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Abstract

We explore generalizations of the pari-mutuel model (PMM), a formalization
of an intuitive way of assessing an upper probability from a precise one. We
discuss a naive extension of the PMM considered in insurance, compare the
PMM with a related model, the Total Variation Model, and generalize the
natural extension of the PMM introduced by P. Walley and other pertained
formulae. The results are subsequently given a risk measurement interpreta-
tion: in particular it is shown that a known risk measure, Tail Value at Risk
(TVaR), is derived from the PMM, and a coherent risk measure more general
than TVaR from its imprecise version. We analyze further the conditions for
coherence of a related risk measure, Conditional Tail Expectation. Condi-
tioning with the PMM is investigated too, computing its natural extension,
characterising its dilation and studying the weaker concept of imprecision
increase.

Key words: Pari-mutuel model, risk measures, natural extension, dilation,
2-monotonicity, imprecision increase.

1. Introduction

The pari-mutuel model (PMM) formalizes a very intuitive and therefore
widely used method of assigning an upper probability starting from a precise
probability. To introduce it, consider, following [3], a probability P for event
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A as a fair price for a bet which returns 1 unit to the bettor if A is true,
0 units if A is false, i.e. returns the indicator IA of A. The bettor’s gain is
G = IA−P (A), while that of his opponent, House, is −G = GH = P (A)−IA.

In most real-world betting schemes House is unwilling to accept such a
game, which is fair to both counterparts (the expectations E(GH), E(G)
are 0), but asks for a positive gain expectation. It is so when House is a
bookmaker, an insurance company, the organizer of a lottery, and so on. A
way to achieve this goal is to raise the bettor’s price without altering his
reward, and a naive method multiplies P by a constant greater than 1, say
1+δ, where δ > 0 is a loading constant. The bettor pays P (A) = (1+δ)P (A),
while the gain for House is now GH = (1+δ)P (A)−IA. Alternatively, House
might ask the same price to pay a reduced reward (1−τ)IA, where 0 < τ < 1
is interpreted as a commission, or also a taxation. This originates a gain
G
∗
H = P (A) − (1 − τ)IA = (1 − τ)(P (A)

1−τ − IA) = (1 − τ)GH iff 1
1−τ = 1 + δ,

i.e. iff τ = δ
1+δ

. Thus, up to a scaling factor, the two methods are equivalent

if τ = δ
1+δ

; the latter is formally more adherent to common betting systems,
called in fact pari-mutuel systems.1

In the theory of imprecise probabilities, P is an upper probability, but
a slight adjustment to P is necessary to achieve the customarily adopted
consistency notion of coherence, recalled in Section 2. In fact, Walley [16]
terms pari-mutuel model the upper probability

P (A) = min{(1 + δ)P (A), 1}. (1)

Intuitively, the correction is needed: when P (A) > 1
1+δ

, it is GH > 0 in the
naive method, i.e. a bettor suffers from a sure loss no matter whether A is
true or false.

This paper investigates further the pari-mutuel model, extending the
analyses in [13, 16]. Preliminary issues are recalled in Section 2, very con-
cisely in general, more extensively as for 2-monotone and 2-alternating pre-
visions, since the upper probability P in (1) is 2-alternating. In Section 3 we
discuss extensions of the PMM and compare it with a similar model. First,
we consider alternative expressions for the natural extension E(X) of P , de-
fined on a field A, to any A-measurable gamble X. These expressions were
stated in [16], but we make a more detailed analysis of the conditions ensur-

1The inventor of the pari-mutuel system was the French perfume maker Joseph Oller
in 1865.
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ing that E(X) is equal to a certain conditional prevision (P (X|X > xτ )),
which has a risk measurement interpretation. In Section 3.1 we restrict to
non-negative gambles and compare the natural extension E with the naive
extension PN(X) = min{(1 + δ)P (X), supX}, showing that quite often PN

is not coherent. The motivation for this work is that PN is a premium in in-
surance, although with different premises: the starting point is not the PMM
but a set of non-negative gambles. In Section 3.2 we compare the PMM with
the Total Variation Model (TVM) [8] and compute the natural extension of
the TVM to A-measurable gambles. In Section 3.3 we generalize Walley’s
approach, obtaining a formula for E(X) when the PMM is given on a lattice
of events and X is not necessarily measurable: this makes it possible to eval-
uate E(X) for all X defined on a suitable reference partition while assessing
a probability on a relatively small set of events (this and other concepts are
illustrated in Example 2).

These results have an interesting and, to the best of our knowledge, so far
not considered interpretation in the realm of risk measurement. This is the
main topic of Section 4, where the natural extension of the PMM defined on
a field is shown to correspond to a coherent risk measure, called Tail Value-
at-Risk or TVaR (in [5]; other authors may use a different terminology).
When the PMM is defined on a lattice, we obtain a generalization of TVaR
(not discussed in the risk literature), which replaces precise with imprecise
uncertainty measures; we name it ITVaR. Thus the PMM supplies a moti-
vation for introducing ‘imprecise’ risk measures: one of them, ITVaR, is the
natural extension of a PMM assigned on a lattice. Conditioning the PMM
defined on a field is discussed in Section 5. We specialize general formulae for
the natural extension of 2-alternating and 2-monotone probabilities to the
case of the PMM and explore the effect on them of dilation and of a weaker
phenomenon, imprecision increase. We characterise dilation and give suffi-
cient conditions for dilation or imprecision increase in Section 5.1. Further,
operational conditions for the most relevant cases (when the commission τ
is ‘low’ or event A is ‘rare’) are given in Section 5.2. Ideas about varying the
extent of dilation or imprecision increase are outlined in Section 5.3. Sec-
tion 6 concludes the paper. The proofs of the main results are given in the
Appendix.
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2. Preliminaries

Upper (P ) and lower (P ) probabilities are customarily related by the
conjugacy relation P (A) = 1− P (Ac), which lets one refer to either P or P
only. Applying it to (1), the lower probability in the PMM is [16]

P (A) = max{(1 + δ)P (A)− δ, 0}. (2)

As noted in the Introduction, the parameter τ ∈ ]0; 1[ can, and later will,
alternatively describe P , P in the PMM. We shall often exploit, without
always recalling it, the relationship between τ and δ:

τ =
δ

1 + δ
; δ =

τ

1− τ
. (3)

An upper probability P defined by (1) for any A in an arbitrary set of events
D (or P defined by (2)) is coherent onD, and probably the simplest way to see
it is to apply our subsequent Proposition 2. In general, an upper prevision P
is a mapping from a set D of gambles (bounded random variables), defined on
a partition or possibility space IPu, into the real line, and an upper probability
is its special case that the domain D is made of (indicators of) events only.

The upper prevision P is coherent on D iff, ∀n ∈ N, ∀s0, s1, . . . , sn ≥ 0,
∀X0, X1, . . . , Xn ∈ D, defining G =

∑n
i=1 si(P (Xi)−Xi)− s0(P (X0)−X0),

it holds that supG ≥ 0.
There are several necessary conditions for coherence, in particular: inter-

nality, inf X ≤ P (X) ≤ supX, and subadditivity, P (X+Y ) ≤ P (X)+P (Y ).
We refer to [16] for a thorough presentation of the theory of coherent

upper and lower previsions. One of its most important notions is that of
natural extension [16, Section 3].

In our framework, the natural extension E on D′ of a coherent upper pre-
vision (or probability) P defined on D ⊂ D′ is the least-committal coherent
extension of P on D′, i.e. E(X) = P (X), ∀X ∈ D, and for any coherent P

∗

such that P
∗

= P on D, E(X) ≥ P
∗
(X), ∀X ∈ D′, i.e. E dominates P

∗
. It

can be shown that E always exists. Symmetrically, the natural extension E
on D′L of a coherent lower prevision P on DL is such that E = P (on DL),
and every coherent extension P ∗ of P dominates E on D′L.

If condition ‘∀s0, s1, . . . , sn ≥ 0’ is replaced by ‘∀s0, s1, . . . , sn ∈ R’ in
the definition of coherent upper prevision, we obtain de Finetti’s notion of
dF-coherent (precise) prevision [3]. A dF-coherent prevision P is coherent
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both as an upper and as a lower prevision. Moreover, a dF-coherent prevision
corresponds to the expectation with respect to a finitely additive probability.
The precise previsions or probabilities in the sequel are meant to be dF-
coherent.

Although the domain of an upper prevision may be arbitrary, it will have
a special structure in most of the paper, to exploit results on 2-alternating
previsions.

More specifically, a set of events A is a field when ∅ ∈ A and A∨B,Ac ∈
A,∀A,B ∈ A. If A is a field, a gamble X is A-measurable when the events
X > x and X < x are in A, ∀x ∈ R.

A set of gambles S is a lattice if X, Y ∈ S implies max(X, Y ) ∈ S and
min(X, Y ) ∈ S, where max(X, Y )(ω) = max(X(ω), Y (ω)) and min(X, Y )(ω)
= min(X(ω), Y (ω)), ∀ω ∈ IPu.

An upper prevision P defined on a lattice S is called 2-alternating iff
P (max(X, Y )) ≤ P (X) + P (Y )− P (min(X, Y )), ∀X, Y ∈ S. A lower previ-
sion P on S is 2-monotone iff P (max(X, Y )) ≥ P (X)+P (Y )−P (min(X, Y )),
∀X, Y ∈ S.

Results stated for 2-monotone previsions are easily reworded for 2-alter-
nating ones (and vice versa), since the conjugate P (X) = −P (−X) of a
2-monotone lower prevision is 2-alternating (and vice versa).

When S is a set of (indicators of) events and P is therefore an upper
probability, S is a lattice iff A, B ∈ S implies A∨B ∈ S, A∧B ∈ S, and P
is 2-alternating iff P (A∨B) ≤ P (A) +P (B)−P (A∧B), ∀A,B ∈ S. Let S+

be a lattice of events containing the impossible event ∅ and the sure event
Ω. With a mild additional condition, 2-alternating upper probabilities are
coherent on S+ [2]:

Proposition 1. Let P be a 2-alternating upper probability on S+. Then P
is coherent iff P (∅) = 0 and P (Ω) = 1.

One way to obtain coherent 2-alternating upper probabilities defines P
as a special distorted probability, by the following result, adapted from [4],
Example 2.1.

Proposition 2. Let P be a dF-coherent probability on S+ and φ a (weakly)
increasing concave function defined on [0; 1] with φ(0) = 0, φ(1) = 1. Then
the distorted probability P (·) = φ(P (·)) is a 2-alternating and coherent upper
probability.
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Proposition 2 ensures that P in (1) is 2-alternating and coherent (put
φ(x) = min((1 + δ)x, 1)), hence its conjugate P is 2-monotone and coherent.

To deal with the natural extension of the PMM in Section 3, the following
Proposition 3 will be exploited.

Notation The natural extension of interest is that of P from S+ to the set
L = L(IPu) of all gambles defined on a ‘universal’ partition IPu (termed Ω in
[16]). That is, IPu is a set of pairwise disjoint events, whose sum is the sure
event Ω, and such that its powerset 2IPu contains all the events of interest.
In particular S+ ⊆ 2IPu . Given P : S+ → R, its outer (set) function P

∗
is

defined on 2IPu by P
∗
(B) = inf{P (A) : A ∈ S+, B ⇒ A}, ∀B ∈ 2IPu .

Two gambles X, Y are comonotonic iff X(ω1) < X(ω2) implies Y (ω1) ≤
Y (ω2), ∀ω1, ω2 ∈ IPu. An upper prevision P is comonotonic additive iff
P (X + Y ) = P (X) + P (Y ) for all comonotonic X, Y in its domain.

Proposition 3. [2] Let P : S+ → R be a coherent 2-alternating upper
probability. Its natural extension E on L is given by

E(X) = inf X +

∫ supX

inf X

P
∗
(X > x)dx (4)

and is 2-alternating too. Further,

(a) The restriction of E on 2IPu coincides with the outer function P
∗
.

(b) If S+ = 2IPu, E is the only 2-alternating, or equivalently the only
comonotonic additive, coherent extension of P on L.

In Section 5 we shall be concerned with natural extensions on conditional
events, like E(A|B) or E(A|B), while precise conditional previsions, like
P (X|X > xτ ), appear in Section 3. In a conditional environment, the symbol
D already introduced denotes more generally an arbitrary set of conditional
gambles, i.e. its generic element is X|B, where X is a gamble and B a
non-impossible event (when in particular B=Ω, X|B = X|Ω = X).

Although the paper presentation does not focus on coherence concepts in a
conditional environment, our approach employs formally Williams coherence
or W-coherence, in the version presented in [11], Definition 4, reported here:

Definition 1. P : D → R is a W-coherent conditional lower prevision on D iff,
for all n ∈ N, ∀X0|B0, . . . , Xn|Bn ∈ D, ∀ s0, s1, . . . , sn real and non-negative,
defining B =

∨n
i=0Bi and G =

∑n
i=1 siIBi(Xi − P (Xi|Bi)) − s0IB0(X0 −

P (X0|B0)), it holds that sup(G|B) ≥ 0.
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The term gi = siIBi(Xi−P (Xi|Bi)) (i = 0, 1, . . . , n) is interpreted as the
gain from a conditional bet on Xi with stake si. In fact, gi is obtained from
the condition that the gambler’s bet siP (Xi|Bi) is called off iff Bi is false (in
such a case gi = 0), otherwise the gambler receives (if i = 1, . . . , n) or pays
(if i = 0) siIBiXi = siXi, and consequently gi = si(Xi − P (Xi|Bi)). Recall
further that sup(G|B) = sup{G(ω) : ω ⇒ B}.

W-coherence reduces to the customary notion of coherence in [16] in the
unconditional case, or to Walley’s coherence in [16], Section 7.1.4 (b) when
– and this is the case in the present paper – finitely many conditional events
are involved (and some structure is imposed on D [11]).

Thus, the results in the paper may be equivalently interpreted in terms of
the coherence concepts in [16]. A motivation for using W-coherence is that,
since it requires no structure constraints on D and allows for rather general
envelope and natural extension theorems also in a conditional framework, our
results could be more simply extended to general conditional frameworks,
where W-coherence is not necessarily equivalent to Walley’s approach (cf.
[16] for further comparisons of coherence concepts).

Several necessary conditions hold for W-coherence, whenever they are
well-defined. Recall internality, inf(X|B) ≤ P (X|B) ≤ sup(X|B), and the
Generalized Bayes Rule (GBR) P (IA(X − P (X|A))) = 0, which in the case
of precise previsions specialises to

P (XIA) = P (X|A)P (A). (5)

3. Extending the pari-mutuel model

The natural extension E of P (A) = min{(1 + δ)P (A), 1} from a field A
to any A-measurable gamble X was shown in [16] to be

E(X) = xτ + (1 + δ)P ((X − xτ )+), (6)

where (X − xτ )+ = max{X − xτ , 0} and the (upper) quantile xτ is defined
as

xτ = sup{x ∈ R : P (X ≤ x) ≤ τ} = sup{x ∈ R : P (X > x) ≥ 1− τ}. (7)

As appears from (7), xτ is a quantile function, a well known concept in litera-

ture for defining an inverse for the distribution function FX(x)
def
= P (X ≤ x).
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There are however slightly different ways of defining quantiles (see [4], Sec-
tion 1.5.8); ours follows [16], Section 3.2.5. The upper quantile xτ can be
viewed as a threshold such that, for every x > xτ , X exceeds x with proba-
bility less than 1− τ (see also Example 1).

An alternative expression for E(X) is:2

E(X) = (1− ε)P (X|X > xτ ) + εxτ , ε
def
= 1− (1 + δ)P (X > xτ ). (8)

It is also stated in [16] that E(X) = P (X|X > xτ ) if X has a continuous
distribution function FX(x).

We shall now explore more thoroughly the relationship between E(X)
and P (X|X > xτ ). The results will be exploited also in Section 4, where
they will be reinterpreted in a risk measurement perspective.

To begin with, we gather some known or anyway elementary, but useful
facts in the following proposition.

Proposition 4. Let X be A-measurable and for τ ∈ ]0; 1[ define: xτ by (7),
FX(x+

τ ) = limx→x+
τ
FX(x), FX(x−τ ) = limx→x−τ FX(x).

a) τ ∈ [FX(x−τ );FX(x+
τ )]; besides, all values of τ in [FX(x−τ );FX(x+

τ )[
originate by (7) the same (upper) quantile xτ .

b) inf X ≤ xτ ≤ supX.

c) (X > xτ ) = ∅ iff xτ = supX; if (X ≤ xτ ) = ∅ then xτ = inf X.

d) It holds for ε in (8) that ε Q 0 iff τ R FX(xτ ).3

Corollary 1. If (X > xτ ) = ∅, E(X) = supX.

Proof. Substitute (by Proposition 4, c)) xτ = supX in (6), noting that
P ((X − xτ )+) = P (0) = 0.

Remark 1. When P is σ-additive, FX(x+
τ ) = FX(xτ ), i.e. FX is right-

continuous. But an often neglected issue broadens the number of possible

2Equation (8) is stated without proof in [16], Note 3 to Section 3.2. A proof may be
deduced from the later Proposition 8; see also the comments made there.

3We write Q or R to summarize three conditions, here ε < 0 iff τ > FX(xτ ), ε = 0 iff
τ = FX(xτ ), ε > 0 iff τ < FX(xτ ).
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alternatives in comparing E(X) with P (X|X > xτ ) (and with another ex-
tension presented in the next Section 3.1): since FX is originated by a not
necessarily σ-additive probability P , there may exist non-zero adherent prob-
abilities at xτ (cf. [3], Section 6.4.11; see also [9]). Precisely,

FX(x+
τ )− FX(x−τ ) = P−xτ + P+

xτ + P (X = xτ ),

where P−xτ = FX(xτ )− FX(x−τ )− P (X = xτ ) is the left adherent probability
at xτ , P

+
xτ = FX(x+

τ )−FX(xτ ) is the right adherent probability at xτ . Hence,

FX(xτ ) = FX(x−τ ) + P−xτ + P (X = xτ ). (9)

While P+
xτ is zero iff FX is right-continuous at xτ (always if P is σ-additive),

from (9), FX may be left-discontinuous in xτ also when P−xτ = 0, if P (X =
xτ ) > 0 (σ-additivity of P implies P−xτ = 0).

Proposition 5. a) If P (X|X > xτ ) = xτ , then E(X) = P (X|X > xτ ).

b) If P (X|X > xτ ) > xτ , then E(X) Q P (X|X > xτ ) iff τ Q FX(xτ ).

Proof. Using (8), E(X) Q P (X|X > xτ ) iff ε(xτ − P (X|X > xτ )) Q 0, from
which a) follows immediately, b) using also Proposition 4, d).

Proposition 5, a) considers a really extreme situation. Assuming from
now that P (X|X > xτ ) > xτ , Proposition 5, b) reduces the comparison
between E(X) and P (X|X > xτ ) to comparing τ and FX(xτ ) in the further
subcases that can be identified. The most notable instances are:

i) FX is continuous at xτ . This implies τ = FX(xτ ), and E(X) =
P (X|X > xτ ).

ii) FX is right-continuous, but not continuous at xτ , and τ 6= FX(xτ ).
This implies FX(xτ ) = FX(x+

τ ) > τ , and P (X|X > xτ ) > E(X).

Case ii) is the most obvious instance that ensures P (X|X > xτ ) > E(X),
but not the only one. By Proposition 4, a), it can be τ < FX(xτ ) also when
FX is not right-continuous (while being left-discontinuous). Similarly, there
are other cases when P (X|X > xτ ) = E(X) because τ = FX(xτ ), apart from
case i), which remains the most important one. And it is also possible that

iii) P (X|X > xτ ) < E(X).

Obviously, case iii) cannot occur when P is σ-additive, since it is equivalent
to τ > FX(xτ ), hence to τ ∈ ]FX(xτ );FX(x+

τ )] = I> and I> 6= ∅ iff P+
xτ > 0.

When P (X|X > xτ ) > E(X), then P (X|X > xτ ) is clearly not a coherent
extension to X of P in the PMM, while it is so when it coincides with E(X).
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3.1. Comparison with a naive extension

In actuarial applications the upper probability P (A) in (1) is the price,
determined by increasing P by a loading δ > 0, of an insurance policy which
pays 1 unit if and only if event A occurs. In analogy with (1), one could
set the price of an insurance policy which refunds x units iff the loss X = x
occurs, to (1 + δ)P (X), up to a maximum of supX. Here P (X) is usually
the expectation of X computed from P . This procedure defines the naive
extension:

PN(X) = min{(1 + δ)P (X), supX}.

It is important to discuss this extension both because it represents the intu-
itively simplest way to apply the PMM to gambles, and because it has been
actually considered in risk theory. Precisely, only the multiplicative term
P
∗
N(X) = (1 + δ)P (X) is employed, and referred to as expected value prin-

ciple, in risk theory literature [7, p. 67], but we shall rather investigate PN ,
since the upper bound supX is easily seen to be necessary for coherence. To
fix the framework, suppose (throughout this section only) that P is defined
on the field 2IPu , and that we are interested in extending it to some set D
strictly contained in the cone L+(IPu) of the non-negative gambles in L(IPu).
Here we assume that the gambles in D are non-negative, bearing in mind
the insurance framework PN is applied to: each X ∈ D is a refund to the
insured, hence inf X ≥ 0, ∀X ∈ D.

The inclusion D $ L+(IPu) is strict because PN cannot in general be
coherent on a set D containing X, X + k, when k ∈ R+ is large enough. For
instance, if PN(X) = (1 + δ)P (X) < supX, then for k ≥ supX−(1+δ)P (X)

δ
, it

holds that PN(X + k) = supX + k > PN(X) + k , violating property (c) in
[16], Section 2.6.1, which is a necessary condition for coherence.

The above argument points clearly out that PN is not coherent when its
domain D is sufficiently rich. Yet, PN may be coherent on some very special
set (for instance, D = {X}) if, as usually done in insurance, the starting point
for getting PN is a set of gambles, and not the PMM. At a closer look, this is
true when we only assess a prevision to compute PN , without preliminarily
assigning a probability P on 2IPu , such that P (X) is the expectation of X
under P (for instance when D = {X} we may assess P (X) ∈ [inf X; supX]
without eliciting any probability for events like X = x, or X ≤ x). In the
more customary case that P (X) is an expectation, since the PMM is also
determined by the probability P we may always think of PN as an extension
of the PMM. Here PN may be incoherent with the PMM, even when PN is
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defined on very simple sets like D = {X}, as the next example shows:

Example 1. Take IPu = {ω0, ω1, ω2, ω3}, and let X(ωi) = i (i = 0, . . . , 3),
P (X = 0) = 0, P (X = 1) = 0.1, P (X = 2) = 0.5, P (X = 3) = 0.4 and
δ = 1/10. Then P (X) = 2.3 and hence PN(X) = 2.53. Let us now compute
the natural extension in X. We have that τ = δ

1+δ
= 1/11, hence xτ = 1, as

can be checked using FX . Applying (6), E(X) = 1 + 11
10
P (max{X − 1, 0}) =

1 + 11
10

1.3 = 2.43.

In Example 1, PN(X) > E(X). This is interesting because the natural
extension is shown to lead to a price smaller than would be expected from
the intuition at the basis of the PMM and also because PN is incoherent
with the PMM, being larger than E.

The dominance relationship between PN and E is analyzed in detail in
[13], Proposition 6. It ensues from there that PN is only occasionally and in
quite special situations equal to E. For instance, if FX is continuous at xτ
PN is incoherent, unless the limiting evaluation P (X|X ≤ xτ ) = 0 (≤ inf X)
applies.

As a final remark, we note that PN is generally incoherent even when the
assumption X ≥ 0, ∀X ∈ D, is removed. For instance, when X < 0, it is
PN(X) = (1 + δ)P (X) < inf X if P (X) < inf X

1+δ
.

3.2. Comparison with the Total Variation Model

While the naive extension PN in Section 3.1 is directly inspired by the
basic idea underlying the PMM, the Total Variation Model (TVM) may be
introduced independently of the PMM [8], but functionally, as we shall see,
is closely related to it. This motivates the investigation in this section.

Following [8], suppose a dF-coherent probability P is given on a field A,

fix τ in the open interval ]0, 1[, and letM = {Q : ρ(P,Q)
def
= supA∈A |P (A)−

Q(A)| ≤ τ , Q dF-coherent probability on A}. The term ρ(P,Q) is a total
variation distance, and this names the model. So the TVM formalises an
imprecise knowledge of a precise probability P : the ‘true’ probability may
be any of those in M.

If the following assumption is made

(a) P (A) > 0, ∀A ∈ A− {∅},

the lower envelope of M, i.e. P TVM(A) = infQ∈M{Q(A)}, ∀A ∈ A, is

P TVM(A) = max{P (A)− τ, 0},∀A ∈ A− {Ω}, (10)
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while P TVM(Ω) = 1.
It is then easy to derive P TVM(A) = 1− P TVM(Ac), getting

P TVM(A) = min{P (A) + τ, 1},∀A ∈ A− {∅}, (11)

while P TVM(∅) = 0.
By Proposition 2, P TVM is a coherent, 2-alternating upper probability.
We emphasize that (10), (11) are obtained under assumption (a), which is

rather restrictive: in the common case that A = 2IPu , IPu must be countable.
This is a difference with the PMM, whose probabilities (1), (2) need not
comply with (a).

When assumption (a) applies, we may use (2), (3) to get

P (A) = (1 + δ) max{P (A)− τ, 0} =
1

1− τ
P TVM(A), (12)

which holds iff A 6= Ω. Analogously, P (A) = (1 + δ) min{P (A), 1
1+δ
} =

1
1−τ min{P (A), 1− τ} = 1

1−τ (min{P (A) + τ, 1} − τ). Hence

P (A) =
1

1− τ
(P TVM(A)− τ), A 6= ∅. (13)

Thus equations (12), (13) explicit the relationship between PMM and TVM,
when both are obtained from the same probability P .

The natural extension ETVM of the TVM on any A-measurable gamble
is obtained using previous results: from (13) P TVM(A) = (1 − τ)P (A) + τ ,
and using (4)

ETVM(X) = inf X +

∫ supX

inf X

[(1− τ)P (X > x) + τ ]dx =

inf X + (1− τ)

∫ supX

inf X

P (X > x)dx+ τ(supX − inf X).

Since (cf. [16], Section 3.2.3)∫ supX

inf X

P (X > x)dx = xτ +
1

1− τ
P ((X − xτ )+)− inf X,

we obtain

ETVM(X) = xτ + P ((X − xτ )+) + τ(supX − xτ ). (14)
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Although the relationship between PMM and TVM is functionally simple,
not all the results concerning one model have a comparably simple coun-
terpart within the other one. This is especially true when conditioning, cf.
Section 5 for PMM and [8] for TVM.

3.3. A generalization

We shall derive here E in the more general framework of Proposition 3,
that P is defined by the PMM on S+ and E on L(IPu). We first obtain an
expression for E(B), for any event B in 2IPu .

Proposition 6. In the PMM, the natural extension of P : S+ → R on 2IPu

is

E(B) = min{(1 + δ)P̃ ∗(B), 1}, (15)

where the upper probability P̃ ∗(B) = inf{P (A) : A ∈ S+, B ⇒ A} is the
outer function of P .

We emphasize that P̃ ∗ in (15) is generally not a precise, but an upper
probability. In fact, by Proposition 3 (a), it coincides with the natural ex-
tension EP on 2IPu of the probability P , when P is interpreted as a special
upper probability. As such, and since P is obviously n-alternating, P̃ ∗ is
n-alternating too (see [2]).

Proposition 7. In the PMM, the natural extension of P : S+ → R on L(IPu)
is, ∀ X ∈ L(IPu):

E(X) = xuτ + (1 + δ)EP ((X − xuτ )+) (16)

where EP is the natural extension of P (also of P̃ ∗) on L, and xuτ is the
(upper) quantile relative to P̃ ∗

xuτ = sup{x ∈ R : P̃ ∗(X > x) ≥ 1− τ}. (17)

Clearly, (16) generalizes (6). We might summarize the difference between
the natural extension in (16) and that in (6) as follows: computing the
natural extension of P on gambles which are not necessarily measurable
with respect to the domain of P introduces imprecision by transforming the
precise prevision P ((X−xτ )+) in (6) into the upper prevision EP ((X−xuτ )+)
in (16). Also the quantile xτ refers to probability P in (7), while xuτ employs
the upper probability P̃ ∗ in (17).
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But there is another attractive interpretation: E(B) in (15) can be viewed
as a kind of imprecise PMM, defined via natural extension on 2IPu starting
from a (precise) PMM on a narrower set S+: then (16) describes the natural
extension of this imprecise model.

Some properties of the natural extension of the PMM generalize to the
natural extension of the imprecise PMM. The following proposition relaxes (8):

Proposition 8. If (X > xuτ ) 6= ∅, it holds for the natural extension E on
L(IPu) of P : S+ → R that

E(X) ≤ εuxuτ + (1− εu)EP (X|X > xuτ ) (18)

where εu
def
= 1− (1 + δ)EP (X > xuτ ).

Although the inequality in (18) can be strict (we omit proving this),
when P and hence P are defined on 2IPu then EP is equal to P (or to its
extension using (5)), and xuτ , ε

u to xτ , ε respectively. Since P is additive
(and considered the proof of Proposition 8 given in Appendix A) we get now
EP ((X − xτ )+) = P ((X − xτ )+) = λ. Thus (18) reduces to (8).

The statement corresponding to Proposition 4 d) is εu R 0 iff EP (X >

xuτ ) Q 1
1+δ

, or also εu R 0 iff EP (X ≤ xuτ ) R τ .
We know that ε = 0 when FX is continuous at xτ . An analogous re-

lationship associates εu and FX . In fact, when FX(x) = EP (X ≤ x) =
1 − EP (X > x) is continuous at xuτ , then EP (X > xuτ ) = 1 − τ . Hence
εu = 1− (1 + δ)(1− τ) = 0.

4. Risk measurement interpretations

If Y is a gamble, it is known [10] that P (−Y ) may be interpreted as
a risk measure for Y , i.e. a number measuring how risky Y is, or also the
amount of money to be reserved to cover potential losses from Y . Several risk
measures were introduced in the literature, and there is often no unanimity
on the terminology. To ensure comparisons with [5], we shall refer the risk
measure to X = −Y ; this corresponds, when Y ≤ 0, to thinking in terms of
losses and is frequently done in insurance, where X represents the amount
to be paid for insurance claims (however, X is not necessarily non-negative
in what follows).4 Thus the upper previsions E(X) in (6), (8) and (16) may

4While ensuring compatibility with the prevailing literature and the formulae in [16],
the convention of referring to losses modifies the range of the typical values for τ . In
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be seen as risk measures for X, and there is a strong correspondence with
measures studied in the literature.

Consider equation (6): xτ is the Value-at-Risk of X at level τ , V aRτ (X),
while P ((X−xτ )+) is the expected shortfall ESτ (X) (whenever P is replaced
by or thought of as an expectation) [5]. In fact, (X − xτ )

+ measures the
shortfall, i.e. the residual loss in absolute value of an agent who reserves
an amount of money equal to V aRτ (X) = xτ to cover losses from X. Also
P (X|X > xτ ) corresponds to a well-known risk measure (when P is an
expectation), termed Conditional Tail Expectation (CTEτ ) in [5].

Equation (6) corresponds to (2.7) in [5], which defines another measure
of risk, TailV aRτ (X) or TV aRτ (X). This equation is identical to (6), after
replacing E, xτ , P ((X − xτ )

+) with, respectively, TV aRτ (X), V aRτ (X),
ESτ (X):

TV aRτ (X) = V aRτ (X) + (1 + δ)ESτ (X).

Analogously, equation (8) corresponds to

TV aRτ (X) = (1− ε)CTEτ (X) + εV aRτ (X). (19)

The novel fact in our approach (apart from using previsions instead of ex-
pectations) is that TV aRτ is derived as the natural extension of the PMM,
while the starting point in the literature for defining this or other measures
is usually a set of random variables, often a linear space equipped with a
σ-additive probability measure, which is used to compute the expectations.
In our notation, the usual approach would make the initial uncertainty as-
sessments on the gambles defined on IPu rather than on the events in 2IPu .
Recalling also Proposition 3, we deduce the following properties for TV aRτ :

Proposition 9. TV aRτ (X) is the natural extension on L(IPu) of the PMM
defined on 2IPu. Hence, it is the least-committal risk measure extending the
PMM which is coherent. Actually, it is its only coherent extension which is
2-alternating, or equivalently comonotonic additive.

CTEτ complements V aRτ , in the sense that V aRτ , unlike CTEτ , is
nearly uninformative about what are the losses, should the threshold xτ be

this section τ should be fairly close to 1, representing the probability that the loss is not
too high, while in the rest of the paper should rather be close to 0, being a taxation or
commission.
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exceeded. Unfortunately, neither V aRτ nor CTEτ is generally coherent, even
though their linear combination in (19) originates a coherent risk measure.
Conditions for coherence of CTEτ are discussed in Section 3, and are com-
moner in practice than those ensuring coherence of V aRτ .

5 In the classical
risk measurement approach using a σ-additive probability, the comparison
between CTEτ and TV aRτ is limited to cases i), ii) in Section 3 which,
as we pointed out there, are not exhaustive in general. Comonotonic addi-
tivity of TV aRτ is also an interesting and sometimes required property in
risk measurement [5]. The reason is that the risk of the sum ρ(X + Y ) is
generally less than the sum of the single risks for X and Y , because of a di-
versification effect; however, this effect is much weaker, making the equality
ρ(X + Y ) = ρ(X) + ρ(Y ) an often acceptable approximation, when X and
Y tend to vary in the same direction, i.e. are comonotonic.

The generalization in Section 3.3 forms a basis for further results on the
risk measurement side. This time, E(X) in (16) is the natural extension of
the PMM defined on S+(⊂ 2IPu), and may again be interpreted as a risk
measure, let us name it Imprecise TailV ar or ITV aRτ . Using Proposition
3, ITV aRτ is coherent and also 2-alternating. However, ITV aRτ has no
analogue in the risk measurement literature. The reason lies in the standard
habit of defining risk measures from an underlying precise probability, an
established custom which rules out potentially interesting risk measures that
are functions of imprecise measures. And looking at (16), we notice that
ITV aRτ is a linear combination of other two measures which are imprecise
versions of V aRτ and ESτ : x

u
τ is defined in (17) as a function of the upper

probability P̃ ∗, the shortfall (X − xuτ )+ is evaluated by the upper prevision
EP .

We may conclude that the PMM provides also a formal justification for
the existence of a new kind of risk measures, those defined in terms of im-
precise uncertainty measures. This topic is still largely not investigated; an
exception is the generalization of Dutch risk measures introduced in [1].

Finally, note that the natural extension ETVM of the TVM in equation
(14) provides us with another 2-alternating (and comonotonic additive) co-
herent risk measure, let us call it TV RMτ (Total Variation risk measure).
Its expression is

TV RMτ (X) = V aRτ (X) + ESτ (X) + τ(supX − xτ ).

5For V aRτ , see the discussion in [10].
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We are not aware whether TV RMτ has been previously employed in the
relevant literature, seemingly not, but similarly to TV aRτ it can be viewed
as the least-committal coherent risk measure which extends the TVM defined
on 2IPu .

To conclude this section, we present a simple example illustrating several
of the concepts discussed so far.

Example 2. Let IPu = R+ denote the set of possible outcomes of a certain
stock index Y on a given day. For all ω ∈ IPu, define X on IPu by

X(ω) =


y1 if ω ≤ y1

y2 if ω ≥ y2

ω otherwise,

where 0 < y1 < y2. We regard X as the return of an investment certificate
with equity protection: X replicates Y within some chosen bounds, a floor
y1 and a cap y2.

We would like to sell X at price p, with y1 < p < y2, thus making a profit
p − X. We aim at calculating a risk measure for the profit, by calculating
the upper prevision of the potential loss X − p. We consider a threshold t,
with p < t < y2, such that X ≥ t is deemed to lead to a critical loss.

We will calculate the upper prevision of X − p as the natural extension
of a PMM defined on a lattice, which means that the risk measure will be
ITV aRτ . To this end, we first consider some events that are important for
assessing the risk:

• E1 is defined as the event ‘X ≤ p’; it corresponds to having a gain (in
the limit zero, if X = p);

• Ec
1, the complement of E1, obviously means that there is a loss;

• E2 = ‘X ≥ t’ corresponds to experiencing a critical loss.

The minimum lattice that includes the three events above is S+ = {E1, E
c
1,

E2, E1∨E2, ∅,Ω} (note that E1∧E2 = ∅). We assess a probability P on this
lattice, to compute E(X − p) = E(X)− p using Proposition 7.

Now we have to fix τ ∈ ]0; 1[. We choose τ so that P (E1) ≤ τ < 1−P (E2).
The rationale is the following. Remember that the meaning of τ is that of
a threshold (cf. Footnote 4): the probability of not experiencing a critical
loss must be larger than τ . Using the introduced events, this means that
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τ < 1 − P (E2). On the other hand, if it was the case that P (E1) > τ ,
recalling that τ is a number close to 1, that would correspond to requiring
an unrealistically high probability of making a gain.

We may conveniently apply the following formula (cf. (30) in the proof
of Proposition 7) to obtain E(X):

E(X) = xuτ +
1

1− τ

∫ supX

xuτ

P̃ ∗(X > x)dx, (20)

where xuτ and P̃ ∗ are defined in (17) and Proposition 6, respectively.
Let us calculate xuτ .

• If x < p, then the event ‘X > x’ implies only the element Ω of S+, and
hence P̃ ∗(X > x) = 1.

• If p ≤ x < t, then the elements in S+ implied by ‘X > x’ are Ec
1 and

Ω, and hence P̃ ∗(X > x) = P (Ec
1).

• If t ≤ x < y2, then the elements in S+ implied by ‘X > x’ are Ec
1, E2,

E1 ∨ E2 and Ω, and hence P̃ ∗(X > x) = P (E2).

• If x ≥ y2, then the event ‘X > x’ is ∅, and hence P̃ ∗(X > x) = 0.

Recalling that P (E1) ≤ τ < 1 − P (E2), we obtain that xuτ = t. Now,
using (20)

E(X − p) = (t− p) +
P (E2)

1− τ
(y2 − t).

This means that the amount of money to be reserved is made of a fixed term
(t−p) to cover non-critical losses, plus a term to cover the critical part of the
loss, which for a given τ is proportional to the probability of experiencing a
critical loss.

As the reader can easily verify, extending P on the field (and lattice)
S+ ∪ {Ec

2} and modifying the PMM accordingly does not change the value
of E(X−p), since Ec

2 is not implied by any event ‘X > x’ when x < y2.

It is worth noting that the less general formula (6) [16] can not be applied
in Example 2 when P is assessed only on S+ or even on S+ ∪ {Ec

2}, as it
requires P to be defined on a much larger domain, (at least) the smallest field
containing the events ‘X > x’ and ‘X < x’, x ∈ [y1; y2]. This highlights an
operationally important feature of the generalization of the PMM introduced
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in Section 3.3: it supplies us with uncertainty evaluations for gambles which
are not necessarily measurable with respect to the set of events the PMM
is defined on. This set must be a lattice (like S+). In particular it may
also be a field (like S+ ∪ {Ec

2}), but could be considerably smaller than the
minimal field meeting the measurability requirements underlying (6). This is
a quite useful fact when eliciting too many beliefs may be hard, or somewhat
arbitrary.

5. Conditioning the pari-mutuel model

Reconsider the basic PMM, with P (A), P (A) given by (1), (2), A ∈ D,
and D is now a field of events. We shall compute the natural extensions
E(A|B), E(A|B) of P and P on A|B, with B ∈ D, B 6= ∅. Since P and
P are, respectively, 2-alternating and 2-monotone, from a well-known result
([15], Thm. 7.2; see also [12]), when P (B) > 0:

E(A|B) =
P (A ∧B)

P (A ∧B) + P (Ac ∧B)
,

E(A|B) =
P (A ∧B)

P (A ∧B) + P (Ac ∧B)
.

(21)

When P (B) = 0, equations (21) do not apply, but it can be shown (di-
rectly, using Williams coherence, or alternatively from results in [16]) that

Lemma 1. Given a coherent lower probability P on a set D of (uncondi-
tional) events, let B ∈ D, P (B) = 0. The natural extension E of P on
D ∪ {A1|B, . . . , An|B} is E(Ai|B) = 1 if B ⇒ Ai, E(Ai|B) = 0 otherwise,
for i = 1, . . . , n.

Applying Lemma 1 for n = 2, A1 = A, A2 = Ac and using conjugacy, it
follows that, when P (B) = 0 in the PMM, then E(A|B) = 0, ∀A such that
B ; A, and E(A|B) = 1, ∀A such that A ∧B 6= ∅.

We assume in the sequel P (B) > 0; note that by (2) P (B) > 0 iff
P (B) > δ

δ+1
= τ . Further, P (B) > 0 ensures that the denominators in (21)

are non-zero. Take E(A|B): using property 2.7.4 (d) in [16], P (A ∧ B) +
P (Ac ∧B) ≥ P (B) > 0. Similarly for E(A|B).

To derive E(A|B), from (21), two alternatives occur:

a) P (Ac ∧B) = max {(1 + δ)P (Ac ∧B)− δ, 0} = 0. Hence E(A|B) = 1.
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P (A) =

{
P (A)
1−τ
1

if τ < P (Ac)
if τ ≥ P (Ac)

P (A) =

{
P (A)−τ

1−τ
0

if τ < P (A)
if τ ≥ P (A)

E(A|B) =

{
P (A∧B)
P (B)−τ
1

if τ < P (Ac ∧B)
if τ ≥ P (Ac ∧B)

E(A|B) =

{
P (A∧B)−τ
P (B)−τ

0

if τ < P (A ∧B)
if τ ≥ P (A ∧B)

Table 1: Values of P (A), P (A), E(A|B), E(A|B).

b) max {(1 + δ)P (Ac ∧B)− δ, 0} > 0. This happens iff P (Ac ∧ B) >
δ

1+δ
= τ and implies min {(1 + δ)P (A ∧B), 1} < 1 (otherwise P (A ∧

B) ≥ 1
1+δ

and P (B) > δ
δ+1

+ 1
1+δ

= 1). Hence we get E(A|B) =
(1+δ)P (A∧B)

(1+δ)(P (A∧B)+P (Ac∧B))−δ = P (A∧B)
P (B)−τ .

The derivation of E(A|B) is analogous:

a) If P (A ∧B) = max {(1 + δ)P (A ∧B)− δ, 0} = 0, E(A|B) = 0.

b) If max {(1 + δ)P (A ∧B)− δ, 0} > 0, this implies τ < P (A ∧ B) and

min {(1 + δ)P (Ac ∧B), 1} < 1; then E(A|B) = P (A∧B)−τ
P (B)−τ .

Table 1 lists the values of P (A), P (A), E(A|B), E(A|B). They are written
as functions of τ , to simplify the inequalities in the ‘if’ clauses (referring to δ,
the clauses involve ratios of probabilities instead of probabilities). Note that
the expressions for E(A|B), E(A|B) reduce to those for P (A), P (A) when
B = Ω.

5.1. Dilation and imprecision increase

How does imprecision in the evaluations vary when conditioning in the
PMM model? To supply some answers, we first recall two concepts.

Definition 2. Given a partition of non-impossible events IP , we say that
(weak) dilation occurs (with respect to A and IP ) when

P (A|B) ≤ P (A) ≤ P (A) ≤ P (A|B),∀B ∈ IP, (22)
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while there is an imprecision increase when

P (A)− P (A) ≤ P (A|B)− P (A|B), ∀B ∈ IP. (23)

Dilation is a so far little investigated phenomenon (see [8, 14]), which
implies that our a posteriori opinions on A will be vaguer and hence also
more imprecise (at least in a weak sense, if the first or last weak inequalities
in (22) are equalities) than the a priori ones, no matter which B ∈ IP is true.
Even though dilation is IP -dependent (so that we may hope that a well-chosen
partition IP avoids dilation), it is a puzzling phenomenon. Clearly, dilation
implies the weaker concept of imprecision increase, which captures one of the
two basic features of dilation, the growth in the degree of imprecision.

To discuss the occurrence of dilation or imprecision increase in the PMM,
we assume that the conditional imprecise probabilities on each A|B are the
natural extensions E(A|B), E(A|B) in Table 1. In this way we obtain the (W-
coherent) natural extension of P (or its conjugate P ) on D∪{A|B : B ∈ IP},
cf. the Appendix in [11]. As for partition IP , our prior assumption P (B) > 0,
∀B ∈ IP , being equivalent by (2) to P (B) > τ , ∀B ∈ IP , implies that IP is
finite. Removing this restriction would lead to versions of the following results
formally, but not operationally more general. This is because conditioning
the PMM probabilities on the events of a partition IP may produce non-
vacuous and non-trivial results only for finitely many B ∈ IP . In fact, there
is a finite number of B such that P (B) > τ for a given τ , while when
P (B) ≤ τ then P (B) = 0 and the PMM natural extension on A|B is either
trivial or vacuous by Lemma 1.

We present now a number of results concerning dilation.

Proposition 10. Let P , P be defined by the PMM on a field of events D
and let E(A|B), E(A|B) be the corresponding natural extensions on A|B,
with B ∈ IP . Then,

E(A|B) ≤ P (A) iff P (Ac ∧Bc) = 0 or τ ≥ P (A∧B)−P (A)P (B)
P (Ac∧Bc) , (24)

E(A|B) ≥ P (A) iff P (A ∧Bc) = 0 or τ ≥ P (A)P (B)−P (A∧B)
P (A∧Bc) . (25)

Remark 2. At most one of the two weak inequalities in (24), (25) has to be
checked, since the signs of the numerators of the fractional terms are opposite
and τ > 0.
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Proposition 11. In the PMM, define: ML = 0 if P (Ac ∧Bc) = 0 ∀B ∈ IP ,

ML = max{P (A∧B)−P (A)P (B)
P (Ac∧Bc) : B ∈ IP, P (Ac ∧ Bc) 6= 0} otherwise; MU = 0,

if P (A ∧ Bc) = 0 ∀B ∈ IP , MU = max{P (A)P (B)−P (A∧B)
P (A∧Bc) : B ∈ IP, P (A ∧

Bc) 6= 0} otherwise; M = max{ML,MU}. Then dilation occurs if and only
if τ ≥M .

Proof. (22) holds iff both (24) and (25) hold ∀B ∈ IP , i.e. iff τ ≥M .

Proposition 11 fully solves the problem of characterising dilation for the
natural extension of the PMM. Yet there are some interesting sufficient con-
ditions for dilation, given in the following corollary.

Corollary 2. Dilation occurs in the PMM for any τ ∈ ]0; 1[, if either of the
following conditions holds:

(a) P (A ∧B) = P (A)P (B), ∀B ∈ IP .

(b) P is uniform on IP = {B1, . . . , Bn} and P (A ∧ Bi) = k > 0 (i =
1, . . . , n).

Proof. Condition (a) ensures dilation, as it implies M = 0 in Proposi-

tion 11. As for (b), it implies P (Bi) = 1
n
, P (A ∧ Bi) = P (A)

n
and therefore

condition (a).

Note that the conditions in Corollary 2 are independent of τ and that
like other models, including the TVM and the ε-contamination model [8],
non-correlation under P between A and each B ∈ IP causes dilation.

Concerning imprecision increase, the following sufficient condition holds:

Proposition 12. Imprecision increases if (τ < min{P (A ∧ B), P (Ac ∧ B)}
or τ ≥ max{P (A ∧B), P (Ac ∧B)}), ∀B ∈ IP .

Proof. Check that (23) holds, using Table 1.

In the special case of Proposition 12 that τ ≥ max{P (A∧B), P (Ac∧B)},
∀B ∈ IP , dilation is ensured too, but the inferences via natural extension are
trivial. See Example 3 for a non-trivial case of equivalence between dilation
and imprecision increase.
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5.2. Imprecision variation in practice

Since Proposition 11 characterises dilation in the PMM, we just have to
check whether its condition τ ≥ M applies or not to shape dilation in any
practical problem. The matter is less immediate with imprecision increase,
when it is not already implied by dilation: only the sufficient condition in
Proposition 12 is available. As a general remark, this kind of investigation
should distinguish more cases, according to the relative orderings in [0; 1] of
P (A ∧ B), P (Ac ∧ B), ∀B ∈ IP , and τ . However, the importance of each
case varies greatly in the applications. We supply some results for the most
significant ones, while the remaining may be analyzed using Table 1 to check
(23), as demonstrated in Example 4. Consider then the following situations

(a) the commission τ is ‘low’;

(b) event A is ‘rare’.

Case (a) is probably the most important: τ will often be rather low, recalling
that it has the meaning of a commission or taxation (this happens for instance
with Internet betting). If ‘low’ means that τ < M , dilation does not occur by
Proposition 11. However, and perhaps surprisingly, imprecision increases if τ
is ‘too low’, meaning with this that τ < min{P (A∧B), P (Ac∧B)}, ∀B ∈ IP .
In fact, the ‘if’ condition in Proposition 12 is true under this assumption,
which also tends to rule out case (b).

We do not necessarily meet case (a) when P (A) is smaller than the com-
mission τ in favour of House or of an insurer (this is relatively frequent in
non-life insurance). In such instances, the study of imprecision increase is
typically split into a number of sub-cases, cf. Example 4 later on.

An important instance is that of rare or extremal events [6], a basic
concept in several applications such as large insurance claims, stock market
shocks, climate phenomena, and so on. It corresponds to case (b). We present
a simple, although common situation of this kind in Example 3. Here, like
Example 4, the partition of conditioning events IP = {B,Bc} is binary.

Example 3. Suppose that A is ‘rare’, while Ac ∧ B, Ac ∧ Bc are not. Thus
we may assume that P (A) ≤ τ < min{P (Ac ∧ B), P (Ac ∧ Bc)}. Then
(see Table 1) P (A) = P (A)/(1 − τ), E(A|B) = P (A ∧ B)/(P (B) − τ),
E(A|Bc) = P (A ∧ Bc)/(P (Bc) − τ), E(A|B) = E(A|Bc) = P (A) = 0.
Substituting these values into (22) and (23), we see that the inequalities in
(22) are the same as those in (23). That is, in this case, there is dilation iff
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there is imprecision increase. We may then apply Proposition 11 to determine
both by computing M , or just MU in this example. In fact M = MU since
condition τ ≥ML ensures that max{E(A|B), E(A|Bc)} ≤ P (A) holds, which
we already know to be trivially true in the form 0 = 0. For instance, if
P (A) = 0.02, P (A ∧B) = 0.005, P (A ∧Bc) = 0.015, P (B) = 0.4, we obtain
MU = 1

5
(and ML = 3

395
< P (A) ≤ τ), thus there is dilation (and imprecision

increase) for τ such that 0.2 ≤ τ < 0.395 = min{P (Ac ∧ B), P (Ac ∧ Bc)},
none of them for τ ∈ [0.02; 0.2[.

Example 4. Assign P as follows: P (A∧B) = 1
10

, P (A∧Bc) = P (Ac∧Bc) = 1
5
,

P (Ac ∧ B) = 1
2
. Consequently P (A) = 3

10
, P (B) = 3

5
, P (A|B) = 1

6
,

P (A|Bc) = 1
2
. To study dilation for the corresponding PMM using Proposi-

tion 11, we calculate ∆ = P (A∧Bc)−P (A)P (Bc) = P (A)P (B)−P (A∧B) =
2
25
> 0, ML = ∆

P (Ac∧B)
= 4

25
, MU = ∆

P (A∧Bc) = 2
5
. Therefore, Proposition 11

guarantees that dilation occurs iff τ ≥ max{ML,MU} = 2
5
.

As for imprecision increase, it is ensured by Proposition 12 when τ < 1
10

or τ ≥ 1
2
, but in the latter case we already know that dilation, and hence

imprecision increase as well, occurs for τ ≥ 2
5
. For τ ∈ [ 1

10
; 2

5
[, we have

to check whether the inequalities (23) hold, distinguishing more subcases
according to the different expressions for P (A), P (A), E(A|B), E(A|B),
E(A|Bc), E(A|Bc). Conditioning on Bc, we should check whether

E(A|Bc)− E(A|Bc) ≥ P (A)− P (A). (26)

Now, E(A|Bc) − E(A|Bc) = 1 and (26) therefore holds if τ ∈ [1
5
; 2

5
[, while

(26) specialises into τ
P (Bc)−τ ≥

τ
1−τ when τ ∈ [ 1

10
; 1

5
[, and this inequality is

true. Therefore (26) is verified for τ ∈ [ 1
10

; 2
5
[, and imprecision increase in

this interval depends only on whether the inequality E(A|B) − E(A|B) ≥
P (A) − P (A) holds. Noting that E(A|B) − E(A|B) = P (A∧B)

P (B)−τ = 1
6−10τ

,

∀τ ∈ [ 1
10

; 2
5
[, we have to check whether:

1
6−10τ

≥ P (A)
1−τ = 3

10(1−τ)
if τ ∈ [ 3

10
; 2

5
[

1
6−10τ

≥ τ
1−τ if τ ∈ [ 1

10
; 3

10
[.

The former inequality has no solution in [ 3
10

; 2
5
[, the latter is true for τ ∈

[ 1
10

; 1
5
]. Conclusions: dilation occurs iff τ ∈ [2

5
; 1[, imprecision increase but

not dilation iff τ ∈ ]0; 1
5
], neither of them iff τ ∈ ]1

5
; 2

5
[.
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5.3. Imprecision variation and partition refinement

Limiting dilation or imprecision increase in the PMM is not straightfor-
ward. This may be achieved by an appropriate choice of τ in some, but not
all cases (for instance, τ ∈ [1

5
; 2

5
[ might be too high a percentage in Example

4). More generally, an obvious alternative is to choose a coherent exten-
sion other than the natural extension. This often shrinks imprecision, by the
dominance properties of the natural extension, but finding a computationally
simple such extension may be not so easy in practice.

In [8] the following interpretation for dilation is outlined: one may think
that P (A|B) (P (A|B)) is the lower (upper) envelope of a set of precise
probabilities, each representing the opinion of a single expert, and that
P (A|B) ≤ P (A) and P (A|B) ≥ P (A) because there is disagreement among
the experts about the effect of observing B on the probability of A. This
suggests that we might refine the starting partition IP , for instance split-
ting B into B1 ∨ B2 . . . ∨ Bm, Bi ∧ Bj = ∅ if i 6= j, such that there is a
larger consensus on the effect of each Bi on A. Intuitively, refining the par-
tition of the conditioning events should hinder dilation, since the number
of constraints in Proposition 10 increases. One might expect a decrease in
imprecision too, but this cannot be taken for sure. To give an idea of the sit-
uation, consider the special case that A⇒ B1 ⇒ B. If a dF-coherent precise
probability P is assessed on the relevant conditional events, it is well known
that P (A|B1)P (B1|B) = P (A|B), hence P (A|B1) ≥ P (A|B): uncertainty
decreases (or does not increase, at least) when conditioning in a narrower
environment. What happens in the same case, if P is replaced by imprecise
probabilities? The next proposition gives the answer:

Proposition 13. Let A ⇒ B1 ⇒ B, and let P (P ) be a W-coherent upper
(lower) probability, such that the expressions below are well-defined. Then

P (A|B1) ≥ P (A|B), (27)

P (A|B1) ≥ P (A|B). (28)

From Proposition 13, introducing a more refined partition has an upward
shift effect on the conditional imprecise probabilities concerning A. While
this tends to make dilation more difficult, but not necessarily impossible (note
that the shift in (28) tends to reduce dilation, or even to prevent it if such that
P (A|B1) > P (A)), the overall effect on imprecision variation is unsure (the
shift in (27) tends to increase it), and it is possible that P (A|B1)−P (A|B1) >
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P (A|B)−P (A|B). Outside the case A⇒ B1, formulae less direct than (27),
(28) apply, but analogous conclusions may be drawn.

6. Conclusions

The pari-mutuel model represents a simple and natural way of eliciting
upper and lower probabilities, and can be extended in more directions, thanks
to the availability of standard procedures for 2-monotone and 2-alternating
previsions. We computed explicitly its natural extension E starting from a
PMM assignment on a lattice of events, generalizing the approach in [16],
which is anyway discussed, focusing on comparing the different formulae
available for E. While a naive extension, considered in insurance premium
pricing, does not seem to be a valuable alternative to the natural extension,
being generally not coherent, the various formulae for the natural extension
have a notable meaning in risk measurement. In fact, they correspond to
known measures of risk or generalize them. We discussed also how to use the
natural extension when conditioning, characterising dilation and investigat-
ing imprecision increase for the PMM.

A tempting new direction would, in a sense, merge our analysis in the
conditional and unconditional framework, studying the natural extension
to conditional gambles. Here a difficulty arises: available generalizations
of equations (21), studied in [12], are lower/upper bounds for the natural
extension and might not be attained, even when P is 2-alternating. In other
words, the available procedures seem to give weaker results.

This and the considerations in Section 5.3 on how to limit dilation or
imprecision increase might motivate investigating coherent extensions of the
PMM alternative to the natural extension.
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A. Proofs of the main results

Proof of Proposition 6. By Proposition 3 (a), E(B) = P
∗
(B) = inf{min{(1+

δ)P (A), 1} : A ∈ S+, B ⇒ A}. Defining LB = {A ∈ S+ : B ⇒ A, (1 +
δ)P (A) < 1}, LB = ∅ iff (1 + δ)P̃ ∗(B) ≥ 1.

Two cases may occur: if LB = ∅, that is if (1 + δ)P̃ ∗(B) ≥ 1, then
E(B) = 1; if LB 6= ∅, that is if (1 + δ)P̃ ∗(B) < 1, E(B) = inf{(1 + δ)P (A) :
A ∈ LB} = (1 + δ) inf{P (A) : A ∈ LB} = (1 + δ)P̃ ∗(B). In summary,
equation (15) holds.

Proof of Proposition 7. Apply (4) and Proposition 3, (a) substituting P
∗

=
E with its expression in equation (15), getting

E(X) = inf X +

∫ supX

inf X

min{(1 + δ)P̃ ∗(X > x), 1}dx. (29)

From here, the derivation of (16) is similar to that just sketched in [16], Sec-
tion 3.2.5, to obtain (6). We detail the proof here for the sake of complete-
ness. Since x < xuτ (alternatively x > xuτ ) implies P̃ ∗(X > x) ≥ 1− τ = 1

1+δ

(alternatively P̃ ∗(X > x) < 1
1+δ

), we get from (29)

E(X) = inf X +

∫ xuτ

inf X

dx+ (1 + δ)

∫ supX

xuτ

P̃ ∗(X > x)dx =

xuτ + (1 + δ)

∫ supX

xuτ

P̃ ∗(X > x)dx.

(30)

We prove now that EP ((X−xuτ )+) =
∫ supX

xuτ
P̃ ∗(X > x)dx. For this, we apply

Proposition 3 to the coherent, 2-alternating (upper) probability P̃ ∗. Since
inf(X − xuτ )+ = 0 and sup(X − xuτ )+ = supX − xuτ , as ensues using also a
property analogous to Proposition 4 b), and since, for x ≥ 0, (X − xuτ )+ > x
iff X − xuτ > x, we get

EP ((X − xuτ )+) =

∫ supX−xuτ

0

P̃ ∗(X − xuτ > x)dx =

∫ supX

xuτ

P̃ ∗(X > x)dx,

where integration by substitution is employed in the last equality.

Proof of Proposition 8. Noting that (X − xuτ )
+ = (X − xuτ )IX>xuτ and by

subadditivity of coherent upper previsions and, at the second equality, the
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GBR,6,7 EP ((X−xuτ )+) = EP ((X−xuτ )IX>xuτ ) ≤ EP (IX>xuτ (X−EP (X|X >
xuτ ))) + EP (IX>xuτ (EP (X|X > xuτ ) − xuτ )) = EP (IX>xuτ (EP (X|X > xuτ ) −
xuτ )) = EP (IX>xuτ )(EP (X|X > xuτ )− xuτ )

def
= λ.

Using also the definition of εu and λ, we get further xuτ +(1+δ)λ = xuτ (1−
(1 + δ)EP (X > xuτ )) + (1 + δ)(λ+ xuτEP (X > xuτ )) = εuxuτ + (1 + δ)(EP (X >
xuτ )(EP (X|X > xuτ )−xuτ )+xuτEP (X > xuτ )) = εuxuτ +(1−εu)EP (X|X > xuτ ).

Finally, by (16) and the expressions above, E(X) = xuτ + (1 + δ)EP ((X−
xuτ )

+) ≤ xuτ + (1 + δ)λ = εuxuτ + (1− εu)EP (X|X > xuτ ).

Proof of Proposition 10. To prove (24), we use Table 1 to choose the appro-
priate values of E, P and substitute them into E(A|B) ≤ P (A).

If τ < P (A ∧ B), E(A|B) ≤ P (A) becomes P (A∧B)−τ
P (B)−τ ≤ P (A)−τ

1−τ , which,
with simple calculations and recalling the well-known inclusion-exclusion
principle P (A∨B)+P (A∧B) = P (A)+P (B), is easily seen to be equivalent
to P (A∧B)−P (A)P (B) ≤ τP (Ac∧Bc). When P (Ac∧Bc) = 0, this inequal-
ity is satisfied for any value of τ , since, in this case, P (A∧B)−P (A)P (B) =
P (A)+P (B)−1−P (A)P (B) = (1−P (B))(P (A)−1) ≤ 0 (use the inclusion-
exclusion principle again in the first equality). Otherwise, it is clearly satis-

fied for τ ≥ P (A∧B)−P (A)P (B)
P (Ac∧Bc) .

When τ ≥ P (A∧B), the inequality E(A|B) ≤ P (A) is trivially satisfied.
To conclude the proof of (24), we observe that, when P (Ac ∧Bc) > 0, some

algebraic calculations show that P (A∧B)−P (A)P (B)
P (Ac∧Bc) ≤ P (A ∧B).

The proof of (25) is analogous.

Proof of Proposition 13. We start by establishing (27). When P is a W-
coherent upper prevision, X a gamble, C an event and IC its indicator, the
following inequality holds:

If P (X|B ∧ C) > 0, P (ICX|B) ≤ P (C|B)P (X|B ∧ C). (31)

Inequality (31) can be proven in a way quite analogue to the proof of the
opposite inequality for lower previsions given in [12], Proposition 3.1 (a).
Putting C = B1, X = A, (31) specialises into P (A|B) ≤ P (B1|B)P (A|B1),
which implies (27).

6Recall also that the natural extension EP always exists with W-coherence, cf. [11].
7When EP (X > xuτ ) = 0, there is an infinite number of possible values satisfying the

GBR. In this case, it can be proved that any of them can replace EP (X|X > xuτ ) in
Proposition 8.
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Now we consider (28). We use the definition of W-coherence (Definition
1 in Section 2) to show that (28) is necessary to ensure supG|B ≥ 0, for a
specific G obtained from betting on A|B, A|B1 with stakes 1, −1 respectively.
In fact, using IB = IB1 + IBIBc1 at the second equality,

G = IB(A− P (A|B))− IB1(A− P (A|B1))

= IB1(A− P (A|B)) + IBIBc1(A− P (A|B))− IB1(A− P (A|B1))

= IB1(P (A|B1)− P (A|B)) + IBIBc1(A− P (A|B)).

Then, G|B has only two possible values: G|B = P (A|B1)−P (A|B) when
B1 and B are true, G|B = −P (A|B) ≤ 0 when B1 is false and B is true.

Hence (28) holds, trivially when P (A|B) = 0, to guarantee that supG|B ≥
0, when P (A|B) > 0.
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