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Abstract. Dementia is a very serious personal, medical and social prob-
lem. Early and accurate diagnoses seem to be the key to effectively cope
with it. This paper presents a diagnostic tool that couples the most
widely used computerized system of cognitive tests in dementia research,
the Cognitive Drug Research system, with the naive credal classifier. Al-
though the classifier is trained on an incomplete database, it provides
unmatched predictive performance and reliability. The tool also proves
to be very effective in discriminating between Alzheimer’s disease and de-
mentia with Lewy bodies, which is a problem on the frontier of research
on dementia.

1 Introduction

Dementia is becoming recognized to be one of the leading causes for concern
in the elderly, both from the perspective of their own quality of life and also
the social issues concerning the hugely growing costs of caring for the rapidly
growing population who require constant supervision and medical care [1,14].
The most important type of dementia is Alzheimer’s Disease (AD) accounting
for approximately 50% of all types of dementia. Vascular Dementia (VD) has
traditionally been considered the second most common cause of dementia (up to
20% of dementias, either alone, or in combination with AD). Dementia with Lewy
Bodies (DLB) is an only recently described type of dementia which is becoming
recognized to be the second most common single form of dementia accounting
for over 20% of all dementias [14]. It has previously often been misdiagnosed as
Alzheimer’s disease, as well as confused with schizophrenia. One of the major
problems confronting trials with DLB is the correct diagnose of the disorder [14,
23-25].

There is currently no cure for any dementia although three compounds from a
class of drug called anticholinesterases (galanthamine, rivastigmine and donepezil)

* (© Springer-Verlag



have been registered in various countries for the mild symptomatic relief of AD.
Current research is trying to early identify AD as the hope is that these com-
pounds may prove more effective in treating the early stages of dementia (often
termed “mild cognitive impairment”) and preventing rather than just reducing
symptoms [27]. The first clinical trial has just been completed showing that
rivastigmine can dramatically improve cognitive function in DLB [13].

Three major problems confront research in this field. On one hand, it is
questionable whether or not systems are sensitive enough to detect early stages
of dementia. On the other, it must still be confirmed whether or not tests are
capable of differentiating different types of dementia; and measures for assess-
ing therapeutic response to treatment must still be unequivocally determined.
In this paper we focus on the first two problems. By coupling the power of
emerging classification tools and the diagnostic capabilities of a well-targeted
system of cognitive tests, we propose an automated diagnostic system that deals
successfully with both problems.

As far as cognitive tests, we rely upon the Cognitive Drug Research (CDR)
computerized assessment system. This has been designed to provide a valid,
reliable and sensitive tool for assessing cognitive functions in dementia [2, 16,17,
20, 23-25, 28]. The system is the most widely used automated system in dementia
research [16] (see Sect. 2.1). We use a database describing the actual health
state and the past responses to the CDR system tests for about 3,400 patients
(Sect. 2.3). The data were not collected for the purpose of data mining, so they
are not completely accurate, presenting a substantial amount of missing values.
Missing data are recognized to be a fundamental problem in the machine learning
literature [4]; treating them properly is essential to draw reliable inferences.

These challenging issues motivated us to choose the classification model called
Nuaive Credal Classifier [30,31] (NCC, Sect. 2.2), a generalization of the well-
known discrete Naive Bayes Classifier (or NBC [6]) to sets of probability dis-
tributions [26]. The NCC is currently the only classifier that takes into account
the imprecision arising from prior uncertainty about the unknown distribution
generating the data; and it is also robust to all the possible mechanisms of
missingness. The robust Bayes classifier from Ramoni and Sebastiani presents
similarities in the treatment of missing data [18], although it appears to adopt
an overly conservative approach. Also, it neglects the former type of imprecision.

The characteristics of the new paradigm of credal classification enable the
NCC to automatically do reliable classifications. This is the first application of
credal classification to the field of dementia screening. We realize it by analyzing
the predictive behavior of the NCC by an empirical study on the database,
in Sect. 3. In doing this, we remarkably improve upon the diagnostic accuracy
described in similar past work [12], with up to 95% correct predictions. We
also show that the system is very effective in discriminating among dementias,
even between the two types currently only hardly distinguishable, AD and DLB.
Overall, we successfully deal with the problem of obtaining reliable inferences,
which is fundamental for the application domain under consideration and it is
also more critical given the incompleteness of the database.



2 Methods

2.1 The CDR system

The CDR system is a computer based system, the patient responding by using
a simple response box containing just a “yes” and “no” button for each test. It
takes between 25 and 40 minutes to administer the tests of the system, depending
on the level of dementia shown by the patients.

Results from the CDR system have encouraged the International Group
on Dementia Drug Guidelines to issue a position paper on assessing function
in future clinical trials [10]. The working group concluded that existing test-
ing procedures (e.g. the Alzheimer’s disease assessment scale) do not properly
identify all of the cognitive deficits suffered by AD patients, particularly atten-
tional deficits, and have recommended that automated procedures should be
used alongside more traditional ones to support them in this and to ultimately
determine whether they should supersede traditional methods [10]. The CDR
system has shown sensitivity in identifying mild cognitive impairment [17,27],
has been shown capable of differentiating various types of dementia (AD, DLB,
VD, Huntington’s Chorea; [2, 16,22-25]), of measuring therapeutic response to a
variety of medications in both AD [1,9,15,19,21] and DLB [13], and has shown
superior sensitivity in identifying AD and Huntington’s disease to all of the most
widely used non-automated procedures [16].

The CDR system is the most widely used automated system in clinical re-
search worldwide. Tt is used in almost every European country, North and South
America, Russia, South Africa, India, Australia and New Zealand. It is used in
hospitals, universities, private and government research facilities to study the ef-
fects of new medicines, ageing, disease, trauma, dementia as well as other factors
such as mobile phones, altitude and so on.

2.2 Credal Classification

Classification is a technique concerned with allocating new objects to a finite
set of previously defined groups (classes) on the basis of observations on several
characteristics of the objects, called attributes or features [7]. In the present
application, each test of the CDR system is an attribute of the problem the
values of which are the possible outcomes of the test. The class is the variable
the values of which are the possible states of dementia (including the state “no
dementia”).

Credal classification [30] is a new way of conceiving the task of prediction
that generalizes the common notion of classification: a credal classifier is defined
as a function that maps an instance of a set of features to a set of states of a
categorical class variable (a common classifier maps an instance of the features to
a single class). Classifiers are usually inferred from a database. A credal classifier
is a basis from which imprecision in the data can be taken into account, as
generated by unobserved or rare events, small sample sizes and missing data. As
a consequence, for a given state of the attributes, imprecision in the input may



prevent a single output class from being obtained; then the result of a credal
classifier is a set of classes, all of which are candidates to be the correct category.
That is, a credal classifier recognizes that the available knowledge may not suffice
to isolate a single class and thus gives rise to a set of alternatives. Reliability is
thus a concept intrinsic in the definition of credal classification.

It is easy to use a credal classifier for diagnostic purposes: in the present
case, the vector of responses to the CDR tests for a patient is mapped to a
set of possible states of dementia by the function represented by the classifier.
Credal classification is realized in this paper by the naive credal classifier [30].
The NCC is a special type of credal network [8,3] that generalizes the NBC.
It maintains the good properties of the naive Bayes classifier [5], but it relaxes
the assumption that the model probabilities be precise. Most importantly, it can
easily and robustly be inferred from possibly small and incomplete data sets [31].
In particular, an incomplete data set is regarded as a collection of complete data
sets that arises by considering all the possible replacements of the missing data
with admissible values [29]. The NCC is inferred by considering the collection as
a set of possible samples, so that the NCC inferences are robust to each possible
mechanism of missing data. This is equivalent to considering many probability
distributions be plausible given the data and to treat all of them together as a
set of possible distributions, as it is common in the field of imprecise probabilities
[26]. A set of distributions gives rise to a set of output classes in general, given
an instance of the attributes, thus realizing a credal classifier.

2.3 The Database

The database is constituted by 3,385 records. Each record stores the responses to
the CDR system tests for a patient. The results are expressed by either contin-
uous or integer numbers. Each record also reports the actual health state of the
patient, which is classified into 5 categories: normal, AD, to undergo Coronary
Bypass Surgery (CBS), DLB and VD. Table 1 shows the percentages of patients
in each class.

Table 1. Percentual distribution of the classes in the database.

Normal AD CBS DLB VD
Percentage 67.4% 22.9% 2.4% 3.9% 3.4%

The tests are carried out in different ways according to the state of the
patient. This leads to the presence of more features for the dementia patients
than for the normal controls. Seven attributes are used when normal people are
involved in the study (the number in parentheses is the percentage of missing
values): delayed word recognition reaction time (6.4%), delayed word recognition
sensitivity index (5.6%), digit vigilance false alarms (4.3%), digit vigilance re-
action time (3.3%), digit vigilance accuracy (3.3%), choice reaction time (1.6%)
and choice reaction time accuracy (1%). The choice reaction time is obtained



as follows: either the word “no” or the word “yes” is presented on the monitor
and the patient is instructed to press the corresponding button as quickly as
possible. There are 20 trials for which each stimulus word is chosen randomly
with equal probability and there is a varying inter-stimulus interval. We do not
describe here how all other measures are obtained. The interested reader can
consult the related references.

The above attributes are used in the first analysis (Sect. 3.2). The second
analysis (Sect. 3.3) is based on the 1,103 units of the database restricted to the
dementia group. In the second analysis we have included 18 attributes (the num-
ber in parentheses is the percentage of missing values): digit vigilance reaction
time (4.6%), numeric working memory reaction time (3.9%), numeric working
memory original stimuli accuracy (3.9), numeric working memory new stimuli
accuracy (3.9%), numeric working memory sensitivity index (3.9), digit vigilance
accuracy (3.5%), picture recognition speed (2.3%), picture recognition original
stimuli accuracy (2.3%), picture recognition new stimuli accuracy (2.3%), pic-
ture recognition sensitivity index (2.3%), delayed word recognition reaction time
(2.1%), delayed word recognition original stimuli accuracy (2.1%), delayed word
recognition new stimuli accuracy (2.1%), delayed word recognition sensitivity
index (2.1%), choice reaction time (1.5%), choice reaction time accuracy (1.5%),
simple reaction time (1.1%) and age (0.2%).

3 Experiments

3.1 Experimental Methodology

The database was randomly split into a learning set and a test set. The learning
set was used to infer the classifier; its size being fixed at 50% of the database
size. On the remaining 50% of cases, i.e. the test set, the true classes were hidden
to the classifier in order to study its predictive accuracy, i.e. the relative number
of correct guesses on a set of unseen units.

As far as the NCC, it can have different degrees of caution expressed by the
real parameter s [31]. The parameter plays a role analogous to the weight given
to the prior in Bayesian models. This study uses s = 1. Further, since the NCC
assumes that the attributes are categorical, the database was initially discretized
by MLC++ [11], default options. The discretization was made on the basis of
the learning set only.

The empirical analysis of the NCC benefits from comparing it with the NBC
[31]. Several NBCs are considered, related to the Bayesian prior distribution
chosen to infer them. We consider four well-known so-called noninformative pri-
ors: Haldane, Uniform, Perks and Jeffreys. We also consider other three priors
obtained by modifying some of the former. In this case the original priors are re-
quired to satisfy the structural constraints implied by the special classifier under
consideration. These priors are called: Uniform’, Perks’ and Jeffreys’ (see [31] for
a thorough explanation). The Bayesian classifiers were inferred by discarding,
separately for each attribute, the missing values (this is possible since the NBC
assumes independence of the attributes conditional on the class).



3.2 Detecting Dementia

In the first experiment the goal is to distinguish normal people from people in the
dementia group. Dementias are clustered into one class so that the class variable
is binary with values in: normal group (67.4%) and dementia group (32.6%).
There are 7 attributes describing a patient, as reported in Sect. 2.3. The results
of the experiment are shown in Tab. 2. Each row in the table refers to a different

Table 2. Results of the discrimination between normal people and people in the de-
mentia group. A value in a cell is expressed as a percentual number + its standard
deviation.

C1% N% Ns% S%
Haldane 94.7740.57 92.5940.64 72.22+3.89 9.68+0.72
Perks 94.771+0.57 92.2940.65 69.14+4.02 9.68+0.72
Perks’  94.7740.57 92.41+0.65 70.3743.97 9.68+0.72
Uniform 94.77+0.57 92.41£0.65 70.37£3.97 9.68+0.72
Uniform’ 94.7740.57 92.47+0.65 70.99+3.95 9.68+0.72
Jeffreys 94.77+0.57 92.41£0.65 70.37£3.97 9.68+0.72
Jeffreys’ 94.7740.57 92.47+0.65 70.9943.95 9.68+0.72

prior distribution for the NBC. The columns are described below. Bear in mind
that the predictive accuracy is the relative number of correct guesses.

— C1% is the accuracy of the NCC on the subset of instances where it is possible
to provide a single class according to the NCC.

— N% is the accuracy of the NBC on the entire test set.

— Ns% is the accuracy of the NBC on the subset of instances for which the
NCC outputs more than one class.

— S% is the percentage of instances for which the NCC outputs more than one
class.

Discussion. When the credal classifier isolates a single class, it has a very high
accuracy of prediction (C1%). In about 10% of cases (S%), it suggests that there
is not enough knowledge to isolate a single class and it outputs both, thus not
giving any judgment. Note that on this subset all the Bayesian models have a
much worse prediction (Ns%) than that of the NCC. For this reason the accuracy
of the NBCs on the entire test set (N%) is worse than that of the NCC.

The NCC is thus able to isolate a subset of units where robust predictions
are possible (despite the missing data). Note that the NBCs realize non-random
predictions on the subset of instances where the NCC does not provide any
judgment: the NBCs achieve about 70% accuracy that is greater than the 50%
accuracy that would be obtained by randomly guessing (recall that the class is
binary). This effect is due to the finiteness of the sample and does not mean
that the NBCs should be applied on the subset related to S% [31]. Instead, this



may suggest that the data remarkably violate the assumption of independence
between attributes conditional on the class—that is made both by the NCC and
the NBC—and that it might be worth trying more structured credal classifiers.

3.3 Discriminating among Dementias

In the second analysis the goal is to assign a diseased patient to the correct
disease type. The class takes values in the set of 4 dementias reported in Sect.
2.3, which also reports the 18 attributes used. The results are in Tab. 3. As

Table 3. Results of the discrimination among dementias.

C1% Cs% N% Ns% S% Z
Haldane 94.05+1.01 98.2841.20 91.7941.17 83.62+3.40 21.64+1.76 2.164+0.43
Perks 94.05+1.01 98.4341.10 89.7641.30 75.5943.81 23.22+1.81 2.31£0.66
Perks’ 94.05+1.01 98.4341.10 90.8641.23 80.3143.53 23.22+1.81 2.31£0.66
Uniform 94.05+1.01 98.434+1.10 90.86+1.23 80.31+3.53 23.22+1.81 2.314+0.66
Uniform’ 94.05+1.01 98.43+1.10 91.22+1.21 81.89+3.42 23.22+1.81 2.3140.66
Jeffreys 94.054+1.01 98.43+1.10 89.584+1.31 74.80+3.85 23.2241.81 2.31+0.66
Jeffreys' 94.05+1.01 98.43+1.10 91.044+1.22 81.104+3.47 23.22+1.81 2.31+£0.66

before, the rows of the table refer to different NBCs. (The statistics related to
Haldane’s prior were computed on the 98% of units only, because, since it is an
improper prior, the NBC classification was undefined in the remaining 2% of
cases.) There are two more columns with respect to Tab. 2:

— Cs% is the empirical probability that the actual class belongs to the set of
classes proposed by the NCC. This measure is computed when the output
set of the NCC is made by two classes at least;

— Z is the average number of classes proposed by the NCC. This measure is
computed when the output set of the NCC is made by two classes at least.

Discussion. Again, we see that the performance of the credal classifier is very
good when it isolates a single class (C1%). When it outputs more than one class,
there are about 2 on average (Z); and the probability that the actual class belongs
to such a set is very high (Cs%). This happens about 1 time out of 4 (S%). The
values of S% are larger than those in Tab. 2 because now the learning set size
is about 1/3 of the learning set of the first experiment and because there are
more attributes; larger collections of data, or less missing values, would quickly
decrease this type of indeterminacy. The considerations related to the columns
N% and Ns% are similar to the case of the preceding experiment.

In order to better analyze the capability of the credal classifier to assign a
patient to the actual class, we represent the confusion matriz in Tab. 4. We
restrict attention to the 76.88% of units where the NCC suggested only one
class. The cells of the confusion matrix report the empirical probabilities of the



pairs of random variables representing the predicted class and the actual class,
respectively, as computed from the test set: e.g. the empirical joint probability
that the class predicted by the NCC is AD and the actual class is AD is 0.7571.

The confusion matrix shows that the NCC performance to assign patients
to actual classes is excellent: for instance given that the NCC has predicted
Alzheimer’s disease, there is only a small probability that the actual disease is
VD and zero probability that it is DBL or CBS. This outcome is similar for the
other dementias. Most importantly, the confusion matrix shows that the NCC
discriminates between AD and DLB very well. This is a very important result for
research on dementias: DLB has frequently been misdiagnosed with AD. Here
we show that the CDR system is capable of distinguishing them and that it is
even possible to do this automatically by means of the NCC.

Table 4. Confusion matrix. The boldface values are percentages related to correct
predictions.

Predicted class
AD CBS DLB VD
AD 75.710.71 0.24 0.00
Actual class CBS 0.00 8.100.00 0.00
DLB 0.00 0.48 5.95 1.90
VD 095 0.00 1.67 4.29

4 Conclusions

Cognitive tests for dementias are getting more and more important, as early
diagnosis seems to be the basis for coping successfully with the diseases. This
paper shows that coupling targeted cognitive tests such as the CDR comput-
erized system with a reliable classifier such as the NCC, enables very accurate
diagnoses to be automatically made. A particularly successful feature of the
overall system described in this paper is the capability to discriminate between
Alzheimer’s disease and dementia with Lewy bodies. This is particularly impor-
tant, as non-automated and non-computerized diagnoses often have problems in
detecting the subtle differences in symptoms linked to the two disease types.

Diagnoses have also been shown to be robust to a non-negligible number of
missing values in the database. This result is due to the powerful characteristics
of credal classification, which is applied to such an important domain for the
first time. The NCC enabled the difficult problem of the incomplete database to
be dealt with easily and robustly.

However, the imprecision resulting from the missing data did result in less
precise inferences. Future data sets with less missing values will reduce the inde-
terminacies in the predicted classes, and thus enable the demonstrated predictive
capability of the method to be realized in all instances.
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