where p ∈ AP , b ∈ [0, 1] , J ⊆ [0, 1] , a ∈ A , Γ ⊆ A , and ∇
is a short notation for {<,≤,=,≥,>}.

The language is composed by � , � and �-formulae. The
former extend classical propositional logic with usual opera-
tors for single-agent knowledge Ka , common knowledge CΓ ,
and distributed knowledge DΓ , and with the following proba-
bilistic modalities:

•	 P
∇b
� : the lower probability of reaching a path that satis-

fies � is ∇b;
•	 P∇b� : the upper probability of reaching a path that satis-

fies � is ∇b;
•	 PJ� : the probability of reaching a path that satisfies �

belongs to the closed interval J ⊆ [0, 1];
•	 E

∇r
� : the lower bound of the expected cumulative reward

earned by the system until reaching a state that satisfies
� is ∇r;

•	 E∇r� : the upper bound of the expected cumulative reward
earned by the system until reaching a state that satisfies
� is ∇r;

•	 EJ� : the expected cumulative reward earned by the sys-
tem until reaching a state that satisfies � belongs to the
closed interval J ⊆ [0, 1];

The �-formulae are standard CTL path-formulae [2, p. 313]
used to represent properties of paths:

•	 ○� : in the next state of the path � holds;
•	 �1

⋃
�2 �1 : �1 holds along the path until �2 holds;

•	 �1

⋃≤t
�2 : there exists a time-step � ≤ t such that �2

holds in the �-step of the path and �1 holds in all the
previous time-steps;

•	 �1

⋃
≤r �2 : �1 holds in all states of the path until a cumu-

lative reward lower then or equals to r is earned then �2
holds.

Finally, �-formulae include the two following weighted-
belief modalities:6

•	 Ba
∇b
� : agent a believes that the lower probability of hit-

ting � eventually in the future is ∇b;
•	 Ba

∇b
� : agent a believes that the upper probability of hit-

ting � eventually in the future is ∇b.

EIPRCTL Semantics

Let us introduce a proper semantics for EIPRCTL formulae
based on IPIRSs. This can be seen as a generalisation of the

6  In the rest of this work, we refer to such doxastic formulae as
imprecise-probabilistic beliefs.

	 SN Computer Science (2023) 4:443 443   Page 12 of 21

SN Computer Science

semantics proposed in [22] for IMCs and those proposed in
[18] for standard (precise) PISs.

Semantics of State‑Formulae

We start by presenting satisfiability conditions for Boolean,
probabilistic, and epistemic �-formulae separately.

Definition 15  (Semantics of Boolean formulae) Given an
IPIRS ⟨M

����
, rew⟩ and a state s ∈ S , the following condi-

tions hold:

Definition 16  (Semantics of probabilistic formulae) Given
an IPIRS ⟨M

����
, rew⟩ and a state s ∈ S , the following con-

ditions hold:

⟨M
����

, rew⟩, s ⊧ p iff p ∈ l(s),

⟨M
����

, rew⟩, s ⊧ ¬𝜙 iff ⟨M
����

, rew⟩, s ⊧̸ 𝜙,

⟨M
����

, rew⟩, s ⊧ 𝜙1 ∧ 𝜙2 iff ⟨M
����

, rew⟩, s ⊧ 𝜙1

and ⟨M
����

, rew⟩, s ⊧ 𝜙2.

⟨M
����

, rew⟩, s ⊧ P
∇b
𝜓 iff P

�����
(s ⊧ 𝜓)∇b,

⟨M
����

, rew⟩, s ⊧ P∇b𝜓 iff P
�����

(s ⊧ 𝜓)∇b,

⟨M
����

, rew⟩, s ⊧ PJ𝜓 iff

� ⟨M
����

, rew⟩, s ⊧ P
≥min J

𝜓 and

⟨M
����

, rew⟩, s ⊧ P
≤max J𝜓 .

For the probabilistic formulae, the satisfiability conditions
refer to the lower and upper bounds of P

�����
(s ⊧ 𝜓) , where

P
�����

(s ⊧ 𝜓) is the probability that a path 𝜋 ⊧ 𝜓 belongs to
the set of paths originating in s conditional to S0 = s.7 Simi-
larly to standard PCTL [2], the computation of the lower
and upper bounds of P

�����
(s ⊧ 𝜓) varies depending on � .

We further analyse this point in Section “Model Checking”
dedicated to model checking procedures.

Definition 17  (Semantics of expected reward formulae) Let
Sat(�) be the set of all states that satisfy � . Given an IPISR
(M

����
, rew) and state s ∈ S , the following condition holds:

.
Definition 18  (Semantics of epistemic formulae) Given an
IPIRS (M

����
, rew) , an agent i ∈ A or a group of agents

Γ ⊆ A , and a state s ∈ S , the following conditions hold:

Semantics of Path‑Formulae

Definition 19  (Semantics of �-formulae) Given an IPIRS
(M

����
, rew) and a path � , the following conditions hold:

Semantics of Weighted‑Belief Formulae

The �-formulae are doxastic formulae that specify the prob-
abilistic beliefs of a specific agent concerning the overall
behaviour of the multi-agent system. They are expressed
in terms of the lower and upper bounds of Pa(s ⊧ ⊤

⋃
𝜙) ,

that is, the probability according to the agent a that the
multi-agent system eventually visit a state s′ ⊧ 𝜙 starting
from s ∈ S . This probability is computed analogously to
P
�����

(s ⊧ 𝜋 ⊧ ⊤
⋃

𝜙) in Definition 16, but replacing the
global transition matrix T

����
 with a local transition matrix

T
a that describes the specific stochastic behaviour of the

⟨M
����

, rew⟩, s ⊧ E∇r𝜙 iff ExpRewSat(𝜙)(s)∇r,

⟨M
����

, rew⟩, s ⊧ E
∇r
𝜙 iff ExpRewSat(𝜙)(s)∇r,

⟨M
����

, rew⟩, s ⊧ EJ𝜙 iff

� ⟨M
����

, rew⟩, s ⊧ E
≥min J

𝜙 and

⟨M
����

, rew⟩, s ⊧ E
≤max J𝜙.

⟨M
����

, rew⟩, s ⊧ Ka𝜙 iff ∀s�, s ∼a s� ∶ s� ⊧ 𝜙,

⟨M
����

, rew⟩, s ⊧ EΓ𝜙 iff ∀s�, s ∼Γ
E
s� ∶ s� ⊧ 𝜙,

⟨M
����

, rew⟩, s ⊧ CΓ𝜙 iff ∀s�, s ∼Γ
C
s� ∶ s� ⊧ 𝜙,

⟨M
����

, rew⟩, s ⊧ DΓ𝜙 iff ∀s�, s ∼Γ
D
s� ∶ s� ⊧ 𝜙.

⟨M
����

, rew⟩,𝜋 ⊧ ○𝜙 iff ⟨M
����

, rew⟩,𝜋(1) ⊧ 𝜙,

⟨M
����

, rew⟩,𝜋 ⊧ 𝜙1

⋃≤t
𝜙2 iff ∃𝜏 ≤ t ∶

� ⟨M
����

, rew⟩,𝜋(𝜏) ⊧ 𝜙2 and

∀𝜏� < 𝜏 ∶ ⟨M
����

, rew⟩,𝜋(𝜏) ⊧ 𝜙1,

⟨M
����

, rew⟩,𝜋 ⊧ 𝜙1

⋃
𝜙2 iff ∃t ≥ 0 ∶

� ⟨M
����

, rew⟩,𝜋(t) ⊧ 𝜙2 and

∀𝜏 ∶ 0 ≤ 𝜏 < t ⟨M
����

, rew⟩,𝜋(𝜏) ⊧ 𝜙1,

⟨M
����

, rew⟩,𝜋 ⊧ 𝜙1

⋃
≤r 𝜙2 iff ∃t ∈ ℕ ∶

⎧
⎪⎨⎪⎩

⟨M
����

, rew⟩,𝜋(t) ⊨ 𝜙2 and

∀𝜏 < t ∶ ⟨M
����

, rew⟩,𝜋(𝜏) ⊨ 𝜙1

and Rew(𝜋, t) ≤ r.

7  Here the subscript �PIRS denotes the fact that this probability is
computed through the global transition matrix T

�����
 describing the

stochastic behaviour of the whole multi-agent system.

SN Computer Science (2023) 4:443 	 Page 13 of 21  443

SN Computer Science

single-agent a ∈ A . Obviously, since we are considering
imprecise models, we are interested in computing the lower
and upper bounds of Pa(s ⊧ ⊤

⋃
𝜙) . These are denoted,

respectively, by Pa(s ⊧ ⊤
⋃

𝜙) and P
a
(s ⊧ ⊤

⋃
𝜙) . The spe-

cific procedure to compute those bounds is further detailed
in Section “Model Checking”. Here we focus only on the
satisfiability conditions for � formulae, defined as follows:

Definition 20  (Satisfiability of �-formulae) Given an IPIRS
(M

����
, rew) , and a state s ∈ S,

Model Checking

In the present section, we explain how to check systems
modelled by IPISRs against properties specified in the
EIPRCTL language. The procedure we present is obtained
by extending the well-known parsing-tree algorithm origi-
nally introduced for model checking with CTL formulae [2].
We start by briefly recalling the structure and functioning of
the parsing-tree. Then, we extend the algorithm introducing
a series of new sub-routines to solve specific model checking
tasks related to the different kinds of EIPRCTL formulae.

Parsing Tree

Let Λ be a short notation for either a �-formula or an �
-formula. Given an IPISR ⟨M

����
, rew⟩ , a state s ∈ S , and

a formula Λ , a model checking algorithm is an automatic
procedure to verify whether ⟨M

����
, rew⟩, s ⊧ Λ holds. The

standard algorithm for CTL and its extension exploits the
parse tree of Λ generated by decomposing Λ in its various
sub-formulae as in Fig. 1 [2, p. 336]. The algorithm works
as follows:

1.	 Generate the parse tree of Λ , recursively decomposing
Λ in its sub-formulae � until only atoms remain.

⟨M
����

, rew⟩, s ⊧ Ba
∇b
𝜙 iff ∀ s� ∶ s ∼a s�, Pa

�
s ⊧ ⊤

⋃
𝜙
�
∇b,

⟨M
����

, rew⟩, s ⊧ Ba

∇b
𝜙 iff ∀ s� ∶ s ∼a s�, P

a�
s ⊧ ⊤

⋃
𝜙
�
∇b.

2.	 Traverse the parse tree of Λ visiting all the sub-formulae
� , starting from the leaves and working backwards to the
roots,

3.	 At each sub-formula � , calculate the set of states that
satisfy � , denoted Sat(�) , by checking whether s ⊧ 𝜆 for
all s ∈ S,

4.	 Calculate Sat(Λ) by composition of the various Sat(�),
5.	 Check whether s ∈ Sat(Λ).

The algorithm includes a specific sub-routine to compute
Sat(Λ) for each specific kind of sub-formula �.

Boolean Formulae

For Boolean formulae, Sat(�) is computed as follows:

Probabilistic Formulae

For formulae of the kind P
∇b
� , P∇b� and PJ� , the set Sat(�)

is obtained by computing the lower and upper bounds of
P
����

(s ⊧ 𝜓) for each s ∈ S and then check whether they sat-
isfy the specified threshold ∇b . The specific procedure to
compute the lower and upper bounds of P

����
(s ⊧ 𝜓) varies

depending on the specification of �.
Next If � ∶= ○� , then P

�����
(s ⊧ 𝜓) corresponds to

Ps(s1 ∈ Sat(�)) and its upper (lower) bound can be com-
puted as in Eq. (22).

Time-Bounded Until If � = �1

⋃≤t
�2 , then P

�����
(s ⊧ 𝜓)

corresponds to the probability of hitting Sat(�2) within a
finite number of time-steps t conditional on S0 = s and with
the additional condition that all the states visited before
reaching Sat(�2) are in Sat(�1) . For each s ∈ S , we denote
such probability by ht

Sat(�2)∣Sat(�1)
(s) . A recursive schema

analogous to that in Eq. (24) can be formulated to compute
h
t

Sat(�2)∣Sat(�1)
 . Let �Sat(�1)⧵Sat(�2)

 denote the indicator vector
whose values are one for all s ∈ Sat(�1)⧵Sat(�2) and 0 oth-
erwise. A slightly modified version of the algorithm in (24)
for computing h

t

Sat(�2)∣Sat(�1)
 by recursion over increasing val-

ues of t is achieved as follows:

As in Eq. (24), the initialisation is given by the indicator
function of Sat(�2) while the recursive steps consist of

Sat(⊤) ∶= S,

Sat(p) ∶=
{
s ∈ S ∶ p ∈ li(s)

}
,

Sat
(
𝜙1 ∧ 𝜙2

)
∶= Sat

(
𝜙1

)
∩ Sat

(
𝜙2

)
,

Sat(¬𝜙) ∶= S ⧵ Sat(𝜙).

(32)
h
t

Sat(�2)∣Sat(�1)
∶= �Sat(�2)

+ �Sat(�1)⧵Sat(�2)

(
T
����

h
t−1

Sat(�2)∣Sat(�1)

)
.

P≥0.9p
⋃
(q ∨ r) ∨Kap

P≥0.9p
⋃
(q ∨ r) Kap

p q ∨ r p

q r

Fig. 1   Parse-tree of a formula

	 SN Computer Science (2023) 4:443 443   Page 14 of 21

SN Computer Science

iterated applications of the upper transition operator to the
hitting vector computed at the precedent time-step t − 1 .
The only relevant difference with the analogous scheme
presented in Section “Imprecise Markov Chains” consists
of the indicator vector �Sat(�1)⧵Sat(�2)

 that replaces the indi-
cator vector �Bc of the complement of the hitting event B.
In the general scheme, �Bc limits the iteration considering
only paths that have not already visited an s ∈ B . Here, by
using �Sat(�1)⧵Sat(�2)

 , we limit the iteration to only those paths
whose actual and previous states are all in Sat(�1) and that
have not already reached a state s ∈ Sat(�2) . Notice that

Eq. (32) is the imprecise analogous of the system of linear
equations used to compute in P(s ⊧ 𝜙1

⋃
𝜙2) in the precise

case, as reported in [2, Sec. 10.2.1]. Finally, as for Eq. (24),
the computation of Eq. (32) is based on solving |S|t linear
programming tasks and its time complexity is, thus, poly-
nomial in |S| t.

Until If � ∶= �1

⋃
�2 , then P

�����
(s ⊧ 𝜓) corresponds to

the probability of hitting Sat(�2) conditional on S0 = s and
with the additional requirement that all the states visited
before reaching Sat(�2) are in Sat(�1) . To compute the lower
and upper bounds of this probability, we simply iterate the
schema in Equation (32) over increasing values of t until
convergence.

Reward‑Bounded Until  If � ∶= �1

⋃
≤r �2 , then

P
�����

(s ⊧ 𝜙1

⋃
≤r 𝜙2) corresponds to the reward-bounded

hitting probability of Sat(�2) with the additional condition
that all the states visited before reaching Sat(�2) are in
Sat(�1) . We denote this probability by hr

Sat(�2)∣Sat(�1)
 . To

compute the upper (lower) bound of the latter, we involve a

sightly modified version of the procedure introduced in Eqs.
(28) and (29)

Let h
t,�0∶r

Sat(�2)∣Sat(�1)
 be a matrix whose cells are the values of

h
t,�

Sat(�2)∣Sat(�1)
(s) computed for each s ∈ S and for

� ∶ 0, 1,… , r.
For t = 0 , we generate h

t,�0∶r

Sat(�2)∣Sat(�1)
 by computing the vec-

tors h
t=0,�

Sat(�2)∣Sat(�1)
 for � = 0, 1,… , � . as in Eq. (15).

For t > 0 , we generate h
t,�0∶r

Sat(�2)∣Sat(�1)
 by computing the

various vectors h
t,�

B
 for � = 0, 1,… , r as follows:

The schema is analogous to that in Eq. (29). The only rele-
vant difference is the additional clause prescribing that
h
t,�

B
(s) = 0 also for all s ∈ Sat(�1)⧵Sat(�2) , whereas in Eq.

(29) h
t,�

B
(s) = 0 only for s ∈ S such that either h

B
(s�) = 0 or

rew(s) > r . The additional clause blocks the recursion for the
successors of the initial state that do not belong to Sat(�1) .
Indeed, if a certain successor s� ∉ Sat(�1) ⧵ Sat(�2) is
reached at a certain time-step � of the iteration, then
hr
Sat(�2)∣Sat(�1)

(s�) takes value zero and the recursion from that
state is stopped. In such a way, it is possible to account for
the additional requirement that all states visited before
reaching the hitting event Sat(�2) are in Sat(�1) . Notice that
the slightly modification does not alter the general results
about h

r

B
 reported above. In particular, the time complexity

of the procedure remains polynomial in |S|t∗ (with t∗ denot-
ing the convergence time-steps) as it practically depends on
the iterative step Tht−1,�−rew(s)

B
(s) , which is the same both in

Eq. (29) and (33).

(33)

h
t,𝜌

Sat(𝜙2)∣Sat(𝜙1)
(s) =

⎧⎪⎨⎪⎩

1 if s ∈ Sat(𝜙2) and rew(s) ≤ 𝜌 ,

0 if h(s) = 0 or s ∉ Sat(𝜙1) ⧵ Sat(𝜙2) or rew(s) > 𝜌 ,

Th
t−1,𝜌−rew(s)

B
(s) otherwise .

Fig. 2   Model-checking algo-
rithm for epistemic formulae

SN Computer Science (2023) 4:443 	 Page 15 of 21  443

SN Computer Science

Expected Reward Formulae

For formulae of the kind E
∇r
� ∣ E∇r� ∣ EJ� , the procedure

to determine Sat(�) is based on computing the lower or the
upper bounds of ExpRewSat(�)(s) , with Sat(𝜆) ⊆ S following
the procedure in Eq. (25).

Epistemic Formulae

For formulae of the kind Ki� ∣ CΓ� ∣ DΓ� , the sub-routine to
compute Sat(�) is based on the algorithm reported in Fig. 2.

Let � be a short notation for Ki ∣ EΓ ∣ CΓ ∣ DΓ , and let
∼� be a short notation for ∼i∣∼Γ

E
∣∼Γ

C
∣∼Γ

D
 . Given an epis-

temic equivalence relation ∼� , we denote by Eq∼� the parti-
tion induced on S by ∼� . Each element of Eq∼� is an EEC
that we denote by eq∼� . The algorithm in Fig. 2, works as
follows:

1.	 It takes in input an IPIRS M
�����

 and a formula ��;
2.	 It computes Sat(�) by recursively calling the respective

sub-routine;
3.	 For each eq∼�

∈ Eq∼
� , it checks whether eq∼𝜅

⊆ Sat(𝜙) .
If this is the case, then the algorithm adds the whole
equivalence class eq∼� to Sat(��).

The main advantage of this procedure is that it does not
consider single states s ∈ S but works directly on EECs.
This strategy drastically reduces the time necessary for the
execution of the procedure, which ultimately results polyno-
mial in |S|n , with n denoting the nesting-depth of �� , i.e. the
number of nested instances of epistemic operators occurring
in the formula. For more details on this procedure, we refer
to [40, Sec. 2.1].

Imprecise Weighted-Belief Formulae

For �-formulae, the procedure to compute Sat(�) requires to
compute the upper (lower) bounds of Pa(s ⊧ ⊤

⋃
𝜙) for each

s� ∈ eqa(s) . In practice, these correspond to the lower and
upper bounds of ha

Sat(�2)
 , that is, the hitting probability of

event Sat(�2) computed through the local transition matrix
T
a of the agent a. The procedure to compute Pa(s ⊧ ⊤

⋃
𝜙)

is totally analogous to that for computing P
�����

(s ⊧ ⊤
⋃

𝜙)
reported above, with the relevant difference that we use the
local transition matrix Ta instead of the global transition
matrix T

����
.

A Case Study on Healthcare Budgeting

We present a first validation of EIPRCTL based on a slightly
modified version of the MRM originally proposed in [41].
MRMs are used in that work to estimate the recovery costs
for patients in geriatric departments. Two kinds of recovery
are considered: short-term recoveries for acute cares have
a daily cost estimated as £100, while long-term recoveries
cost £50 per day. From a cumulative perspective, long-term
recoveries are more expensive, since those patients typically
remain in the hospitals for longer periods.

The evolution across time of health conditions of a patient
can be described through a MC with three states: acute care
A, long-term care L, and discharge or death D. Transitions
from L to A are considered impossible, while D acts as an
absorbing state. A parametrized version of the transition
matrix for this model is in Fig. 3. The parameters have the
following interpretation: the conversion rate � corresponds
to the probability of passing from a short-term to a long-
term recovery, while the dismissing rates � and � correspond
to the probability of being discharged/die, respectively, in a
short and long-term recovery. Rates � , � and � vary depend-
ing on the patient and disease. An assessment of these
parameters for three different departments is in Table 1.

The reward rew associated with each state repre-
sents the daily cost per patient. In a scale where one is
assumed to correspond to one pound, the daily costs per
patient are described by a function such that rew(A) = 100 ,
rew(L) = 50 , and rew(D) = 0 . When a patient is dismissed
or death she no longer has a cost for the hospital. Following
these specifications, it is possible to construct a (precise)
MRM ⟨M, rew⟩ able to predict the expected cumulative cost
incurred by the hospital for each patient up to the time of the
patient’s discharge or death. Suppose that the total amount
of financial resources per patient available to the hospital is
� ∶= £40, 000 . We are interested in verifying whether the

Fig. 3   Transitions in a three-state MRM

Table 1   Conversion and dismissing rates

Rate ( %) Department 1 Department 2 Department 3

� 1.750 3.540 2.810
� 0.031 0.187 0.149
� 0.120 0.130 0.180

	 SN Computer Science (2023) 4:443 443   Page 16 of 21

SN Computer Science

expected cumulative cost per patient is sustainable, i.e. it
does not exceed the amount of resources available. This cor-
responds to check whether:

for both s = A , i.e. for a patient initially recovered in acute
care, and s = L , i.e. for a patient initially recovered in long-
term care.

The MRM in [41] presents an important limitation, that
is, it considers precise values for the transition rates � , �
and � , which is tantamount to assuming that the probability
of a patient to change her health-condition is always the
same independently from time. This assumption is clearly
problematic. For example, it is obvious that the probability
to die for patients in long-term cares increases with time.
Imprecise probabilistic models allow us to overcome this
limitation by considering, instead of precise values, prob-
ability intervals within which the transition rates can fluctu-
ate over time.

In practice, we define an imprecise transition matrix for
each department obtained by a perturbation of the values
of each column of Table 1. As a perturbation method for
converting a probability mass function into a credal set,
we simply adopt a linear-vacuous contamination [21]. The
methods works as follows. If P(S) is a PMF over S, the CS
K(S) (see Section “Imprecise Transition Matrices”) becomes
the CS that includes all the PMFs obtained as a mixture
(1 − �)P(S) + �P�(S) , where P�(S) is any probability mass
function and the parameter � ∈ [0, 1] defines the level of
imprecision in the CS (e.g. K(S) = {P(S)} for � = 0 , while
for � = 1 we get the vacuous CS). In our example, we assume
a perturbation level � = 0.03 . Hence, by applying the above
contamination model to each row of the three precise transi-
tion matrices described in Table 1, we obtain three imprecise
transition matrices Ta, a ∈ {1, 2, 3} (where a is the number
of the department to which the matrix refers).

Given that the costs associated with each state in the
model remain the same as above, we have now obtained
three different IMRMs, each describing the scenario related
to one of the three departments. We are still interested in
checking whether, given a patient, the expected cumulative
cost incurred until the patient is dismissed or dies does not
overcome the available resources. However, we neither know
from which one of the three departments the patient comes
nor whether it is recovered in acute (A) or long-term (L)
care. We can model this scenario as follows.

First, instead of considering a specific transition matrix
T
a, a ∈ {1, 2, 3} , we consider an aggregated model where

ExpRewD(s) ≤ �,

the global imprecise transition matrix is a pooling of the
imprecise transition matrices of each department.

Such a global imprecise transition matrix TIPIS can be
obtained by the logarithmic pooling as in Eq.(31). As an
alternative, more cautious, estimate, we also consider instead
a conservative pooling consisting in taking as aggregated
model the union of the probability intervals of the imprecise
transition matrices of the different departments.

Finally, the fact that, independently from which is the
department the patient comes from, we cannot know whether
the patient is recovered in acute or long-term cares corre-
sponds to assume that A ∼a L,∀a ∈ {1, 2, 3} , i.e. states
labelled by A and L are indistinguishable. We have now
obtained a description of the considered scenario in terms
of an IPISR ⟨M

����
, rew⟩.

Checking whether the upper maximum expected cumu-
lative cost incurred by the hospital until a patient is dis-
missed or dies is sustainable corresponds, therefore, to
verify whether or not the formula E

≤�D holds in the model
⟨M

����
, rew⟩ for each state s in the equivalence class {A,L} .

To check this formula, we apply the procedure discussed
in Section “Model Checking”. The algorithms described
in Section “Imprecise Markov Models” are finally used to
compute the upper bounds of ExpRewD(s) for both s = A and
s = L.8 The most cautious bounds returned by the conserva-
tive pooling are:

As expected, the cumulative costs for patients initially
admitted in acute care are lower and not exceeding the
resources available to the hospital. The same does not hap-
pen for patients initially admitted in long-term care.

The management of the hospital might consequently need
to check how likely is the fact that the cumulative costs for
an hospitalised patient are exceeding the available resources.
We do that by checking that the probability of a patient to
be dismissed/died before the cumulative cost overcomes
the available resources is sufficiently high, e.g. greater
than or equal to a threshold � ∶= 0.95 . This corresponds to
check whether the formula P

≥𝜋
⊤
⋃

≤𝜌 D holds in the model
⟨M

����
, rew⟩ and for each state s in the equivalence class

{A,L} . Remarkably, by means of the algorithms described in
Section “Imprecise Markov Models” we obtain that the for-
mula is satisfied for both initial states. The resources overrun
is, therefore, a relatively unlikely event for the hospital.

(34)ExpRewD(A) = £29�561,

(35)ExpRewD(L) = £42�343.

8  Code available here https://​github.​com/​IDSIA-​papers/​2021-​
ISIPTA-​IPRCTL.

https://github.com/IDSIA-papers/2021-ISIPTA-IPRCTL
https://github.com/IDSIA-papers/2021-ISIPTA-IPRCTL

SN Computer Science (2023) 4:443 	 Page 17 of 21  443

SN Computer Science

Conclusions

An intrinsic limitation of probabilistic model checking is
related to its fundamental reliance on the use of standard
Markov models, which can notoriously model only station-
ary agents whose transition probabilities are all specified
by known numerical values. To overcome this limitation,
we have presented a novel framework based on the theory
of imprecise probabilities and the related imprecise Markov
models. More specifically, we have explained how the use
of imprecise Markov models allows us to apply probabilistic
model checking methods to both non-stationary agents and
agents whose transition probabilities are not fully known
without comporting computational complexity issues. The
key point is that both probabilistic and reward inferences
in imprecise Markov models can be computed by itera-
tively solving linear programming tasks. This allows us
to solve relevant model checking tasks without increasing
the computational complexity of the relative procedures,
which always remains polynomial in the number of states
of the models. The paper focuses specifically on stochas-
tic multi-agent systems, but the framework it introduces is
useful also for single stochastic agents. The main limita-
tion is that, so far, we considered only discrete-time mod-
els. Recent developments [38] in the study of imprecise
continuous-time Markov chains (CTMC) strongly suggest
that an analogous framework can be introduced for con-
tinuous-time models, which are of fundamental relevance
for applications in fields like computational and systems
biology [14, 15]. In the model checking community, some
works concerning non-stationarity issues in continuous-time
Markov models have been recently proposed. In [42], for
example, non-stationary agents are modelled via uncertain
CTMCs, which are CTMCs whose transition probabilities
vary non-deterministically in time within bounded continu-
ous intervals. Although uncertain and imprecise CTMCs are
similar, they are not equivalent formalisms. Notably, while
an uncertain CTMC can be regarded as the largest family of
precise CTMCs compatible with the bounds of the intervals,
an imprecise CTMC is the largest family of all, potentially
non-Markov, non-homogeneous, processes compatible with
given constraints. In other words, imprecise CTMCs are
more expressive and potentially useful for a wider range of
applications. So far, however, there are no works specifically
concerning model checking with imprecise CTMCs.

To conclude, another important development to consider
might concern the development of an imprecise-probabilistic
framework for Markov decision-processes, notably for the
relevance of the latter and their natural connection with the
field of Reinforcement Learning [43].

Appendix A

Proof of Theorem 2  The proof is analogous to the one of [24,
Lemma 9] given for a similar result. The statement is proven
by induction. First, we prove the induction base:

Next, note that for every t ∈ ℕ, t ≠ 0 , the value of
Rewt

B
 on any � is completely determined by the values

�(0), ..., �(t) ∈ S . Thus, we can alternatively interpret Rewt
B

as a function on St+1 . Moreover, for any t ∈ ℕ, t ≠ 0 and
s0, ..., st ∈ St+1 , we observe that

with Rew0
B
(s0) = rew(s0) . By exploiting this observation, we

can proceed with the induction step. Assuming that the state-
ment is true for t − 1 , with t ∈ ℕ, t ≠ 0 , we prove that it is
also true for t. First, for every s ∈ SB

=1
 , we have that

where in the last step we use the law of iterated expec-
tations (or [24, Prop. 39] and [24, Prop. 4]). Clearly,
E[Rewt−1

B
([Si]

t
i=1

) ∣ [Si]
1
i=0

] does not depend on the initial
state S0 , hence

N o w, E[Rewt−1
B

([Si]
t−1
i=0

) ∣ S0 = s] = ExpRewt−1
B

(s) f o r
every s ∈ SB

=1
 by the inductive hypothesis. Hence, plug-

ging this back into the expression we obtained for
E[Rewt

B
([Si]

t
i=0

) ∣ S0 = s] , we have

for all s ∈ SB
=1

 , by using the fact that a transition matrix for
an homogeneous Markov chain encodes 1 time-step expecta-
tion [24, Sec. 2.1]. 	� ◻

.

(A1)

(
∀s ∈ SB

=1

)
E
[
Rew0

B
∣ S0 = s

]
= rew(s) =∶ ExpRew0

B
(s).

(A2)Rewt
B

(
[si]

t
i=0

)
= rew(s0) + IBc (s0)Rew

t−1
B

(
[si]

t
i=1

)
,

E
[

Rewt
B

(

[Si]ti=0
)

∣ S0 = s
]

= E
[

rew(s) + IBc (s)Rewt−1
B

(

[Si]ti=1
)

∣ S0 = s
]

= rew(s) + IBc (s)E
[

Rewt−1
B

(

[Si]ti=1
)

∣ S0 = s
]

= rew(s) + IBc (s)E
[

E
[

Rewt−1
B

(

[Si]ti=1
)

∣ [Si]1i=0
]

∣ S0 = s
]

,

E
[

Rewt−1
B

(

[Si]ti=1
)

∣ [Si]1i=0
]

= E
[

Rewt−1
B

(

[Si]ti=1
)

∣ S1
]

= E
[

Rewt−1
B

(

[Si]t−1i=0
)

∣ S0
]

.

E
[

Rewt
B

(

[Si]ti=0
)

∣ S0 = s
]

= rew(s) + IBc (s)E
[

ExpRewt−1
B (S1) ∣ S0 = s

]

= rew(s) + IBc (s)
[

T̂ExpRewt−1
B

]

(s) = :ExpRewt
B(s),

	 SN Computer Science (2023) 4:443 443   Page 18 of 21

SN Computer Science

P r o o f o f T h e o r e m 3   F i r s t , n o t i c e t h a t
limt→+∞ Rewt

B
= RewB  . Hence, for every s ∈ S

B
=1

 ,
limt→+∞ E[Rewt

B
∣ S0 = s] = E[RewB ∣ S0 = s]

by the monotone convergence theorem since
0 ≤ Rew0

B
≤ Rew1

B
≤ ... ≤ RewB (or [24, Prop. 7] and [24,

Prop. 4]). From Th. 2, it follows that ExpRewt
B
 are also non

decreasing and non-negative. Hence, by using as well the
continuity of T̂ with respect to non decreasing and non nega-
tive sequences, we find that

where the third and fifth step follow from Theorem 2, while
the fourth step follows from the definition of ExpRewt

B
 . 	

� ◻

Proof of Theorem 5  It is actually enough to verify that, given
a MRM (M, rew) and B ⊆ [S] , for all s ∈ S and all r ∈ ℕ ,
it holds that

Let s ∈ S , B ⊆ S and r ∈ ℕ . We show that, for all t ∈ ℕ ,
the time-bounded hitting probability ht,r

B
(s) is equivalent to

the time-bounded hitting probability ht
B∗ (s) of an alternative

event B∗ computed on the alternative MRM (M∗, rew∗) , with
M∗ ∶= ⟨S∗, T∗⟩ . Such structure is construct as follows. Let
r∗ ∶= r + sups�∈S rew(s

�) . We first inductively define S∗ . Set
X0 ∶= {(s, rew(s))} , and for every n > 0,

The idea is that each set Xn+1 ⧵ Xn contains pairs (s�, k) where
s′ is the last node belonging to a path of length n − 1 starting
in s and whose cumulated reward is k ≤ r∗.

Notice that the sequence (X� ∶ � ∈ ℕ) is increasing mono-
tone. Moreover for every n, Xn ⊆ {(s��, k) ∈ S × ℕ ∣ k ≤ r∗} ,
where the latter is a finite set. Hence, there is � such that
X� = X�+1 , and define S∗ ∶= X� ∪ {⊥} , where ⊥ is some
new “sink” state. For the remaining functions, we define,
for (s��,m), (s�, k) ≠ ⊥ , rew∗((s�, k)) ∶= rew(s�) and

whereas we set rew∗(⊥) ∶= 0,

E
[
RewB ∣ S0

]
∣
SB
=1

= lim
t→+∞

E
[
Rewt

B
∣ S0

]
∣
SB
=1
= lim

t→+∞
ExpRewt

B

= lim
t→+∞

(
rew

SB
=1
+ IBc T̂ExpRew

t−1

B

)

= rew
SB
=1
+ IBc T̂E

[
RewB ∣ S0

]
∣
SB
=1
,

(A3)∃t∗ ∈ ℕ ∶ ∀� ≥ 0 , h
t∗+�,r

B
(s) = h

t∗,r

B
(s) .

X
n+1 ∶=Xn

∪ {(s��, k) ∈ S × ℕ ∣ ∃(s�,m) ∈ X
n
s.t.

m ≤ r and k = rew(s�) + m}.

T∗((s�, k), (s��,m)) ∶=

{
T
(
s�, s��

)
if m = rew

(
s��
)
+ k,

0 else;

T∗(⊥, ◦) ∶=

{
1 if ◦ = ⊥,

0 else;

and T∗((s�, k),⊥) ∶= 1 −
∑

(s��,m)≠⊥ T
∗((s�, k), (s��,m)) . Thus,

(M∗, rew∗) is essentially the tree unravelling around s of
(M, rew) up to a cumulation of rewards bounded by r∗ . That
is, every finite path 𝜋̂ in M starting in s such that rew(𝜋̂) ≤ r
corresponds to a finite path 𝜋∗ in M∗ starting in (s, rew(s))
with Ps(𝜋̂) = P(s,rew(s))(𝜋

∗) and rew(𝜋̂) = rew∗(𝜋∗) . Vice
versa, every finite path 𝜋∗ in M∗ starting in (s, rew(s)) such
that rew∗(𝜋∗) ≤ r corresponds to a finite path 𝜋̂ in M starting
in s with Ps(𝜋̂) = P(s,rew(s))(𝜋

∗) and rew(𝜋̂) = rew∗(𝜋∗) . Given
this observation, let B∗ ∶= {(s��, k) ∈ S

∗ ∣ s�� ∈ B, k ≤ r} . We
first notice that for every t ∈ ℕ:

Claim: Let s� ∈ S . Assume there is a finite path 𝜋̂(0)… 𝜋̂(�)
with 𝜋̂(0) = s , 𝜋̂(�) = s� , k ∶= rew(𝜋̂) ≤ r∗ , then Eq. (A4) is
actually a consequence of the following list of facts:

1.	 If hB(s�) = 0 or rew(s�) > r then ht,�
B
(s�) = h

t,�

B∗ ((s
�, k))

= h
t

B∗ ((s
�, k)) = 0 , for every � ≤ r and every t ∈ ℕ,

2.	 Else, if k > r , then ht,�
B∗ ((s

�, k)) = ht
B∗ ((s

�, k)) = 0 , for
every �, t ∈ ℕ,

3.	 Else for every t ∈ ℕ

Proof of Claim. The first two items being clear (e.g.
the second is simply due to the fact that (s�, k) ∉ B∗
and hB∗ ((s�, k)) = 0 ), we verify the last one. First
notice that k = rew(𝜋̂) ≤ r  . This means that s� ∈ B
if and only if (s�, k) ∈ B∗ . We now reason by induc-
tion on t. For t = 0 , we have that all terms are either
equals to 1 or 0. However, given that k ≤ r and
t h e n c e rew(s�) = rew∗((s�, k)) ≤ r + rew(s�) − k   ,
the identities hold. We now verify the induc-
tion step, and therefore, suppose that for t ∈ ℕ ,
h
t,r+rew(s��)−m

B
(s��) = h

t,(r+rew(s��)−m)

B∗ ((s��,m)) = ht
B∗ ((s

��,m))   ,
for every (s��,m) ∈ S

∗ such that hB(s��) ≠ 0 , rew(s��) > r and
m ≤ r . Let � ∶= r + rew(s�) − k . Hence rew(s�) ≤ � . Also,
remember that by hypothesis hB(s�) > 0 , meaning that

If s� ∈ B , reasoning as before, Eq. (A4) holds. We thus
consider the case when s� ∉ B , and terms ht,�−rew(s

�)

B
(s��) .

Let (s��,m) ∈ S
∗ , with m − rew(s��) = k , meaning that

(A4)h
t,r

B
(s) = h

t,r

B∗ ((s, rew(s))) = ht
B∗ ((s, rew(s))).

(A5)
h
t,(r+rew(s�)−k)
B

(s�) = h
t,(r+rew(s�)−k)
B∗

((
s�, k

))
= ht

B∗

((
s�, k

))
.

h
t+1,�

B

�
s�
�
=

�
1 if s� ∈ B∑

s��∈S T
�
s�, s��

�
h
t,�−rew(s�)
B

�
s��
�
otherwise.

SN Computer Science (2023) 4:443 	 Page 19 of 21  443

SN Computer Science

h
t,�−rew(s�)

B
(s��) = h

t,r−k

B
(s��) = h

t,r+rew(s��)−m

B
(s��)  . N o t i c e

t h a t by d e f i n i t i o n T(s�, s��) = T∗((s�, k), (s��,m))  .
T h e r e f o r e , i f w e p r o v e t h a t
h
t,r+rew(s��)−m

B
(s��) = h

t,(r+rew(s��)−m)

B∗ ((s��,m)) = ht
B∗ ((s

��,m))
we are done. Now, let � ∶= r − k ≥ 0 , as k ≤ r  .
T h e re fo re , r + rew(s��) − m = r − k = �  . We r e a -
son by cases. If hB(s��) = 0 or rew(s��) > r ≥ 𝜖 , then
h
t,�

B
(s��) = h

t,�

B∗ ((s
��,m)) = ht

B∗ ((s
��,m)) = 0 . Else, assume

m = rew(s��) + k > r . This means rew(s��) > r − k = 𝜖 , and
therefore, ht,�

B
= (s��) = h

t,�

B∗ ((s
��,m)) = ht

B∗ ((s
��,m)) = 0 . Else,

m = rew(s��) + k ≤ r , and conclude by induction hypothesis.
We finally end the main proof by applying Eq. (A4)

to the fact that, by the convergence of standard hitting
probability, there is t∗ ∈ ℕ such that, for every � ≥ 0 ,
ht

∗+�
B∗ ((s, rew(s))) = ht

∗

B∗ ((s, rew(s))) . 	� ◻

Proof of Theorem 6  We have Ps(St ∈ B) ∶= E[�B(s) ∣ S0 = s]
by definition of upper probability. By defini-
tion of upper conditional expectation, we have
i n s t e a d E[�B(st) ∣ S0 = s] ∶= T

t
�B(s0)  . H e n c e ,

Ps(st ∈ B) = E[�B(s) ∣ S0 = s] = T
t
�B(s0) . 	� ◻

Proof of Theorem 7  The proof is analogous to the one of
[24, Lemma 9] given for a similar result. Notice that results
and lemmas from [24] that we will use in the following are
originally formulated for game-theoretic IMCs. As from
results proved in [32], for the domain of functions we con-
sider in what follows, the measure-theoretic and the game-
theoretic formulations can be considered equivalent. We give
the proof for ExpRewt

B
 , the one for ExpRewt

B
 will follow an

analogous reasoning.
The statement is proven by induction and we first prove

the induction base. To this end, note that Rew0
B
 only depends

on the state S0 , so, it holds that

Next, as in the proof of Theorem 2, we interpret Rewt
B

as a function on St+1 . Moreover, for any t ∈ ℕ, t ≠ 0 and
s0, ..., st ∈ St+1 , we rewrite Rewt

B
([si]

t
i=0

) as

with Rew0
B
(s0) = rew(s0) . Exploiting this observation, we

can proceed with the induction step. Assuming that the state-
ment is true for t − 1 , with t ∈ ℕ, t ≠ 0 , we prove that it is
also true for t. First, for every s ∈ SB

=1
 , we have that

(A6)

(
∀s ∈ SB

=1

)
E
[
Rew0

B
∣ S0 = s

]
= rew(s) =∶ ExpRew0

B
(s).

(A7)Rewt
B

(
[si]

t
i=0

)
= rew(s0) + IBc (s0)Rew

t−1
B

(
[si]

t
i=1

)
,

where the last step is based on [24, Prop. 38].
Now, E[Rewt−1

B
([Si]

t
i=1

) ∣ [Si]
1
i=0

] does not depend on the
initial state S0 , hence

Now, E[Rewt−1
B

([Si]
t−1
i=0

) ∣ S0 = s] = ExpRewt−1
B

(s) for every
s ∈ SB

=1
 by the inductive hypothesis. Plugging this back into

the expression we obtained for E[Rewt
B
([Si]

t
i=0

) ∣ S0 = s] , we
have

for all s ∈ SB
=1

 , where the second step uses [24, Eq. 6]. 	
� ◻

Proof of Theorem 8  The proof follows the one of [24, Prop.
10] and considerations below.

As we know from the proof of Theorem 3,
limt→+∞ Rewt

B
= RewB  . Hence, for every s ∈ S

B
=1

 ,
limt→+∞ E[Rewt

B
∣ S0 = s] = E[RewB ∣ S0 = s] by [24, Prop.

7], since 0 ≤ Rew0
B
≤ Rew1

B
≤ ... ≤ RewB . From Theorem 7

it also follows that ExpRewt
B
 are also non decreasing and

non-negative. Hence, by using as well the continuity of T
with respect to non decreasing and non-negative sequences,
see [24, Lemma 1], we find that

where in the last step we use again Theorem 7. 	� ◻

Proof of Theorem 9  The proof is completely analogous to that
of Theorem 5. 	� ◻

E
[
Rew

t

B

(
[S

i
]t
i=0

)
∣ S0 = s

]

= E
[
rew(s) + I

Bc (s)Rew
t−1
B

(
[S

i
]t
i=1

)
∣ S0 = s

]

= rew(s) + I
Bc (s)E

[
Rew

t−1
B

(
[S

i
]t
i=1

)
∣ S0 = s

]

= rew(s) + I
Bc (s)E

[
E
[
Rew

t−1
B

(
[S

i
]t
i=1

)
∣ [S

i
]1
i=0

]
∣ S0 = s

]
,

E
[
Rew

t−1
B

(
[S

i
]t
i=1

)
∣ [S

i
]1
i=0

]

= E
[
Rew

t−1
B

(
[S

i
]t
i=1

)
∣ S1

]
=

= E
[
Rew

t−1
B

(
[S

i
]t−1
i=0

)
∣ S0

]
.

E
[
Rewt

B

(
[Si]

t
i=0

)
∣ S0 = s

]

= rew(s) + IBc (s)E
[
ExpRewt−1

B
(S1) ∣ S0 = s

]

= rew(s) + IBc (s)
[
T ExpRewt−1

B

]
(s) =∶ ExpRewt

B
(s),

E
[
RewB ∣ S0

]
∣SB

=1

= lim
t→+∞

E
[
Rewt

B
∣ S0

]
∣SB

=1
= lim

t→+∞
ExpRewt

B

= lim
t→+∞

(
rewS

B
=1
+ IBcT ExpRewt−1

B

)

= rewS
B
=1
+ IBcT E

[
RewB ∣ S0

]
∣SB

=1
,

	 SN Computer Science (2023) 4:443 443   Page 20 of 21

SN Computer Science

Funding  Open access funding provided by SUPSI - University of
Applied Sciences and Arts of Southern Switzerland.

Declarations 

Conflict of interest  On behalf of all the authors, the corresponding au-
thor states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Lawler GF. Introduction to stochastic processes. London: Chap-
man and Hall/CRC; 2018.

	 2.	 Baier C, Katoen JP. Principles of model checking. Cambridge:
MIT Press; 2008.

	 3.	 Huang M, Fu H, Katoen J. Deciding probabilistic simulation
between probabilistic pushdown automata and finite-state systems.
Inf Comput. 2019. https://​doi.​org/​10.​1016/j.​ic.​2019.​05.​004.

	 4.	 Hillston J. A compositional approach to performance modelling.
PhD thesis, University of Edinburgh, UK, Edinburgh, UK. 1994.
https://​hdl.​handle.​net/​1842/​15027. Accessed 01 Mar 2016.

	 5.	 Hillston J, Marin A, Rossi S, Piazza C. Contextual lumpability. In:
Horváth A, Buchholz P, Cortellessa V, Muscariello L, Squillante
MS. editors. 7th International Conference on Performance Evalu-
ation Methodologies and Tools, ValueTools ’13, Torino, Italy,
December 10-12, 2013; pp. 194–203. ICST/ACM, New York,
USA (2013). https://​doi.​org/​10.​4108/​icst.​value​tools.​2013.​254408.

	 6.	 Hansson H, Jonsson B. A logic for reasoning about time and reli-
ability. Formal Aspects Comput. 1994;6(5):512–35.

	 7.	 Bérard B, Bidoit M, Finkel A, Laroussinie F, Petit A, Petrucci L,
Schnoebelen P, McKenzie P. Systems and software verification.
Cham: Model-Checking Techniques and Tools. Springer; 2001.

	 8.	 Bentahar J, Moulin B, Meyer JC. A new model checking approach
for verifying agent communication protocols. In: Proceedings of
the Canadian Conference on Electrical and Computer Engineer-
ing, CCECE 2006, May 7–10, 2006, Ottawa Congress Centre,
Ottawa, Canada, 2006; pp. 1586–1590. IEEE, Ottawa. https://​doi.​
org/​10.​1109/​CCECE.​2006.​277640.

	 9.	 Gallina L, Hamadou S, Marin A, Rossi S. A probabilistic energy-
aware model for mobile ad-hoc networks. In: Al-Begain K, Bal-
samo S, Fiems D, Marin A. editors. Analytical and stochastic
modeling techniques and applications—18th International Con-
ference, ASMTA 2011, Venice, Italy, June 20-22, 2011. Proceed-
ings. Lecture Notes in Computer Science, 2011; vol. 6751, pp.
316–330. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-​642-​
21713-5_​23.

	10.	 Gallina L, Marin A, Rossi S. Connectivity and energy-aware
preorders for mobile ad-hoc networks. Telecommun Syst.
2016;63(2):307–33. https://​doi.​org/​10.​1007/​s11235-​015-​0122-6.

	11.	 Rossi, S. Model checking adaptive multilevel service composi-
tions. In: Barbosa LS, Lumpe M. editors. Formal Aspects of Com-
ponent Software—7th International Workshop, FACS 2010, Gui-
marães, Portugal, October 14-16, 2010, Revised Selected Papers.
Lecture Notes in Computer Science, 2010; vol. 6921, pp. 106–124.
Springer, Cham. https://​doi.​org/​10.​1007/​978-3-​642-​27269-1_7.

	12.	 Bernardi G, Bugliesi M, Macedonio D, Rossi S. A theory of
adaptable contract-based service composition. In: Negru V,
Jebelean T, Petcu D, Zaharie D. editors. SYNASC 2008, 10th
International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, Timisoara, Romania, 26–29 September
2008, pp. 327–334. IEEE Computer Society, New York, USA,
2008. https://​doi.​org/​10.​1109/​SYNASC.​2008.​38.

	13.	 Bugliesi M, Macedonio D, Pino L, Rossi S. Compliance preor-
ders for web services. In: Laneve C, Su J. editors. Web Services
and Formal Methods, 6th International Workshop, WS-FM 2009,
Bologna, Italy, September 4–5, 2009, Revised Selected Papers.
Lecture Notes in Computer Science, 2009; vol. 6194, pp. 76–91.
Springer, Cham. https://​doi.​org/​10.​1007/​978-3-​642-​14458-5_5.

	14.	 Brim L, Ceska M, Safránek D. Model checking of biological
systems. In: Bernardo M, de Vink EP, Pierro AD, Wiklicky H.
editors. Formal methods for dynamical systems—13th Interna-
tional School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2013, Bertinoro,
Italy, June 17–22, 2013. Advanced Lectures. Lecture Notes in
Computer Science, 2013; vol. 7938, pp. 63–112. Springer, Cham.

	15.	 Benes N, Brim L, Pastva S, Safránek D. Model checking approach
to the analysis of biological systems. In: Liò P, Zuliani P, editors.
Automated reasoning for systems biology and medicine. Compu-
tational biology, vol. 30. Cham: Springer; 2019. p. 3–35.

	16.	 van Ditmarsch H, van der Hoek W, Halpern J, Kooi B, editors.
Handbook of epistemic logic. London: College Publications;
2015.

	17.	 Chen T, Primiero G, Raimondi F, Rungta N. A compu-
tationally grounded, weighted doxastic logic. Stud Log.
2016;104(4):679–703.

	18.	 Wan W, Bentahar J, Hamza AB. Model checking epistemic-proba-
bilistic logic using probabilistic interpreted systems. Knowl Based
Syst. 2013;50:279–95. https://​doi.​org/​10.​1016/j.​knosys.​2013.​06.​
017.

	19.	 Daws C. Symbolic and parametric model checking of discrete-
time Markov chains. In: Zhiming L, Araki K, editors. Theo-
retical aspects of computing—ICTAC 2004, First International
Colloquium, Guiyang, China, September 20–24, 2004, Revised
Selected Papers, vol. 3407. Lecture Notes in Computer Science.
Cham: Springer; 2004. p. 280–94.

	20.	 Baier C, Hensel C, Hutschenreiter L, Junges S, Katoen JP, Klein
J. Parametric Markov chains: PCTL complexity and fraction-free
gaussian elimination. Inf Comput. 2020;272: 104504. https://​doi.​
org/​10.​1016/j.​ic.​2019.​104504.

	21.	 Walley P. Statistical reasoning with imprecise probabilities. New
York: Chapman and Hall; 1991.

	22.	 Troffaes MCM, Skulj D. Model checking for imprecise markov
chains. In: Cozman F, Denoeux T, Destercke S, Seidenfeld T.
editors. ISIPTA ’13 : Proceedings of the Eighth International
Symposium on Imprecise Probability : Theories and Applica-
tions July 2–5 2013, Compiègne, France., pp. 337–344. Society
for Imprecise Probability: Theories and Applications (SIPTA),
Compiègne. 2013.

	23.	 Delgado KV, De Barros LN, Dias DB, Sanner S. Real-time
dynamic programming for Markov decision processes with impre-
cise probabilities. Artif Intell. 2016;230:192–223.

	24.	 Krak TE, T’Joens N, Bock JD. Hitting times and probabilities
for imprecise markov chains. In: Bock JD, de Campos CP, de
Cooman G, Quaeghebeur E, Wheeler GR, editors. International

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ic.2019.05.004
https://hdl.handle.net/1842/15027
https://doi.org/10.4108/icst.valuetools.2013.254408
https://doi.org/10.1109/CCECE.2006.277640
https://doi.org/10.1109/CCECE.2006.277640
https://doi.org/10.1007/978-3-642-21713-5_23
https://doi.org/10.1007/978-3-642-21713-5_23
https://doi.org/10.1007/s11235-015-0122-6
https://doi.org/10.1007/978-3-642-27269-1_7
https://doi.org/10.1109/SYNASC.2008.38
https://doi.org/10.1007/978-3-642-14458-5_5
https://doi.org/10.1016/j.knosys.2013.06.017
https://doi.org/10.1016/j.knosys.2013.06.017
https://doi.org/10.1016/j.ic.2019.104504
https://doi.org/10.1016/j.ic.2019.104504

SN Computer Science (2023) 4:443 	 Page 21 of 21  443

SN Computer Science

Symposium on Imprecise Probabilities: Theories and Applica-
tions, ISIPTA 2019, 3–6 July 2019, Thagaste, Ghent, Belgium,
vol. 103. Proceedings of Machine Learning Research. Ghent:
PMLR; 2019. p. 265–75.

	25.	 Termine A, Antonucci A, Facchini A, Primiero G. Robust model
checking with imprecise Markov reward models. In: International
Symposium on imprecise probabilities: theories and applications,
ISIPTA 2021, July 6–9 2021, Granada, Spain. Proceedings of
Machine Learning Research. PMLR, Granada; 2021.

	26.	 De Cooman G, De Bock J, Lopatatzidis S. Imprecise sto-
chastic processes in discrete time: global models, imprecise
Markov chains and ergodic theorems. Int J Approx Reason.
2016;76:18–46.

	27.	 T’Joens N, Krak TE, De Bock J, De Cooman G. A recursive algo-
rithm for computing inferences in imprecise markov chains. In:
Kern-Isberner G, Ognjanovic Z, editors. Symbolic and Quantita-
tive Approaches to Reasoning with Uncertainty, 15th European
Conference, ECSQARU 2019, Belgrade, Serbia, September
18–20, 2019, Proceedings, vol. 11726. Lecture Notes in Computer
Science. Cham: Springer; 2019. p. 455–65.

	28.	 Termine A, Antonucci A, Primiero G, Facchini A. Logic and
model checking by imprecise probabilistic interpreted systems. In:
European Conference on multi-agent systems, 2021; pp. 211–227.
Springer.

	29.	 Norris JR. Markov chains, vol. 2. Cambridge University Press;
1998.

	30.	 Mauá DD, de Campos CP, Benavoli A, Antonucci A. Probabilis-
tic inference in Credal networks: New complexity results. J Artif
Intell Res. 2014;50:603–37.

	31.	 Shafer G, Vovk V. Probability and finance: it’s only a game!, vol.
491. London: Wiley; 2005.

	32.	 T’Joens N, De Bock J. Global upper expectations for discrete-
time stochastic processes: in practice, they are all the same! In:
International Symposium on imprecise probability: theories and
applications, 2021; p. 310–319. PMLR.

	33.	 De Cooman G, Hermans F, Quaeghebeur E. Imprecise
Markov chains and their limit behavior. Probab Eng Inf Sci.
2009;23(4):597–635.

	34.	 De Cooman G, Hermans F. Imprecise probability trees:
bridging two theories of imprecise probability. Artif Intell.
2008;172(11):1400–27.

	35.	 Destercke S, Cooman Gd. Relating epistemic irrelevance to event
trees. In: Soft methods for handling variability and imprecision.
Cham: Springer, Cham; 2008, , p. 66–73.

	36.	 Hermans F, Škulj D. Stochastic processes. In: Augustin T., Coolen
FPA, De Cooman G, and Troffaes MCM, editors. Introduction to
imprecise probabilities. London: Wiley, 2014; p. 258–78.

	37.	 Miranda E, De Cooman G. Structural judgements. In: Augustin
T., Coolen F.P.A., De Cooman G., and Troffaes M.C.M. Introduc-
tion to imprecise probabilities. London: Wiley, Introduction to
imprecise probabilities, 2014; p. 56–78.

	38.	 Krak T, De Bock J, Siebes A. Imprecise continuous-time Markov
chains. Int J Approx Reason. 2017;88:452–528.

	39.	 Antonucci A, Huber D, Zaffalon M, Luginbühl P, Chapman I,
Ladouceur R. Credo: a military decision-support system based
on Credal networks. In: Proceedings of the 16th Conference on
Information Fusion (FUSION 2013), Istanbul, Turkey; 2013.

	40.	 Lomuscio A, Raimondi F. MCMAS: a model checker for multi-
agent systems. In: Hermanns H, Palsberg J, editors. Tools and
algorithms for the construction and analysis of systems, 12th
International Conference, TACAS 2006 Held as Part of the Joint
European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25–April 2, 2006, Pro-
ceedings, vol. 3920. Lecture Notes in Computer Science. Cham:
Springer; 2006. p. 450–4.

	41.	 McClean SI, McAlea B, Millard PH. Using a Markov reward
model to estimate spend-down costs for a geriatric department. J
Oper Res Soc. 1998;49(10):1021–5.

	42.	 Cardelli L, Grosu R, Larsen KG, Tribastone M, Tschaikowski
M, Vandin A. Lumpability for uncertain continuous-time markov
chains. In: International Conference on quantitative evaluation of
systems, Cham, 2021; p. 391–409. Springer.

	43.	 Sutton RS, Barto AG. Reinforcement learning—an introduction.
Adaptive computation and machine learning. Cambridge: MIT
Press; 1998.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Imprecise Probabilistic Model Checking for Stochastic Multi-agent Systems
	Abstract
	Introduction
	Markov Models
	Markov Chains
	Inferences in Markov Chains
	Markov Reward Models
	Probabilistic Interpreted Systems

	Imprecise Markov Models
	Imprecise Transition Matrices
	Imprecise Markov Chains
	Inference in Imprecise Markov Chains
	Imprecise Markov Reward Models
	Imprecise Probabilistic Interpreted Systems
	Imprecise Probabilistic Interpreted Reward Systems

	Epistemic Imprecise PRCTL
	EIPRCTL Syntax
	EIPRCTL Semantics
	Semantics of State-Formulae
	Semantics of Path-Formulae
	Semantics of Weighted-Belief Formulae

	Model Checking
	Parsing Tree
	Boolean Formulae
	Probabilistic Formulae
	Reward-Bounded Until

	Expected Reward Formulae
	Epistemic Formulae

	A Case Study on Healthcare Budgeting
	Conclusions
	Appendix A
	References

