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Abstract
This paper addresses the following question: how should
we update our beliefs after observing some incomplete
data, in order to make credible predictions about new, and
possibly incomplete, data? There may be several answers
to this question according to the model of the process that
creates the incompleteness. This paper develops a rigor-
ous modelling framework that makes it clear the condi-
tions that justify the different answers; and, on this basis,
it derives a new conditioning rule for predictive inference
to be used in a wide range of states of knowledge about the
incompleteness process, including near-ignorance, which,
surprisingly, does not seem to have received attention so
far. Such a case is instead particularly important, as mod-
elling incompleteness processes can be highly impractical,
and because there are limitations to statistical inference
with incomplete data: it is generally not possible to learn
how incompleteness processes work by using the available
data; and it may not be possible, as the paper shows, to
measure empirically the quality of the predictions. Yet,
these depend heavily on the assumptions made.

Keywords. Predictive inference, statistical inference, in-
complete data, missing data, conservative inference rule,
imprecise probability, conditioning, classification, data
mining.

1 Introduction

Suppose you are given a multivariate set made of N + 1
units of categorical data. Each unit is categorized accord-
ing to some attribute variables and a class variable. The
data set is incomplete, in the sense that there are missing
values, or, more generally, the data set can be regarded as
a collection of complete data sets. You want to predict the
(probability of the) class of the (N +1)-th unit in the data
set, such a class being missing. How can you do it?
There are two basic components in the sketched problem:
a process that produces complete data, which are not ob-
servable, and another that turns complete into incomplete,

and observable, data, namely, an incompleteness process1

(IP). Statistically speaking, these are fundamentally dif-
ferent processes: the data may help us learn about the for-
mer, but they generally do not help with respect to the lat-
ter. Therefore, we may not be able to test our assumptions
about the IP, but nevertheless our inferences rely heavily
on the specific assumptions that we make about it. This
suggests that we should model the IP carefully, by dis-
cussing in particular the assumptions underlying each ap-
proach.
The most popular approach to incomplete data in the liter-
ature and in the statistical practice is based on the so-called
coarsening-at-random assumption (or CAR [3]); this is
called missing at random (or MAR [5]) in the special case
of missing data. Consider the latter case, for the sake of
explanation. MAR allows missing data to be treated in a
relatively simple way: they can be neglected or replaced
by specific values, thus turning the incomplete data prob-
lem into one of complete data. But CAR/MAR embodies
the idea that the incompleteness process is not selective,
which is something widely recognized to definitely narrow
the scope of such an assumption in applications (see in par-
ticular [4] on this point). Other approaches are also used:
some treat the symbol of missing value as another possi-
ble value; imprecise-probability minded methods often re-
gard incomplete data as set-based data, yielding set-based
predictions and lower and upper probabilities and expec-
tations [6, 8, 12]. Criteria to select one approach among
those mentioned do not always appear to be clear. The
situation is further complicated by the fact that the several
methods proposed may treat the (N+1)-th unit of the data
set is a different way from the rest. The focus of the meth-
ods is typically on the first N units, the so-called learning
set, while the possible incompleteness of the (N + 1)-th
unit (the so-called unit to classify, in terms of pattern clas-
sification) due to missing attribute values, is often dealt
with the traditional conditioning rule that simply neglects

1This paper uses the word ‘process’ rather than the more common
‘mechanism’, as the latter seems to be misleading: it is often humans
who create the incompleteness, or other complex entities that are not
mechanisms in a proper sense.



such missing values after the conditioning bar.
This state of affairs is particularly unfortunate as incom-
pleteness of data is pervasive of real applications, and im-
proper treatments of incomplete data may yield highly
misleading conclusions, defeating the efforts taken in
modelling the process generating complete data.
This paper is an attempt to provide a rigorous approach
to incomplete data, while providing a general, credible,
and flexible tool that generalizes predictive inference to
such an important case. It does so by following a top-
down approach. Initially, Section 2 states assumptions
that formalize the overall process producing the data in
a very general way. The assumptions logically lead to a
predictive inference rule for incomplete data, called con-
servative inference rule (CIR). This can be regarded as a
new type of conditioning, which generalizes both the tra-
ditional conditioning rule and the conservative updating
rule [2]. The latter has been recently proposed to address
the case of near-ignorance about the IP in the context of
expert systems. CIR generalizes the conservative updating
rule firstly to statistical inference, which involves learning
a model from data, rather than being given a model; and
also to more general states of knowledge about the IP, in-
cluding near-ignorance, but also up to knowing that the IP
is not selective. Surprisingly, CIR seems to be the first pro-
posal to address the near-ignorance case in the statistical
setting, despite its theoretical and practical importance.
Section 3 strengthens the assumptions stated previously,
by assuming that the process producing complete data is
independently and identically distributed (IID) and that the
IP is independently distributed (ID). The new assumptions
are shown to yield CIR again. Section 5 discusses whether
the IP should be assumed to be also identically distributed.
While it shows that it is exactly the IID assumptions for the
IP that provides a justification to treating the missing data
symbol as another value, it argues that such an assumption
is strong and hence not often tenable in practice.
Overall, the results show that the conservative inference
rule is suited to be applied to a very wide range of situa-
tions. In achieving this, the paper also yields a framework
that permits to clearly sort out the existing approaches pro-
posed for incomplete data, according to the assumptions
that underlie them. Two further conclusions of the paper
are worth mentioning. First, the developed framework al-
lows an old controversial question to be clarified in Sec-
tion 4: how should we treat data that are completely unob-
served? Second, Section 6 argues that in many real cases
it is not possible to measure empirically the accuracy of
the predictive inferences with incomplete data. This ap-
pears to be a further limitation of statistical inference with
incomplete data that, again, suggests using care in mod-
elling the IP.

2 Predictive Inference in a General Setting

This section considers a very general process that gener-
ates complete data, that is not assumed to be IID, and a
very general model for the IP. This is regarded as a mix of
two processes, one that is nearly unknown and a CAR one.
The basic modelling units are introduced in Section 2.1.
Section 2.2 states all the needed assumptions, which are
discussed in Section 2.3, and re-worked in Section 2.4. Fi-
nally, Section 2.5 derives the conservative inference rule.

2.1 Sets and Variables

Consider a finite set C, called set of classes and two fi-
nite sets, X and X̂, called sets of attributes. They are also
referred to more generically as sets of complete, or ideal,
observations. Let D := C× X (the symbol ‘:=’ denotes a
definition). Also, consider a statistical random parameter
θ taking generic value ϑ from the continuous set Θ.2

Consider the so-called ideal variables Ci, Xi, Di :=
(Ci, Xi), and X̂i, i = 1, . . . , N + 1, taking values in
the sets C, X, D, and X̂, respectively. Generic val-
ues of Ci, Xi, Di, and X̂i, are denoted by ci, xi,
di, and x̂i, respectively. The convention to denote
generic values of variables and their domain by the cor-
responding small, resp. script capital, letters is main-
tained throughout the paper. Also, to simplify nota-
tion, we denote M := N + 1 and often group vari-
ables into vectors. For the moment, consider the follow-
ing ones:3

C
- := (C1, . . . , CN ), C

+ := (C1, . . . , CM ),
X

- := (X1, . . . , XN ), X
+ := (X1, . . . , XM ), X̂

-
:=

(X̂1, . . . , X̂N ), X̂
+
:= (X̂1, . . . , X̂M ). Let also D

- :=
(D1, . . . , DN ), D

+ := (D1, . . . , DM ), D := (C -,X+).
Observe that d

- ∈ D
- ⊆ DN , d

+ ∈ D
+ ⊆ DM ,

d ∈D ⊆ DN × X, x̂
- ∈ X̂

-
⊆ X̂N , and x̂

+ ∈ X̂
+
⊆ X̂M .

The focus of our interest in this paper is on the random
matrix

(D+, X̂
+
) =



























C1 X1 X̂1
C2 X2 X̂2
...

...
...

Ci Xi X̂i

...
...

...
CN XN X̂N

CM XM X̂M



























.

2Θ can be also countable. In this case the integrals in the following
should be replaced by summations.

3Informally speaking, the vectors with empty superscript refer to the
entire block of data that one usually has, i.e., the learning sample together
with the attributes of the unit to classify; the superscript ‘-’ refers to the
entire block of data minus the attributes of the unit to classify (i.e., to the
first N units, the so-called learning sample); and the superscript ‘+’ refers
to the entire block of data plus the class of the unit to classify (i.e., to the
first N + 1 units).



Realizations of (D+, X̂
+
) represent the possible complete

data sets, which we cannot observe directly. Note that
realizations of (D-, X̂

-
) represent the possible complete

learning sets, while those of (XM , X̂M ) represent the pos-
sible complete observations to classify.
Now assume that, besides the ideal variables, there are ac-
tual variables. Actual variables represent observations of
ideal variables (and so they will always be denoted us-
ing the letter O), in the sense that we can be informed
about ideal variables only indirectly through actual vari-
ables. Each actual variable refers to a specific ideal vari-
able. We will use frequently the following actual variables:
O

-, O
+, O , Ô

-
, Ô

+
, OCM

, which denote the observations
of D

-, D
+, D , X̂

-
, X̂

+
, and CM , respectively. Actual

variables always take values in the powerset of the possi-
bility space for the related ideal variables. With reference
to the above variables, we have that o

- ∈ O
- ⊆ ℘(D-),

o
+ ∈ O

+ ⊆ ℘(D+), o ∈ O ⊆ ℘(D- × X), ô
- ∈ Ô

-
⊆

℘(X̂
-
), and ô

+ ∈ Ô
+
⊆ ℘(X̂

+
). The possibility spaces of

the actual variables are called sets of actual, or incomplete,
observations.
In other words, the realizations of actual variables model
set-based observations. For example, the realizations of
(O+, Ô

+
) represent the possible incomplete data sets that

we can observe, intended as sets of complete data sets, and
those of (O-, Ô

-
) represent the possible incomplete learn-

ing sets that we can observe.
It is important to understand from the very beginning that
actual observations play a double role. For instance, o

+

can be regarded as a set of observations of D
+, but when

o
+ is interpreted as a value of O

+, it is only a symbol of the
alphabet O

+.

2.2 Measures and Assumptions

We assume that the joint density over the variables of in-
terest is expressed by the following relation:

p(θ,D+, X̂
+
,O+, Ô

+
) =

= p(θ)p(D+, X̂
+
|θ)p(O+|D+)p(Ô

+
|X̂

+
). (1)

Here p(θ) is an imprecise prior density for θ, in the sense
that p(θ) is known to belong to P(θ), which is a non-empty
set of precise prior densities for θ. [The assumptions in
this section should be intended for all p(θ) ∈ P(θ), when
it is the case.] p(D+, X̂

+
|θ) is a sampling model. Together,

they are required to satisfy a technical condition of posi-
tivity:

p(D+, X̂
+
) > 0. (2)

The conditional mass functions p(O+|D+) and p(Ô
+
|X̂

+
)

represent independent incompleteness processes that act
on different parts of the data. The first is called the un-
known IP, and the second is the CAR IP, for reasons that
will become clear shortly after. Note that the factorization
of the density implies that the IPs depend on the complete

data and do not depend on the random parameter θ, which
is a way to express that the generation of actual data is
made of two serial steps. A technical condition about the
IPs is that the specific incomplete data observed can be
practically observed:

p(o+, ô+) > 0. (3)

More substantially, the IPs are assumed to be truthful, or
perfect, in the following sense:

p(o+|d+) = 0 if d
+ /∈ o

+ and p(ô+|x̂+) = 0 if x̂
+ /∈ ô

+.
(4)

Note that this assumptions is basically what connects ideal
with actual observations. The assumption may be perhaps
made clearer by using a metaphor, in which the IPs are
regarded as vision devices that may vary the focus on an
(ideal) object that we want to see. When they produce sin-
gletons, they are perfectly in focus; when they produce the
entire set of possible ideal observations, the devices are
totally out of focus and we cannot see anything. All the
intermediate states are also possible. But whatever their
state, being truthful implies that they must point to the ob-
ject of our interest, i.e., they cannot exclude it from our
view.
The process p(Ô

+
|X̂

+
) is assumed, in addition, not to be

selective (or malicious), in the sense that it acts as a CAR
process on ideal observations:

p(ô+|x̂+) = α ∀x̂+ ∈ ô
+, (5)

where α is a positive constant. This condition is the most
frequently imposed on IPs in the literature.
Finally, consider two additional assumptions that are spe-
cific to predictive problems, and that concern the unknown
IP. The first states that there is no way to observe directly
the value of the variable to predict, i.e., CM :

p(OCM
= C) = 1. (6)

The second states that the incompleteness process
p(O+|D+) does not directly depend on the variable to pre-
dict:

p(O+|D+) = p(O+|D). (7)

This is an important assumption for the following devel-
opment. It embodies the idea that unknown IP generates
incompleteness without knowledge of CM .
The next section does some additional discussion about the
important assumption (5) and (7). For the moment, note
that nothing else is assumed about the IPs. This means, in
particular, that we are nearly ignorant about p(O+|D+), on
which we have stated weak assumptions only.

2.3 Assumptions Discussed

This section discusses more widely Assumptions (5)
and (7). The other assumptions are very weak and rela-
tively easy to accept. Assumption (4) may be an exception



as it makes sense to consider IPs that are imperfect, or that
can lie, but this is out of the scope of the present paper.
Let us start with Assumption (5). This models a process
that does not coarsen ideal data with a specific purpose.
Assumption (5) excludes in this way many common and
important processes. Consider the medical domain, for
example, focusing on a diagnostic application. The ideal
attribute variables in this case might describe information
about a patient, such as gender, age, life style, and also the
results of medical tests. The classes would represent the
possible diseases. The IP in this case (at least part of it) is
often originated by the interaction between the doctor and
the patient themselves: indeed, there exists usually a sys-
tematic bias in reporting, and asking for, symptoms that
are present instead of symptoms that are absent; and a bias
to report, and ask for, urgent symptoms over the others [7].
Furthermore, a doctor typically prescribes only a subset of
the possible diagnostic tests, according to personal views
and cost/benefit criteria.4 Overall, the process described is
non-CAR by definition, because the incompleteness arises
following patterns that do depend on the specific values of
the ideal variables.
Descriptions such as the one above support the idea that
CAR is strong by means of informal arguments. But also
on the formal level, recent research has shown in a specific
sense that CAR appears to be the exception rather than the
rule in practice [4]. This should be taken into account in
order to put CAR in a more balanced perspective, espe-
cially with regard to its very frequent use. This is not to say
that CAR should be rejected a priori, as there are situations
when CAR is completely justified. Consider one notable
example: the case when we know that X̂i is missing for
any i. In this case the related IP clearly satisfies MAR: the
probability of observing Ô

+
= X̂M is one, irrespectively

of the value of X̂
+
. More broadly speaking, MAR holds

when some data are lost in an unintentional way. In these
cases, not assuming MAR would lead to results much too
weak. The CAR IP in the modelling framework presented
in Section 2.2 is designed just to account for these situa-
tions. In other words, it is designed to provide one with
some flexibility in stating the available knowledge about
a domain, without having to adopt necessarily a worst-
case approach (as opposed to the best case embodied by
CAR/MAR), of the kind of the unknown IP.
Indeed, the unknown IP is designed so as to model one’s
ignorance about an incompleteness process. Let us first re-
mark that it makes sense to adopt a conservative approach
to model IPs in practice, for two specific reasons: first,

4This may perhaps clarify the reason why we will hardly get ever rid
of incomplete data: often, incompleteness does not happen by mistake,
rather, it is generated deliberately. In these cases it actually represents
patterns of knowledge (indeed, one could say what disease a patient was,
or was not, suspected to have by only looking at the medical tests that
a doctor did, and did not, prescribed). In this sense, it seems that in-
completeness is doomed to be deeply rooted to many, if not most, real
problems; as such, it appears to be a fundamental, and indissoluble, com-
ponent of uncertain reasoning, rather than a mere accident.

IPs may be very difficult processes to model. They are
a special case of observational processes, which are of-
ten originated by human-to-human interaction, or by other
complex factors; they can actually be regarded as the result
of a communication protocol. The medical example above
is intended to illustrate just this, also if it is not saying any-
thing new: the difficulty in modelling IPs has been pointed
out strongly already long ago [11, 4]. But IPs are difficult
objects to handle also for a second reason: IP models can
be tightly dependent on specific situations. Re-consider
the medical example: different doctors typically do differ-
ent questions to diagnose a disease, even in the same hos-
pital. By changing hospital, one can find entirely differ-
ent procedures to diagnose the same disease, as the proce-
dures depend on the local culture, on the money available
to make the tests, and which ones, or the local time con-
straints. In other words, even if one is able to model an IP
for a specific situation, that model may no longer be realis-
tic when another doctor is in charge of doing the diagnosis,
or when one tries to apply the IP model to another hospital,
perhaps in another country. In summary, modelling the IP
(especially in a precise way) may present serious practical
difficulties, as, in contrast with domain knowledge (e.g.,
medical knowledge), the way information can be accessed
may well depend on the particular environment where a
system will be used; and this means that models of the IP
may not be easily re-usable, and may therefore be costly.
These arguments support considering a conservative ap-
proach to model the IP that can be effectively imple-
mented, and this is the reason for introducing the unknown
IP in Section 2.2. As a side remark, note that the unknown
IP is only nearly unknown, especially because we require
that (7) holds. On the other hand, observe that by dropping
it we could only draw vacuous conclusions about CM . To
see this, suppose that you want to predict the probability of
CM = cM given a certain incomplete observation o (as-
sume, to make things easier, that there is no CAR IP). In
these conditions, and without assuming (7), we could not
exclude that the IP produces o if and only if CM 6= cM ,
so that the probability of CM = cM is zero. In the same
way, we could not exclude that the IP produces o if and
only if CM = cM , so that the probability of CM = cM is
one. Of course also all the intermediate randomized cases
would be possible, so that the probability would be always
vacuous. This is to emphasize, perhaps not surprisingly,
that complete ignorance about an IP is not consistent with
the possibility to draw useful conclusions.
Having said this, it is still useful to wonder whether (7)
is reasonable in the present setup. To this ex-
tent, let us re-write (7) in a somewhat more natural
form thanks to Bayes’ rule, Assumptions (2) and (6):
p(CM |O ,D)p(O|D) = p(CM |D)p(O |D). Focusing
now only on pairs (O,D) that are practically possible,
Assumption (7) looks finally as follows: p(CM |O,D) =
p(CM |D). This means to assume that when we know the



complete data D , knowing in addition the incomplete data
O that are produced from them, is completely superfluous
to predict the class. In the latest form, in other words,
Assumption (7) appears to be nothing else but the precise
characterization of the problems of incomplete or miss-
ing data: these problems are characterized by the fact that
when something that can be missing is actually measured,
the problem of missing data disappears. It this were not
the case, the observation O would not only carry infor-
mation about CM via its implications on D , but it would
say something about CM also on its own. This does not
look like a problem of missing, or incomplete, data, rather
it appears to be a modelling issue: the actual observations
that could be produced from D should be better modelled
as further attributes that are relevant to predict the class,
for instance by including the symbol of missing value in
the set of ideal attributes, and treating it accordingly {see
Reference [2] for further discussion about (7)}.

2.4 Assumptions Revisited

This section re-formulates some of the assumptions stated
in Section 2.2, in a form that is more suitable for the sub-
sequent derivations.

Lemma 1. Assumptions (1)– (4) imply the following ones:

p(θ,D+, X̂
+
,O+, Ô

+
) =

p(θ)p(D+, X̂
+
|θ)p(O|D)p(Ô

+
|X̂

+
) (8)

p(D, X̂
+
) > 0 (9)

p(o, ô+) > 0 (10)
p(o|d) = 0 if d /∈ o and p(ô+|x̂+) = 0 if x̂

+ /∈ ô
+. (11)

Proof. First, consider p(O+|D+). This is equal to
p(O+|D) thanks to (7). It follows by (6) that p(O+|D) =
p(OCM

= C,O |D) = p(O|D), whence p(O+|D+) =
p(O|D). Whence (1) implies (8).
Assumption (9) is an immediate consequence of Assump-
tion (2).
Now observe that O

+ = (oCM
, o) if and only if O = o,

again by (6). Thus p(o+, ô+) = p(o, ô+), and (10) fol-
lows from (3). Note that, also taking into account (5),
Condition (10) implies that there exists d ∈ o such that
p(o|d) > 0.
Finally, consider p(o+|d+). Write it as p(oCM

,o|cM ,d).
This is equal to p(oCM

,o|d) by (7), and then to p(o|d)
by (6). Note also that since oCM

= C, (cM ,d) /∈ (oCM
,o)

if and only if d /∈ o. Whence Assumption (4) im-
plies (11).

2.5 Derivation

In order to formulate the predictive problem in a suffi-
ciently general way, let us focus on the problem of up-
dating beliefs about a generic function g : C → R, to

posterior beliefs conditional on (o+, ô+). If the prior den-
sity on θ and the incompleteness processes were precisely
known, we would update beliefs on g by computing the
following expectation:

E(g|o+, ô+) = E(g|o, ô+) =

=

∑

cM∈C
g(cM )p(cM ,o, ô+)

∑

cM∈C
p(cM ,o, ô+)

.

Note that E(g|o+, ô+) is well defined as p(o, ô+) > 0 by
Assumption (10). The following lemma provides a more
explicit form for E(g|o+, ô+).

Lemma 2.

E(g|o+, ô+) =
∑

d∈o
p(o|d)

∑

cM∈C
g(cM )p(cM ,d, x̂+ ∈ ô

+)
∑

d∈o
p(o|d)p(d, x̂+ ∈ ô

+)
=

= E(g|o, x̂+ ∈ ô
+).

Proof. By focusing on p(cM ,o, ô+), it follows that

p(cM ,o, ô+) =
∑

d∈o

∑

x̂
+∈ô

+

∫

Θ

p(ϑ, cM ,d, x̂+,o, ô+)dϑ =

∑

d∈o

∫

Θ

p(ϑ)
∑

x̂
+∈ô

+

p(cM ,d, x̂+|ϑ)p(o|d)p(ô+|x̂+)dϑ

= α
∑

d∈o

p(o|d)p(cM ,d, x̂+ ∈ ô
+),

where the sums are over d ∈ o resp. x̂
+ ∈ ô

+ thanks
to (11), the second passage is due to (8), and the last to (5).
The statement of the lemma is an immediate consequence
of the expression derived.

In order to extend the analysis done so far to the imprecise
case, we need first to express our knowledge about p(o|d).
This is done by Assumptions (10) and (11). These lead to
the linear inequalities

{
∑

d∈o
p(o|d) > 0

0 ≤ p(o|d) ≤ 1, d ∈ o,

which define an open linear set called P(o|D). The ele-
ments of this set are vectors, denoted by p(o|D), whose
elements are p(o|d), d ∈ o. Note the restriction on
d ∈ o, which is just the way to embody Assumption (11);
also, note that the set P(o|D) is not a singleton in gen-
eral, as a logical consequence of our ignorance about the
unknown IP. In the following we approximate P(o|D) by
the closed set Pε(o|D) defined by

{
∑

d∈o
p(o|d) ≥ ε

0 ≤ p(o|d) ≤ 1, d ∈ o,

for an ε in the real interval (0, 1].
We are now in the conditions to write the objective of our



interest in the imprecise case, which is the following lower
expectation:5

E(g|o+, ô+) =

= inf
p(θ)∈P(θ)

inf
p(o|D)∈P(o|D)

E(g|o, x̂+ ∈ ô
+).

In order to show how to make the computation of
E(g|o+, ô+) operative, thus deriving the conservative
inference rule, we need the following well-known result
in fractional programming [9, Sec. 2.2.4].6

Theorem 3. Consider the fractional optimization prob-
lem minx∈S q(x)/r(x), where q and r are continuous,
real-valued, functions on the compact set S of the v-
dimensional Euclidean space R

v , and r is positive on S.
Let h : R → R be defined by h(µ) = minx∈S [q(x) −
µr(x)]. Then µ∗ ∈ R is the optimal solution of the initial
fractional optimization problem if and only if h(µ∗) = 0;
and µ∗ is the unique value such that h(µ∗) = 0.

We are finally ready to derive CIR.

Theorem 4 (Conservative inference rule theorem).
E(g|o+, ô+) = infp(θ)∈P(θ)mind∈o E(g|d, x̂

+ ∈ ô
+).

Proof. Let us focus for the moment on the inner infimum
in the definition of E(g|o+, ô+). That can be approximated
by7 minp(o|D)∈Pε(o|D)E(g|o, x̂

+ ∈ ô
+). Consider the

function

h(µ) := min
p(o|D)∈Pε(o|D)

{
∑

d∈o

p(o|d) ·

·[
∑

cM∈C

g(cM )p(cM ,d, x̂+ ∈ ô
+)− µp(d, x̂+ ∈ ô

+)]}

= min
p(o|D)∈Pε(o|D)

{
∑

d∈o

p(o|d)p(d, x̂+ ∈ ô
+) ·

·[E(g|d, x̂+ ∈ ô
+)− µ]},

where the last passage is possible as p(d, x̂+ ∈ ô
+) > 0

by (9).
Theorem 3 shows that the unique solution of h(µ) = 0
is also the solution of minp(o|D)∈Pε(o|D)E(g|d, x̂

+ ∈
ô

+). Let µ∗ := mind∈o E(g|d, x̂
+ ∈ ô

+), and let
d
∗ be an element at which µ∗ is attained. Observe

that h(µ∗) ≥ 0 as all the involved factors are non-
negative. Set p(o|d∗) := 1, and p(o|d) := 0 for
all d ∈ o, d 6= d

∗. Observe that the chosen vec-
tor p(o|D) belongs to Pε(o|D). This vector renders
h(µ∗) = 0, whence minp(o|D)∈Pε(o|D)E(g|d, x̂

+ ∈
ô

+) = mind∈o E(g|d, x̂
+ ∈ ô

+). This result holds
for all ε ∈ (0, 1]. Taking the limit with ε →

5The focus is on lower expectations as it is well known that upper
expectations can be computed from lower expectations.

6This is the minimization version of the cited result.
7Remember that Pε(o|D) is closed, so that now the minimum is

actually achieved.

0, we have infp(o|D)∈P(o|D) E(g|d, x̂
+ ∈ ô

+) =
mind∈o E(g|d, x̂

+ ∈ ô
+), from which the thesis follows

immediately.

Theorem 4 is an important result as it delivers a new in-
ference rule to update beliefs given incomplete data. Be-
fore discussing the implications of CIR more widely, let
us show that stronger assumptions than those considered
here lead to CIR again.

3 Predictive Inference in an IID+ID Setting

The previous sections derived the conservative inference
rule for very general processes of data generation. From
now on we restrict the attention to IID processes that pro-
duce ideal data. We also enforce assumptions about the
incompleteness processes, in particular by requiring that
they act independently on each ideal observation gener-
ated, i.e., that they are ID. Let us show how the setup of
Section 2 changes according to the new assumptions.
First, consider the variables. In the new setting, we can
regard the statistical parameter θ, without loss of gener-
ality, as the random vector of chances for the elements
(d, x̂) of the sample space D × X̂. That is, a value ϑ ∈ Θ
is in this case a vector whose generic element is ϑ(d,x̂),
i.e., the aleatory probability (or chance) that (d, x̂) is pro-
duced.8 Regarding the variables previously defined, it is
used the same notation, but consider that thanks to the
IID+ID assumption the possibility spaces for the ideal
variables are now the following: D

- = DN , D
+ = DM ,

D = DN × X, X̂
-
= X̂N , and X̂

+
= X̂M . For the same

reason, now the actual variable O
+ can be regarded as the

vector (O+
1, . . . , O

+
M ), whose generic element O+

i repre-
sents the observation of Di. The situation is analogous
with Ô

+
.

The assumptions of Section 2.2 become more specific, ac-
cording to the IID+ID assumptions. Using the IID as-
sumption, the sampling model for ideal data becomes
p(d̂

+
, x̂+|ϑ) =

∏M

i=1 p(di, x̂i|ϑ) =
∏M

i=1 ϑ(di,x̂i). Re-
garding the incompleteness processes, the ID assumption
is embodied by the equalities p(o+|d+) =

∏M

i=1 p(oi|di)

and p(ô+|x+) =
∏M

i=1 p(ôi|x̂i). Using the two expressions
above, the expression for the density of a joint value of
the variables of interest becomes:9 p(ϑ,d+, x̂+,o+, ô+) =

p(ϑ)
∏M

i=1 ϑ(di,x̂i)p(oi|di)p(ôi|x̂i). The other assump-
tions are re-written as follows.
Positivity of ideal observations: p(Di, X̂i) > 0, i =
1, . . . ,M . Positivity of the specific incomplete data ob-
served: p(oi, ôi) > 0, i = 1, . . . ,M . Truthfulness:
p(oi|di) = 0 if di /∈ oi and p(ôi|x̂i) = 0 if x̂i /∈
ôi (i = 1, . . . ,M ). CAR: p(ôi|x̂i) = αi, x̂i ∈ ôi

8In other words, Θ is now assumed to be a (non-empty) subset of the
unitary |D× X̂|-dimensional simplex.

9As in Section 2.2, the assumptions reported in this section should be
intended for all p(θ) ∈ P(θ), when this is the case.



(i = 1, . . . ,M ), where the αi’s are positive constants.
Finally, the two assumptions specific to predictive prob-
lems become the following: p(OCM

= C) = 1, and
p(OM |DM ) = p(OM |XM ).
As before, the basic problem is how to update beliefs about
a generic function g : C → R, to posterior beliefs condi-
tional on (o+, ô+) = (o1, . . . , oM , ô1, . . . , ôM ). A course
of reasoning very similar to that of Section 2.5 leads to the
next theorem.

Theorem 5 (IID+ID CIR theorem). E(g|o+, ô+) =
infp(θ)∈P(θ)mind∈o E(g|d, x̂

+ ∈ ô
+).

In other words, CIR should be the rule to adopt also in the
new setting, which confirms the wide applicability of CIR.
Let us discuss some other characteristics of CIR. The
conservative inference rule generalizes the traditional rule
based on the common conditioning, which is obtained by
dropping the unknown IP. Furthermore, note that although
CIR has been derived as a single rule, it can be regarded
as a pair of rules: a conservative learning rule, and a con-
servative updating rule. The learning part prescribes how
to learn a model from the observed data, which involves
taking all the completions of the learning set subject to the
unknown IP. The updating part prescribes how to use the
model to predict a function of the next class, which in-
volves taking all the completions of the M -th unit subject
to the unknown IP. The method to implement both parts
is then conceptually very simple. It is not, therefore, sur-
prising that the use of similar procedures has already been
advocated in the context of robust statistical methods (see
for instance [6, 8, 12]). These proposals are nevertheless
different from the method developed here, mostly because
they focus only on delivering a conservative learning rule,
while leaving the updating part an open issue; and because
this paper has given emphasis to the rigorous justification
of the rules.10 In contrast with the mentioned approaches,
a recent work [2], that is also the source of inspiration
of the present paper, has derived a conservative updating
rule in the context of probabilistic expert systems. Such
a rule is generalized here in two directions.11 First, CIR
is a generalization to statistical inference, which involves
learning, rather than being given, a model. Secondly, the
previous rule deals with unknown IPs, as well as the men-
tioned robust statistical proposals basically do, rather than
systematically treating a mix of unknown and CAR IPs, as
CIR does. This is particularly useful, as explained in Sec-
tion 2.3, in order to avoid too weak conclusions in specific

10Actually, Theorem 5 can be easily modified to justify also the ap-
proaches based on the conservative learning rule alone: it is sufficient to
focus on parametric inference, i.e., on the lower expectation of a function
of θ given (o-, ô-), dropping the two assumptions specific to predictive
problems. The proof remains basically the same.

11Strictly speaking, the generalization is really achieved: Theorem 4
can be adapted, with a minor syntactical re-styling, to derive the conser-
vative updating rule in [2]. It is sufficient to remove all the references to
θ and to the CAR IP. In other words, the result presented here can also be
re-played in the context of expert systems.

cases. The variable balance between the unknown pro-
cess and the CAR one seems actually to be a basic feature
to enhance modelling flexibility. Reference [1, Sect. 4–5]
shows this concretely on a real problem.

4 A Note on Unobserved Data

Before discussing further assumptions about IPs, it may be
useful to clarify a peculiar aspect that arises when part of
the data is completely unobserved. An example is given by
the formulation of CIR itself in Theorem 5: if ô

+ coincides
with X̂M , CIR takes the following form: E(g|o+, ô+) =
infp(θ)∈P(θ)mind∈o E(g|d). In other words, we are led to
simply discard the variable Ô

+
from consideration. How-

ever, we are not allowed to do the same if o
+ coincides

with DM , as the formulation of CIR shows.
Something similar happens also in another situation,
which we consider next. So far, we have implicitly as-
sumed that the observations indexed from 1 to M consti-
tute all the available data. Note that in practice this will
not often be the case. More realistically, part of the avail-
able data will be discarded, and the predictive inference
will be made only on the basis of a sub-sample. There is
a variety of reasons why this may happen. For instance,
we may start collecting data only when we start working
on a problem; or we might want to use a sub-sample to
learn a model as the entire set is too large and not easily
manageable; or we might simply want to partition the data
in learning and test set; and so on. We can represent such
kinds of selection of a sub-sample in the framework of IPs,
by saying that the probability not to observe the discarded
data is one.
To be more specific, suppose that the 0-th observation was
discarded irrespectively of its specific ideal value. We rep-
resent this by writing that p(O0 = O, Ô0 = Ô|d0, x̂0) = 1

for all d0 ∈ D and x̂0 ∈ X̂. Note that this is a CAR con-
dition. From this, it follows immediately that also p(O0 =
O, Ô0 = Ô) = 1. Let us see how this impacts on the
derivation of Theorem 5. Such a theorem, like Theorem 4
(see Lemma 2 in particular), has been derived focusing on
the probability p(cM ,o+, ô+), i.e., on the joint probability
of cM and the observed data. Such a probability becomes
p(cM , O0 = O, Ô0 = Ô,o+, ô+) once the 0-th observation
is also taken into account. But we have that p(cM , O0 =

O, Ô0 = Ô,o+, ô+) =
∑

o0∈O,ô0∈Ô
p(cM , O0 = o0, Ô0 =

ô0,o
+, ô+) = p(cM ,o+, ô+), thus stepping back to the setup

leading to Theorem 5. In other words, it turns out that
the 0-th observation can actually be removed from calcula-
tions as it does not influence the result. Of course this can
immediately be extended to any number of observations
that are discarded as the 0-th observation above. Over-
all, we obtain that data that are discarded in an unselective
way, do not enter the derivation.
The situation is different if the data are discarded in a se-



lective way, that is, depending on their ideal values. If, for
example, an ideal observation is not accessible any time it
is equal to a specific value (d, x̂), there is no justification to
remove (O0 = O, Ô0 = Ô) from calculations. The correct
way to proceed in this case, would simply be to make also
(O0 = O, Ô0 = Ô) become part of the data used for learn-
ing, and then apply the results of Section 5. Of course this
would create a phenomenon of dilation [10], but it does
not seem possible to avoid it, given the stated conditions,
without producing misleading results.
The distinction between the unselective and selective case
above clarifies a question that is heard sometimes when
considering conservative approaches to incomplete data
such as CIR: what should we do of data that are completely
unobserved? Should we discard them or should we include
them in our set of actual data? The answer, as shown, de-
pends on the nature of the incompleteness process.

5 Should We Assume an IP to Be IID?

The previous sections have shown that CIR is suited to be
used in a wide variety of settings. This holds for a very
general setting, as in Section 2, in which we assume very
little about ideal and actual observations. But it holds also
when more substantial assumptions are done, as in Sec-
tion 3. In a sense, Sections 2 and 3 delimit CIR’s bound-
aries of application. This is enforced by the arguments
given in the present section. Indeed, if we make stronger
assumptions than those in the preceding sections, CIR col-
lapses to a more familiar rule.
For the sake of simplicity, let us restrict the attention here
only to the unknown IP, and consider the following ad-
ditional assumption about it, besides those stated in Sec-
tion 3: that it is identically distributed, i.e., the unknown
IP is now assumed to be IID. In other words, p(o|d) is now
a fixed chance, for all o ∈ O and d ∈ D, which we denote
by λod. It follows that each observation o ∈ O has also
a fixed unconditional chance, called ϕo :=

∑

d∈o θdλod.
Stated differently, we can regard the process producing el-
ements o ∈ O also as a multinomial process with fixed
(and perhaps unknown) chances.
Two observations are now in order. First, we note that
the assumption that p(OCM

= C) = 1 is not compati-
ble with the assumption that the incompleteness process
is IID. Indeed, by assuming both, we would actually re-
quire p(OCi

= C) = 1 for any i, thus preventing any
possibility to learn about the classes. Hence, we drop such
an assumption and assume, to make things easier, that the
class is always observed unambiguously, that is, p(OCi

=
oCi
) = 0, for all i, if |oCi

| > 1. The second observation
concerns the assumption that p(OM |DM ) = p(OM |XM );
we relax such an assumption, as it is not needed for the
following developments.
As usual we focus on the problem of updating beliefs
about a generic function g : C → R, to posterior beliefs

conditional on o
+, i.e., on computing the following expec-

tation:

E(g|o+) =

∑

cM∈C
g(cM )p(oCM

= {cM},o)
∑

cM∈C
p(oCM

= {cM},o)
.

Consider the probability p(oCM
= {cM},o). Under the

new assumptions, we can re-write it very easily as follows:

p(oCM
= {cM},o) =

∫

Φ

p(ϕ)p(oCM
= {cM},o|ϕ)dϕ

=

∫

Φ

p(ϕ)
M
∏

i=1

ϕoi
dϕ. (12)

Here ϕ ∈ Φ is the vector of chances ϕo, o ∈ O;
∏M

i=1 ϕoi

is the likelihood, as from the multinomial assumption
about the data o ∈ O; and p(ϕ) is a prior density for ϕ.
[The prior p(ϕ) could in principle be obtained from p(ϑ)
by means of a change of variables that takes into account
the transformation ϕo =

∑

d∈o θdλod.]
In other words, in this setting everything is confined within
the common, precise, Bayesian approach to predictive in-
ference, which is applied to the actual variables. In prac-
tice, the above premises allow us to regard oi simply as
an element of its sample space (i.e., a symbol of an alpha-
bet), forgetting the fact that it can also be interpreted as a
set of ideal observations. Note that in the special case of
incomplete data generated via missing values, the above
approach would correspond to simply treat the symbol of
missing value as another possible value.
The discussion up to this point has shown that the cur-
rent setting presents some advantages; it turns out to be
a precise approach, and, by relaxing the assumption that
p(OM |DM ) = p(OM |XM ), it can consider more general
relations between classes and attributes than the previous
approaches.12 Unfortunately, the advantages, which fol-
low by assuming that the unknown IP is IID, seem to be
dwarfed by the strength of the assumption itself. It is in-
deed questionable that such an assumption is tenable in
practice. As illustrated in Section 2.3, IPs are often gen-
erated by complex behavior patterns that involve humans
and that can be regarded as protocols of communications.
Assuming that the IP is IID, would be equivalent, in the
medical example of Section 2.3, to assuming that all the
doctors, in all the hospitals, behave in the same way, im-
plementing the very same procedure to diagnose a certain
disease. In contrast, relaxing the assumption to the weaker
ID, we would concede that the procedures can change with
time (and location, and resources, ...). Of course, this does
not mean that they need to change completely, and in this

12However, it may be useful to emphasize that the presented method
may be inefficient when the considered IP is CAR besides being IID.
In this case, a more opportune approach would incorporate CAR in the
derivation, producing a more specific updating rule. Without doing this,
the learning algorithm may need quite a number of data to realize by
itself, and hence exploit, the implications of CAR.



sense the conservative approach embodied by the ID as-
sumption may well leave (also much) room for strength-
ening the conclusions. But unless one has a clear model
of the different procedures, the conservative approach ap-
pears to be more credible and safe than going for strong
assumptions, of which the IID one is an example.
In other words, the ID assumption accounts for the variety
and complexity of behavior of humans, or of other com-
plex entities, that are involved in communication protocols
giving rise to incompleteness. It may be the case that the
IID assumption is justified in some specific cases, but it
does not seem to be really widely applicable, and hence
this work refrains from doing it any further.

6 On the Failure of Empirical Evaluations

Section 5 has argued that the IID assumption is strong, and
that the weaker ID assumption is more reasonable in many
applications. But, by accepting this, one needs also re-
alize that currently employed methods face a very critical
consequence that regards the possibility to measure empir-
ically their predictive performance. This is a further reason
that suggests doing only tenable assumptions.
In order to introduce the subject of this section, let us fo-
cus, for the sake of explanation, only on the unknown IP,
and also on a very simple classification setting, which is
a special case of predictive inference. The classification
setting is one in which the ideal observations are gener-
ated in an IID way, and where the IP is ID. The problem
is to predict the class of the M -th unit given the previous
units (1, . . . , N ) and the values of the M -th attribute vari-
ables. In the precise case, this is usually done following
a maximum expected utility approach: i.e., the prediction
is made up of a class that maximizes the expected utility,
conditionally on the observation. Call a model that acts in
such a way a precise classifier.
It is common practice with precise classifiers to measure
their accuracy empirically. In its simpler form, this is ob-
tained by randomly splitting the available data into a learn-
ing and a test set, by inferring the classifier from the for-
mer and testing it on the latter. Testing the classifier typ-
ically means to make it predict the classes for the units
in the test set, and to compare them with the true classes.
One popular summary measure used to this extent is the
so-called prediction accuracy, namely the relative number
of classes correctly predicted. This simple, yet powerful,
idea is responsible for much of the success and popularity
of classification, as it enables one to be relatively confident
about how well a classifier performs on previously unseen
data. Unfortunately, this key characteristic is lost when we
cannot assume that the unknown IP is IID.
To see why, consider two ideal random variables A1 and
A2, and a class variable C.13 Assume that they are all
Boolean, and that C is the result of the exclusive logi-

13Here the attributes are just the joint states of A1 and A2.

cal disjunction applied to A1 and A2: i.e., C = 1 if and
only if either A1 = 1 or A2 = 1, but not both. As-
sume that the ideal data are eventually turned into actual
data by an (unknown) IP whose only action is to make
A2 unobservable if and only if (A1, A2) = (1, 0). That
is, p(OA2

= {0, 1}|A1 = 1, A2 = 0) = 1, so that ob-
serving the pattern (OA1

= {1}, OA2
= {0, 1}) implies

C = 1 with certainty. In these conditions, any precise
classifier is clearly expected to learn that A2 being miss-
ing is irrelevant to predict the class, whose value coincides
with the value of A1. Since this is true for all the avail-
able data, partitioning them into learning and test set will
do nothing but confirm it: the prediction accuracy on the
pattern (OA1

= {1}, OA2
= {0, 1}) will be perfect, i.e.,

100%. But the IP is not identically distributed, and it hap-
pens that when the classifier is put to work in an operative
environment, the IP changes, in particular by making A2
unobservable if and only if (A1, A2) = (1, 1); or, in other
words: p(OA2

= {0, 1}|A1 = 1, A2 = 1) = 1. Once
put to work in practice, the classifier will be always wrong
on the pattern (OA1

= {1}, OA2
= {0, 1}), the prediction

accuracy dropping to 0%.
Of course the example is designed so as to illustrate an ex-
treme case, but this nevertheless, it points to a fact: empir-
ical evaluations are doomed to failure in general when the
data are made incomplete by a non-IID unknown process
(remember that we already excluded it to be CAR, as we
are talking of the unknown IP). This appears to have pro-
found implications for classification, and more generally
for data analysis. These fields of scientific research rest
on two fundamental pillars: (i) that the assumptions made
to develop a certain model (e.g., a classifier) are tenable;
and (ii) that empirical evaluations are reliable. The crucial
point is that both pillars may be very fragile with incom-
plete data, so being unable to sustain credible models and
conclusions. Regarding (i), we have already argued that
the IID assumption seems to be hard to justify for an in-
completeness process; also, it does not seem to be possible
to test statistically the IID assumption, for reasons similar
to those that prevent CAR from being tested. Therefore
assuming IID (as well as CAR) will often be subject to ar-
bitrariness. Moreover, with reference to (ii), the results of
empirical evaluations will not help us in general to have
a clear view of the negative consequences of doing un-
tenable assumptions, as empirical evaluations may well be
misleading, as shown above.
The way left to cope with such critical issues seems nec-
essarily to have to pass through doing tenable assump-
tions. This implies also to recognize that the unknown
incompleteness process may not be IID (nor CAR). Most
probably this will lead to some kind of conservative in-
ference rule, such as CIR. Conservative inference rules,
in turn, will lead to set-based predictions of classes, or,
in other words, to so-called credal classifiers [13], which
will produce credible results, consistently with the weaker



assumptions they require. For this reason, conservative
inference rules, as well as credal classifiers, appear to be
worthy of serious consideration in order to produce realis-
tic models and credible conclusions.

7 Conclusions

The problem of incomplete data in statistical inference is
an important one and is pervasive of statistical practice.
It is also a difficult problem to handle. The processes that
create the incompleteness may be difficult to model, and in
presence of incompleteness we may be seriously limited
in the possibility to understand whether our models and
conclusions are good: in general, one cannot use the data
to test assumptions about IPs; and, as this paper shows,
incomplete data may prevent one also from empirically
measuring the quality of the predictions. Yet, these heav-
ily depend on the assumptions made about the underlying
IPs. The crucial role of assumptions suggests then using
only assumptions weak enough to be tenable.
A large part of this work has been actually spent in dis-
cussing the assumptions underlying different models and
in selecting some of them, to the extent of designing a
modelling framework that is widely applicable and cred-
ible at the same time. Such a framework has eventually
led to derive a new conditioning rule for predictive infer-
ence with incomplete data, called conservative inference
rule. CIR generalizes the traditional rules of inference,
as well as a more recently proposed rule for conservative
updating with probabilistic expert systems. More broadly
speaking, CIR seems to be the first proposal for updating
beliefs in a statistical setting when only weak assumptions
about IPs are justified. Of course this capability is also
such that CIR yields only to partially determined infer-
ences and decisions, in general, and ultimately to systems
that can recognize the limits of their knowledge, and sus-
pend judgement when these limits are reached. But the
new rule is not only a tool for worst-case scenarios; it can
flexibly model knowledge from near-ignorance to know-
ing that an incompleteness process is not selective. Such
a characteristic has the potential to make CIR suitable for
a wide variety of settings. Of course it is important to in-
vestigate this point concretely, by verifying in particular
whether CIR leads to strong enough conclusions in real
applications. This is the focus of work that is currently
under development.
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