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Abstract
Hierarchical time series are common in several applied fields. The forecasts for these time series are required to be coherent,
that is, to satisfy the constraints given by the hierarchy. The most popular technique to enforce coherence is called reconcili-
ation, which adjusts the base forecasts computed for each time series. However, recent works on probabilistic reconciliation
present several limitations. In this paper, we propose a new approach based on conditioning to reconcile any type of forecast
distribution. We then introduce a new algorithm, called Bottom-Up Importance Sampling, to efficiently sample from the
reconciled distribution. It can be used for any base forecast distribution: discrete, continuous, or in the form of samples,
providing a major speedup compared to the current methods. Experiments on several temporal hierarchies show a significant
improvement over base probabilistic forecasts.

Keywords Forecast reconciliation · Probabilistic reconciliation · Temporal hierarchies · Importance sampling

1 Introduction

Often time series are organized into a hierarchy. For example,
the total visitors of a country can be divided into regions and
the visitors of each region can be further divided into sub-
regions. Such data structures are referred to as hierarchical
time series; they are common in fields such as retail sales
(Makridakis et al. 2021) and energy modelling (Taieb et al.
2021).

The forecasts for hierarchical time series should respect
some summing constraints, in which case they are referred
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to as coherent. For instance, the sum of the forecasts for the
sub-regions should match the forecast for the entire region.
However, the forecasts independently produced for each time
series (base forecasts) are generally incoherent.

Reconciliation algorithms (Hyndman et al. 2011; Wick-
ramasuriya et al. 2019) adjust the incoherent base forecasts,
making them coherent. Reconciled forecasts are generally
more accurate than base forecasts: indeed, forecast reconcil-
iation is a special case of forecast combination (Hollyman
et al. 2021). An important application of reconciliation
algorithms is constituted by temporal hierarchies (Athana-
sopoulos et al. 2017; Kourentzes and Athanasopoulos 2021),
which make coherent the forecasts produced for the same
time series at different temporal scales.

Most reconciliation algorithms (Hyndman et al. 2011;
Wickramasuriya et al. 2019, 2020; Di Fonzo andGirolimetto
2021, 2022) provide only reconciled point forecasts. It is
however clear (Kolassa 2023) that reconciled predictive dis-
tributions are needed for decision making.

Probabilistic reconciliation has been addressed only rece
ntly; earlier attempts (Jeon et al. 2019; Taieb et al. 2021),
though experimentally effective, lacked a strong formal jus-
tification. For the case of Gaussian base forecasts, Corani
et al. (2020) obtains the reconciled distribution in analyt-
ical form introducing the approach of reconciliation via
conditioning. Panagiotelis et al. (2023) provides a frame-
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work for probabilistic reconciliation via projection. However
this approach cannot reconcile discrete distributions. Corani
et al. (2023) performs probabilistic reconciliation via con-
ditioning of count time series by adopting the concept of
virtual evidence (Pearl 1988). However its implementation
in probabilistic programming, basedonMarkovChainMonte
Carlo (MCMC), is too slow on large hierarchies; moreover
it requires the base forecast distribution to be in parametric
form.

The main contribution of this paper is the Bottom-Up
Importance Sampling (BUIS) algorithm, which samples
from the reconciled distribution obtained via conditioning
with a substantial speedupwith respect toCorani et al. (2023).
BUIS can be used even when the base forecast distribution
is only available through samples. This is the case of fore-
casts returned by models for time series of counts (Liboschik
et al. 2017) or based on deep learning (Salinas et al. 2020).
We prove the convergence of BUIS to the actual reconciled
distribution.An implementation of the algorithm in theR lan-
guage is available in the R package bayesRecon (Azzimonti
et al. 2023).

We provide two further formal contributions. The first is a
definition of coherence for probabilistic forecasts that applies
to both discrete and continuous distributions. The second
is a novel interpretation of the reconciliation via condition-
ing, in which the base forecast distribution is conditioned
on the hierarchy constraints. This allows for a unified treat-
ment of the reconciliation of discrete and continuous forecast
distributions. We test our method exhaustively on temporal
hierarchies reporting positive results both for the accuracy
and the efficiency of our method.

The paper is organized as follows. In Sect. 2, we intro-
duce the notation and the reconciliation of point forecasts.
In Sect. 3, we introduce our approach to reconciliation via
conditioning and we compare it to the existing literature. In
Sect. 4, we introduce the Bottom-Up Importance Sampling
algorithm. We empirically verify its correctness in Sect. 5,
while in Sect. 6 we test it on different data sets. We present
the conclusions in Sect. 7.

2 Notation

Consider the hierarchy of Fig. 1. We denote by b =
[b1, . . . , bnb ]T the vector of bottom variables, and by u =
[u1, . . . , unu ]T the vector of upper variables. We then denote
by

y =
[
u
b

]
∈ R

n

the vector of all the variables. The hierarchy can be expressed
as a set of linear constraints:

U1

U2

B1 B2

U3

B3 B4

Fig. 1 A hierarchy with 4 bottom and 3 upper variables

y = Sb, where S =
[
A
I

]
. (1)

I ∈ R
nb×nb is the identity matrix; we refer to S ∈ R

n×nb as
the summing matrix and to A ∈ R

nu×nb as the aggregating
matrix. We can thus write the constraints as u = Ab. For
example, the aggregating matrix of the hierarchy in Fig. 1 is:

A =
⎡
⎣1 1 1 1
1 1 0 0
0 0 1 1

⎤
⎦ .

A point y ∈ R
n is coherent if it satisfies the constraints given

by the hierarchy. We denote by S the set of coherent points,
which is a linear subspace of R

n :

S := {y ∈ R
n : y = Sb}. (2)

2.1 Temporal hierarchies

In temporal hierarchies (Athanasopoulos et al. 2017;Kourentzes
and Athanasopoulos 2021), forecasts are generated for the
same time series at different temporal scales. For instance, a
quarterly time series can be aggregated to the semi-annual
and the annual scale. If we are interested in predictions
up to one year ahead, we compute four quarterly forecasts
q̂1, q̂2, q̂3, q̂4, two semi-annual forecasts ŝ1, ŝ2, and an annual
forecast â1. We then obtain the hierarchy in Fig. 1. The base
point forecasts, independently computed at each frequency,
are b̂ = [q̂1, q̂2, q̂3, q̂4]T and û = [â1, ŝ1, ŝ2]T .

2.2 Point forecasts reconciliation

Let us denote by ŷ = [
ûT | b̂T ]T the vector of the base (inco-

herent) forecasts. Note that, for ease of notation, we drop the
time subscript. Point reconciliation is generally performed
in two steps (Hyndman et al. 2011; Wickramasuriya et al.
2019). First, the reconciled bottom forecasts are computed
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by linearly combining the base forecasts of the entire hierar-
chy:

b̃ = Gŷ,

for some matrix G ∈ R
m×n . Then, the reconciled forecasts

for the whole hierarchy are given by:

ỹ = Sb̃.

The state-of-the-art reconciliation method is MinT (Wickra-
masuriya et al. 2019), which defines G as:

G = (STW−1S)−1STW−1,

where W is the covariance matrix of the errors of the base
forecasts. This method minimizes the expected sum of the
squared errors of the reconciled forecasts, under the assump-
tion of unbiased base forecasts.

2.3 Probabilistic framework

Probabilistic reconciliation requires a probabilistic frame-
work, in which forecasts are in the form of probability
distributions. We denote by ν̂ ∈ P(Rn) the forecast distribu-
tion for y, where P(Rn) is the space of probability measures
on (Rn,B(Rn)), and B(Rn) is the Borel σ -algebra on R

n .
Moreover, we denote by ν̂u and ν̂b the marginal distributions
of, respectively, the forecasts for the upper and the bottom
components of y.

The forecast distribution ν̂ may be either discrete or abso-
lutely continuous. In the following, if there is no ambiguity,
we will use π̂ to denote either its probability mass function,
in the former case, or its density, in the latter. Therefore, if ν̂

is discrete, we have

ν̂(F) =
∑
x∈F

π̂(x),

for any F ∈ B(Rn). Note that the sum is well-defined as
π̂(x) > 0 for at most countably many x’s. On the contrary,
if ν̂ is absolutely continuous, for any F ∈ B(Rn) we have

ν̂(F) =
∫
F

π̂(x) dx .

3 Probabilistic Reconciliation

We now discuss coherence in the probabilistic framework
and our approach to probabilistic reconciliation.

Recall that a point forecast is incoherent if it does not
belong to the set S, defined as in (2). Let ν̂ ∈ P(Rn) be
a forecast distribution. Intuitively, ν̂ is incoherent if there

exists a set T of incoherent points, i.e. T ∩ S = ∅, such that
ν̂(T ) > 0. Or, equivalently, if supp(ν̂) � S. We now define
the summing map s : R

nb → R
n as

s(b) = Sb. (3)

The image of s is given by S. Moreover, from (3) and (1), s
is injective. Hence, s is a bijective map between R

nb and S,
with inverse given by s−1(y) = b, where y = (u,b) ∈ S. As
explained in Panagiotelis et al. (2023), for any ν ∈ P(Rnb )

we may obtain a distribution ν̃ ∈ P(S) as ν̃ = s#ν, namely
the pushforward of ν using s:

ν̃(F) = ν(s−1(F)), ∀ F ∈ B(S),

where s−1(F) := {b ∈ R
nb : s(b) ∈ F} is the preimage

of F . In other words, s# builds a probability distribution for
y supported on the coherent subspace S from a distribution
on the bottom variables b. Since s is a measurable bijec-
tive map, s# is a bijection between P(Rnb ) and P(S), with
inverse given by (s−1)# (Appendix A). We thus propose the
following definition.

Definition 1 We call coherent distribution any distribution
ν ∈ P(Rnb ).

This definition works with any type of distribution. More-
over, it can be used even if the constraints are not linear, as
it does not require s to be a linear map.

3.1 Probabilistic reconciliation

The aim of probabilistic reconciliation is to obtain a coherent
reconciled distribution ν̃ ∈ P(Rnb ) from the base forecast
distribution ν̂ ∈ P(Rn).

The probabilistic bottom-up approach, which simply
ignores any probabilistic information about the upper series,
is obtained by setting ν̃ = ν̂b.

Panagiotelis et al. (2023) proposes a reconciliationmethod
based on projection. Given a continuous map ψ : R

n → S,
the reconciled distribution ν̃ ∈ P(S) is defined as the push-
forward of the base forecast distribution ν̂ using ψ :

ν̃ = ψ#ν̂,

i.e. ν̃(F) = ν̂(ψ−1(F)), for any F ∈ B(Rn). Hence, if
y1, . . . , yN are independent samples from ν̂, thenψ(y1), . . . ,
ψ(yN ) are independent samples from ν̃. The map ψ is
expressed as ψ = s ◦ g, where g : R

n → R
nb combines

information from all the levels by projecting on the bottom
level. g is assumed to be in the form g(y) = d + Gy, and
the parameters γ := (d, vec(G)) ∈ R

nb+nb×n are optimized
through stochastic gradient descent (SGD) tominimize a cho-
sen scoring rule. This approach therefore can only be used
with continuous distributions.
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3.2 Probabilistic Reconciliation through
conditioning

We now present our approach to probabilistic reconcilia-
tion, based on conditioning on the hierarchy constraints. Let
Ŷ = (Û, B̂) be a random vector representing the probabilis-
tic forecasts with distribution given by ν̂, so that ν̂u and ν̂b
are the distributions of Û and B̂.

Let us first suppose that the base forecast distribution ν̂ ∈
P(Rn) is discrete, and let π̂ be its probability mass function.
We define ν̃ by conditioning on the coherent subspace S:

ν̃(F) = P(B̂ ∈ F | Ŷ ∈ S)

= P(B̂ ∈ F, Ŷ ∈ S)

P(Ŷ ∈ S)

= P(B̂ ∈ F, Û = AB̂)

P(Û = AB̂)

=
∑

b∈F π̂(Ab,b)∑
x∈Rnb π̂(Ax, x)

, (4)

for any F ∈ B(Rnb), provided that P(Ŷ ∈ S) > 0. The
sums in (4) are well-defined, as π̂(u,b) = π̂(y) > 0 for at
most countably many y’s. Hence, ν̃ is a discrete probability
distribution with pmf given by

π̃(b) = π̂(Ab,b)∑
x∈Rnb π̂(Ax, x)

∝ π̂(Ab,b). (5)

Note that, if ν̂ is absolutely continuous, we have that ν̂(S) =
0, since the Lebesgue measure of S is zero. Hence, P(B̂ ∈
F | Ŷ ∈ S) is not well-defined. However, if we denote by
π̂ the density of ν̂, the last expression is still well-posed. We
thus give the following definition.

Definition 2 Let ν̂ ∈ P(Rn) be a base forecast distribution.
The reconciled distribution through conditioning is defined
as the probability distribution ν̃ ∈ P(Rnb ) such that

π̃(b) ∝ π̂(Ab,b), (6)

where π̂ and π̃ are the densities of (respectively) ν̂ and ν̃, if
ν̂ is absolutely continuous, or the probability mass functions
otherwise.

To rigorously derive (6) in the continuous case,weproceed
as follows. Let us define the random vector Z := Û − AB̂.
Note that the event {Ŷ ∈ S} coincides with {Z = 0}. The
joint density of (Z, B̂) can be easily computed (Appendix
A):

π
(Z,B̂)

(z,b) = π̂(z + Ab,b).

Then, the conditional density of B̂ given Z = 0 is given by
(Çinlar 2011, Chapter 4):

π̃(b) = π(Z ,B)(0,b)∫
R
nb π(Z ,B)(0, x) dx

= π̂(Ab,b)∫
R
nb π̂(Ax, x) dx

∝ π̂(Ab,b),

provided that
∫
R
nb π̂(Ax, x) dx > 0. Finally, note that, if Û

and B̂ are independent, (6) may be rewritten as

π̃(b) ∝ π̂u(Ab) · π̂b(b), (7)

where π̂u and π̂b are the densities of (respectively) ν̂u and
ν̂b. This approach can be applied to both continuous and
discrete distributions, yielding the same expression (6) for
the reconciled distribution.

Given two coherent points y1, y2 ∈ S, the distribution rec-
onciled through conditioning satisfies the followingproperty:

π̃(y1)
π̃(y2)

= π̂(y1)
π̂(y2)

(8)

if π̂(y2) 	= 0, and π̃(y2) = 0 if π̂(y2) = 0; i.e., the relative
probabilities of the coherent points are preserved. Moreover,
reconciliation via conditioning ignores the behaviour of the
base distribution outside the coherent subspace. As shown by
(6), ν̃ only depends on the values of ν̂ on S. Reconciliation
via conditioning is therefore invariant under modifications of
the base forecast probabilities outside the coherent subspace.
This constitutes amajor differencewith respect to themethod
of Panagiotelis et al. (2023) that will be thoroughly studied
in future work.

In Corani et al. (2023), the authors follow an approach
based on virtual evidence (Pearl 1988) to reconcile discrete
forecasts. They set the joint bottom-up distribution as a prior
on the entire hierarchy, and the update is made by con-
ditioning on the base upper forecasts, treated as uncertain
observations. In contrast, we provide a unified treatment of
reconciliation via conditioning for the discrete and the con-
tinuous case. Our approach has a clear interpretation, as the
conditioning is done on the hierarchy constraints.

4 Sampling from the reconciled distribution

If the base forecasts are jointly Gaussian, then the reconciled
distribution is also Gaussian. In this case, reconciliation via
conditioning yields the samemean and variance (Corani et al.
2020) of MinT, which is optimal with respect to the log score
(Wickramasuriya 2023).
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In general, however, the reconciled distribution is not
available in parametric form, hence we need to resort to sam-
pling approaches.We propose amethod based on Importance
Sampling (IS, Kahn 1950; Elvira and Martino 2021).

4.1 Importance Sampling

Let X be an absolutely continuous random variable with
density p. Suppose we want to compute the expectation
μ = E[ f (X)], for some function f . Importance Sampling
estimates the expectation μ by sampling from a different
distribution q, and by weighting the samples to correct the
mismatch between the target p and the proposal q.

In the following the term density denotes either the proba-
bility mass function (for discrete distributions) or the density
with respect to the Lebesgue measure (for absolutely contin-
uous distributions). Let q be a density such that q(x) > 0
if f (x)p(x) 	= 0, and let y1, . . . , yN be independent sam-
ples drawn fromq. The self-normalized importance sampling
estimate (Elvira and Martino 2021) is:

E[ f (X)] ≈
∑N

i=1 w(yi ) f (yi )∑N
i=1 w(yi )

, (9)

where w is defined as w(y) = c p(y)
q(y) , for some (typically

unknown) constant c.

4.2 Probabilistic reconciliation via IS

Let ν̃ (Definition2) be the target distribution.We set ν̂b as pro-
posal distribution. Given a sample b1, . . . ,bN drawn from
ν̂b, the weights are computed as

wi := π̂(Abi ,bi )
π̂b(bi )

. (10)

Then, (bi , w̃i )i=1,...,N is a weighted sample from ν̃, where
w̃i := wi/

∑N
j=1 w j are the normalized weights. Note that (10)

may be interpreted as the conditional density of Û at the point
Abi , given that B̂ = bi . We thus draw samples (bi )i from the
base bottom distributions, and then weight how likely they
are using the base upper distributions. Under the assumption
of independence between B̂ and Û, the density of ν̃ factorizes
as in (7), hence:

wi = π̂u(Abi ). (11)

However, IS is affected by the curse of dimensionality
(Agapiou et al. 2017). In Appendix D.2, we empirically
show that IS has poor accuracy when reconciling large hier-
archies. Another shortcoming of IS is that it is unreliable if
the proposal distribution does not well approximate the target

distribution. Indeed, we prove in Appendix E that the perfor-
mance of IS degrades as the Kullback–Leibler divergence
between bottom-up and base forecast distributions (which is
related to the incoherence of the base forecasts) increases.
The Bottom-Up Importance Sampling (BUIS) algorithm
addresses such problems.

4.3 Bottom-Up Importance Sampling algorithm

Algorithm 1 Bottom-Up Importance Sampling

1: Sample
(
b(i)

)
i=1,...,N from π̂b

2: for l in levels do
3: for j = 1, . . . , kl do

4: qw(i) ← π̂u j,l

(∑q j,l
t=1 b

(i)
t,( j,l)

)
for i = 1, . . . , N

5: w(i) ← qw(i)∑
h qw(h) for i = 1, . . . , N

6:
(
b̄(i)
j

)
i ← Resample

((
b(i)
1,( j,l), . . . , b

(i)
q j,l ,( j,l)

)
, w(i)

)
i

7: end for
8: b(i) ←

[
b̄(i)
1 , . . . , b̄(i)

kl

]
for i = 1, . . . , N

9: end for
10: return

(
b(i)

)
i

First, we state the main assumption of our algorithm:

Assumption 1 The base forecasts of each variable are con-
ditionally independent, given the time series observations.

We leave for future work the extension of this algorithm
to deal with correlations between the base forecasts. In this
paper we perform experiments with temporal hierarchies,
which commonly make this assumption.

In order to simplify the presentation, we also assume that
the data structure is strictly hierarchical, i.e., that every node
only has one parent and thus the hierarchy is represented
by a tree. Grouped time series (Hyndman and Athanasopou-
los 2021, Chapter 11), which do not satisfy this assumption,
require a more complex treatment; we discuss it in Sect. 4.5.

The BUIS algorithm exploits the hierarchical structure to
split a large nu-dimensional importance sampling problem
into nu one-dimensional problems, thus deeply alleviating
the curse of dimensionality. BUIS starts by drawing a sample
from the base bottom distribution ν̂b. Then, for each level
of the hierarchy, from bottom to top, it updates the sample
through an importance sampling step, using the “partially”
reconciled distribution as proposal.

For each level l = 1, . . . , L of the hierarchy, we denote
the upper variables at level l by u1,l , . . . , ukl ,l . Moreover, for
any upper variable u j,l , we denote by b1,( j,l), . . . , bq j,l ,( j,l)

the bottom variables that sum up to u j,l . In this way, we have
that

∑L
l=1 kl = nu , the number of upper variables, while∑kl

j=1 q j,l = nb, the number of bottom variables, for each
level l.

Let us consider, for example, the hierarchy in Fig. 1. For
the first level l = 1, we have k1 = 2, u1,1 = U2, and u2,1 =

123



   21 Page 6 of 15 Statistics and Computing            (2024) 34:21 

U3. Moreover, q1,1 = q2,1 = 2, and b1,(1,1) = B1, b2,(1,1) =
B2, b1,(2,1) = B3, b2,(2,1) = B4. For the last level l = 2, we
have k2 = 1, u1,2 = U1, q1,2 = 4, b1,(1,2) = B1, b2,(1,2) =
B2, b3,(1,2) = B3, b4,(1,2) = B4.

Alg. 1 shows the BUIS algorithm. The “Resample” step
samples with replacement from the discrete distribution
given by

P

(
b =

(
b(i)
1,( j,l), . . . , b

(i)
q j,l ,( j,l)

))
= w(i), (12)

for all i = 1, . . . , N . Note that the algorithm can be easily
parallelizedbydrawingbatches of samples ondifferent cores.
This additional step would further reduce the computational
times.

We explicit the BUIS algorithm on the simple hierarchy
in Fig. 1:

1. Sample (b(i)
j )i=1,...,N from πBj , for j = 1, 2, 3, 4

2. Compute the weights (w(i))i=1,...,N with respect toU2 as

w(i) = πU2

(
b(i)
1 + b(i)

2

)

3. Sample
(
b̄(i)
1 , b̄(i)

2

)
i
with replacement from

(
(b(i)

1 , b(i)
2 ),

w(i)
)
i=1,...,N

4. Repeat step 2 and 3 using B3, B4 and U3 to get(
b̄(i)
3 , b̄(i)

4

)
i

5. Set
(
b(i)
1 , b(i)

2 , b(i)
3 , b(i)

4

)
i

=
(
b̄(i)
1 , b̄(i)

2 , b̄(i)
3 , b̄(i)

4

)
i
and

move to the next level
6. Compute the weights (w(i))i=1,...,N with respect toU1 as

w(i) = πU1

(
b(i)
1 + b(i)

2 + b(i)
3 + b(i)

4

)

7. Sample
(
b̄(i)
1 , b̄(i)

2 , b̄(i)
3 , b̄(i)

4

)
i
with replacement from(

(b(i)
1 , b(i)

2 , b(i)
3 , b(i)

4 ), w(i)
)
i

In Appendix B we prove the following proposition:

Proposition 1 The output of the BUIS algorithm is approxi-
mately a sample drawn from the reconciled distribution ν̃.

4.4 Sample-based BUIS

Sometimes the base forecasts are given as samples, without
a parametric form; this is the case of models for time series
of counts (Liboschik et al. 2017) or based on deep learn-
ing (Salinas et al. 2020). BUIS can reconcile also this type of
base forecasts. Sincewe only dealwith one-dimensional den-
sities to compute the weights, we use approximations based
on samples. For discrete distributions, we use the empiri-
cal distribution. For continuous distributions, we use kernel

density estimation (Chen 2017). Therefore, we only need to
replace line 4 in Algorithm 1 with:

Sample
(
u(i)
j,l

)
i=1,...,N

from π̂u j,l

qπ ← Density Estimation
((

u(i)
j,l

)
i=1,...,N

)

qw(i) ← qπ
(∑q j,l

t=1 b
(i)
t,( j,l)

)
for i = 1, . . . , N

The sample-based algorithm becomes slightly slower due
to the density estimation step.

4.5 More complex hierarchies: grouped time series

We refer to grouped time series when the data structure does
not disaggregate in a unique hierarchical manner (Hynd-
man and Athanasopoulos 2021, Chapter 11). In this case,
the aggregated series cannot be represented by a single tree,
as a bottomnode can havemore than one parent. For instance,
consider a weekly time series, for which we compute the fol-
lowing temporal aggregates: 2-weeks, 4-weeks, 13-weeks,
26-weeks, 1-year. A bottom node (weekly) is thus children
of both the 2-weeks and of the 13-weeks aggregates. This
structure cannot be represented as a tree.

The BUIS algorithm, as described in Sect. 4.3, requires
that the hierarchy is a tree, so it cannot be used in this case.
Indeed, as highlighted in the proof,we need the independence
of b̄1, . . . , b̄kl to multiply their densities. If the hierarchy is
not a tree, correlations between bottom variables are created
when conditioning on the upper levels.

To overcome this problem, we proceed as follows. First,
we find the largest sub-hierarchy within the group structure.
For instance, in the example above, we consider the sub-
hierarchy given by the bottom variables and by the 2-weeks,
4-weeks and 1-year aggregates. All the other upper variables
are then regarded as additional constraints. We use the BUIS
algorithm on the sub-hierarchy, obtaining a sample b. Then,
we compute the weights on b using the base distributions of
the additional constraints. This is equivalent to performing a
standard IS, where we use the output of BUIS on the hier-
archical part as proposal distribution. In this way, we reduce
the dimension of the IS task from nu , the total number of
upper constraints, to the number of constraints that are not
included in the sub-hierarchy: in the above example, from 46
to 6.We highlight that the distributionwe sample fromwould
be the same even with different choices of sub-hierarchies.
However, picking the largest one is the best choice from a
computational perspective.

5 Experiments on synthetic data

We now empirically test the convergence of the BUIS
algorithm to the true reconciled distribution. We compare
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Fig. 2 A binary hierarchy

BUIS with IS and with the method by Corani et al. (2023),
which we implement using the library PyMC (Salvatier et al.
2016). PyMC adopts an adaptive Metropolis-Hastings algo-
rithm (Haario et al. 2001) for discrete distributions and the
No-U-Turn Sampler (NUTS,Hoffman andGelman 2014) for
continuous distributions. We performed experiments on the
hierarchyof Fig. 2, implementing the IS andBUISalgorithms
in Python.

5.1 Reconciling Gaussian forecasts

Dealing with Gaussian base forecasts, the reconciled distri-
bution can be obtained in closed form (Corani et al. 2020).We
can thus check how the various algorithms approximates the
exact solution. We set on each bottom node a Gaussian dis-
tribution with mean randomly chosen in the interval [5, 10],
and standard deviation σb = 2. We denote by μb ∈ R

8+ the
vector of the base bottom means. We induce incoherence by
setting the means of the base forecast of the upper variables
as μu = (1+ ε)Aμb, where A is the aggregating matrix and
ε is the incoherence level; we consider ε ∈ {0.1, 0.3, 0.5}.
Hence, if ε =0.3 the base upper means are 30% greater than
the sum of the corresponding base bottom means. We set
σu = 3 as standard deviation for the base forecast of each
upper variable.

We run PyMC with 4 chains with 5, 000 samples each.
For IS and BUIS, we runmultiple experiments, drawing each
time a different number of samples, ranging from 104 to 106.
We repeat each experiment 30 times. We then compute the
2-Wasserstein distance (Panaretos and Zemel 2019) between
the true reconciled distribution, obtained analytically, and the
empirical distributions obtained via sampling. The results are
reported in Fig. 3a, where we also show the 95% confidence
interval over the 30 experiments. Note that the axes are in
logarithmic scale.

As expected, the performance of IS and BUIS depends
on the incoherence level ε. This behavior also affects BUIS,
which is based on importance sampling. However, BUIS is
significantly more robust than IS, and it works effectively
even with extreme incoherence level such as ε = 0.5. As

the number of samples grows, the performance of BUIS
improves, eventually outperforming the reference method
based on PyMC. We confirm the results by computing the
percentage error on the reconciled mean (Appendix D.1).
Even with an extreme incoherence level, ε = 0.5, the per-
centage error on the mean obtained with 106 samples from
BUIS is negligible (< 0.1%) and comparable to PyMC. In
the same setup IS achieves an error greater than 5%.

Both IS and BUIS are substantially faster than PyMC
(Table 1). The computational time of BUIS with 105 sam-
ples is two orders of magnitude smaller than PyMC, while
achieving comparable performances. Note that here BUIS
is running on a single core. An insight about the reasons of
such a speedup is given in Appendix C, where we provide
a detailed comparison between IS and a bare-bones imple-
mentation of MCMC on a simple hierarchy.

We also conduct similar experiments using a larger hier-
archy; the results, reported in Appendix D.2, confirm that the
BUIS is robust and computationally efficient.

5.2 Reconciling Poisson forecasts

We now consider discrete base forecasts. We set a Poisson
distribution on each bottom variable, with mean randomly
chosen in the interval [5, 10]. We denote by λb ∈ R

8+ the
vector of the base bottom means. As before, for each inco-
herence level ε ∈ {0.1, 0.3, 0.5}, we set the mean of the
upper variables as λu = (1+ ε)Aλb. In the Poisson case, the
reconciled distribution cannot be analytically computed. We
thus run an extensive experiment usingPyMC, with 20 chains
with 50, 000 samples each. We consider these samples as the
true reconciled distribution.

We run the same experiments described in Sect. 5.1. Since
probabilistic forecasts of count time series are typically given
as samples (Liboschik et al. 2017), we also run sample-based
BUIS (Sect. 4.4): we assume that the parametric form of
the base distribution is unknown, and that only samples are
available.

The 2-Wasserstein distances are reported in Fig. 3b. As
the number of samples grows, BUIS and sample-based BUIS
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(a) Gaussian distributions (b) Poisson distributions

Fig. 3 Wasserstein distance between true and empirical distributions. The axes are logarithmic
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Table 1 Average computational
times with the standard
deviations (in seconds). The
average times for PyMC (4
chains with 5, 000 samples
each) are: 26.81 ± 2.38
(Gaussian), 26.26 ± 4.14
(Poisson)

Number of samples
104 105 106

Gaussian IS 0.01 ± 0.00 0.06 ± 0.02 0.66 ± 0.17

BUIS 0.02 ± 0.00 0.15 ± 0.00 2.20 ± 0.02

Poisson IS 0.01 ± 0.01 0.09 ± 0.01 1.01 ± 0.03

BUIS 0.02 ± 0.01 0.19 ± 0.03 2.68 ± 0.41

sample-based BUIS 0.03 ± 0.00 0.24 ± 0.01 3.49 ± 0.09

eventually outperform PyMC, for all levels of incoherence.
As for the Gaussian case, the performance of IS deteriorates
for larger values of the incoherence level. The results are
confirmed by the percentage error on the reconciled mean
(Appendix D.1), which is lower than 0.2% for BUIS with
105 samples and about 0.4% for PyMC.

In Table 1 we show the average computational times.
Sample-based BUIS is slightly slower than BUIS because
of the density estimation step. Note that, using 105 samples,
BUIS and sample-based BUIS are 2 orders of magnitude
faster than PyMC, while achieving a better performance for
all incoherence levels.

6 Experiments on real data

We now perform probabilistic reconciliation on temporal
hierarchies, using time series extracted from two different
data sets: carparts, available from the R package expsmooth
(Hyndman 2018), and syph, available from the R package
ZIM (Yang et al. 2018).

The carparts data set is about monthly sales of car parts.
As in (Hyndman et al. 2008, Chapter 16), we remove time
serieswithmissing values, with less then 10 positivemonthly
demands and with no positive demand in the first 15 and
final 15 months. After this selection, there are 1046 time
series left. Note that we use less restrictive criteria in the
selection of the time series than Corani et al. (2023), where
only 219 time series from carpartswere considered.Monthly
data are aggregated into 2-months, 3-months, 4-months, 6-
months and 1-year levels.

The syph data set is about the weekly number of syphilis
cases in the United States. We remove the time series with
ADI greater than 20. The ADI is computed as ADI =∑P

i=1 pi
P , where pi is the time period between two non-zeros

values and P is the total number of periods (Syntetos and
Boylan 2005). We also remove the time series correspond-
ing to the total number of cases in theUS.After this selection,
there are 50 time series left. Weekly data are aggregated into
2-weeks, 4-weeks, 13-weeks, 26-weeks and 1-year levels.

For both data sets, we fit a generalized linear model with
the tscount package (Liboschik et al. 2017).Weuse a negative

Table 2 Skill scores on the time series extracted from carparts, detailed
by each level of the hierarchy

N vs base NB vs base samples vs base
Metric hier-level

ES 0.07 0.52 0.53

MASE Monthly −1.02 0.14 0.13

2-Monthly −0.53 0.25 0.27

Quarterly −0.42 0.21 0.26

4-Monthly −0.40 0.16 0.21

Biannual −0.33 0.14 0.16

Annual −0.26 0.18 0.17

average −0.49 0.18 0.20

MIS Monthly −0.08 0.45 0.63

2-Monthly 0.28 0.45 0.56

Quarterly 0.22 0.43 0.46

4-Monthly 0.03 0.35 0.36

Biannual −0.07 0.37 0.26

Annual −0.17 0.40 0.22

average 0.03 0.41 0.42

The best result for each row is in bold

binomial predictive distribution, with a first-order regression
on past observations. The test set has length 1 year for both
data sets. We thus compute up to 12 steps ahead at monthly
level, and up to 52 steps ahead at weekly level. Probabilistic
forecasts are returned in the form of samples.

Reconciliation is performed in three different ways. In
the first case, we fit a Gaussian distribution on the returned
samples. Then, we follow (Corani et al. 2020) to analytically
compute the Gaussian reconciled distribution. In the second
case, we fit a negative binomial distribution on the samples,
and we reconcile using the BUIS algorithm. Since these are
grouped time series rather than hierarchical time series, we
use the method of Sect. 4.5 for grouped time series. Finally,
we use the sample-based BUIS (Sect. 4.4), without fitting
a parametric distribution. Although the sample-based algo-
rithm is slightly slower, this method yields a computational
gain over BUIS, as fitting a negative binomial distribution on
the samples requires about 1.2 s for the monthly hierarchy
and 3.9 s for theweekly hierarchy.We refer to thesemethods,
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Table 3 Skill scores on the time series extracted from syph, detailed by
each level of the hierarchy

N vs base NB vs base samples vs base
Metric Hier-level

ES 0.08 0.11 0.15

MASE Weekly −0.63 0.14 0.14

2-Weekly −0.40 0.16 0.14

4-Weekly −0.22 0.13 0.12

Quarterly −0.10 0.01 0.04

Biannual 0.01 0.07 0.15

Annual −0.05 −0.00 0.04

average −0.23 0.08 0.10

MIS Weekly −0.06 0.46 0.45

2-Weekly 0.08 0.33 0.34

4-Weekly 0.03 0.19 0.25

Quarterly −0.15 −0.11 −0.08

Biannual −0.34 −0.27 −0.21

Annual −0.33 −0.23 −0.22

average −0.13 0.06 0.09

The best result for each row is in bold

respectively, as N, NB, and samples. Furthermore, we denote
by base the unreconciled forecasts.

We use different indicators to assess the performance of
each method. The mean scaled absolute error (MASE) (Hyn-
dman 2006) is defined as

MASE = MAE

Q
,

where MAE = 1
h

∑h
j=1|yt+ j − ŷt+ j |t | and Q = 1

T−1

∑T
t=2

|yt − yt−1|. Here, yt denotes the value of the time series at
time t , while ŷt+ j |t denotes the point forecast computed at
time t for time t + j . The median of the distribution is used
as point forecast, since it minimizes MASE (Kolassa 2016).

Themean interval score (MIS) (Gneiting 2011) is defined,
for any α ∈ (0, 1), as

MIS = (u − l) + 2

α
(l − y)1(y < l) + 2

α
(y − u)1(y > u),

where l and u are the lower and upper bounds of the (1− α)

forecast coverage interval and y is the actual value of the time
series. In the following, we use α = 0.1. MIS penalizes wide
prediction intervals, as well as intervals that do not contain
the true value.

Finally, the Energy score (Székely and Rizzo 2013) is
defined as

ES(P, y) = EP
[‖y − s‖α

] − 1

2
EP

[‖s − s′‖α
]
,

where P is the forecast distribution on the whole hierarchy,
s, s′ ∼ P are a pair of independent random variables and

y is the vector of the actual values of all the time series.
The energy score is a proper scoring rule for distributions
defined on the entire hierarchy (Panagiotelis et al. 2023). We
compute ES, with α = 2, using samples, as explained in
Wickramasuriya (2023).

We use the skill score to compare the performance of a
method with respect to a baseline method, in terms of per-
centage improvement. We use base as baseline method. For
example, the skill score of NB on MASE is given by

Skill(NB, base) = MASE(base) − MASE(NB)

(MASE(base) + MASE(NB)) /2
.

Note that the skill score is symmetric and scale-independent.
For each level,we compute the skill score for each forecasting
horizon, and take the average.

The skill scores for carparts are reported in Table 2. Both
NB and samples methods yield a significant improvement
for all the indicators, and for all the hierarchy levels. For
both methods, the average improvement is about 20% for
MASE, 40% for MIS and 50% for ES. The skill scores for
syph are reported in Table 3. As before, the average improve-
ment of NB and samples is significant for all indicators. For
both datasets, the N method performs poorly, in many cases
yielding negative skill scores. As observed in Corani et al.
(2023), this method does not capture the asymmetry of the
base forecasts. Finally, samples appears to performbetter that
NB. Indeed, the step of fitting a Negative Binomial distribu-
tion on the forecast samples may yield an additional source
of error.

7 Conclusions

Our approach to probabilistic reconciliation based on con-
ditioning allows to treat continuous and discrete forecast
distributions in a unified framework.Moreover, the proposed
BUIS is able to efficiently sample from continuous and dis-
crete predictive distributions, provided in parametric form or
as samples. We make available the BUIS algorithm within
the R package bayesRecon (Azzimonti et al. 2023).

A future research direction is how to relax the assumption
of conditional independence of the base forecasts. A second
one is to study the implications of ignoring the behavior of
the base forecast distribution outside the coherent subspace,
which is a feature of reconciliation via conditioning and con-
stitutes a major difference from reconciliation via projection.

Acknowledgements Work partially funded by the Swiss National Sci-
enceFoundation (grant 200021_212164/1) andby theHasler foundation
(project 23057).

Author Contributions L. Zambon did the implementation and wrote
the main manuscript text. D. Azzimonti supervised the formal part of

123



Statistics and Computing            (2024) 34:21 Page 11 of 15    21 

the paper. G. Corani supervised the experimental part of the paper. All
authors reviewed themanuscript and participated in critical discussions.

Funding Open access funding provided by SUPSI - University of
Applied Sciences and Arts of Southern Switzerland

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A Proofs

Proposition 2 Let s : X → Y be a measurable bijection
between two measure spaces (X ,X ) and (Y ,Y). Then, the
pushforward s# : P(X) → P(Y ) is a bijection, with inverse
given by (s−1)#.

Proof First, we recall that the pushforward s# is defined, for
any ν ∈ P(X) and F ∈ Y , as

s#ν(F) = ν(s−1(F)).

Hence, for any ν ∈ P(X) and G ∈ X , we have

(
(s−1)# ◦ s#

)
ν (G) = (s−1)#

(
s#ν

)
(G)

= s#(ν)
(
(s−1)−1(G)

)
= s#(ν)

(
s(G)

)
= ν

(
s−1(s(G))

)
= ν(G),

and therefore (s−1)# ◦ s# is the identity map. Analogously,
for any μ ∈ P(Y ) and F ∈ X , we have

(
s# ◦ (s−1)#

)
μ (F) = s#

(
(s−1)#μ

)
(F)

= (s−1)#(μ)
(
s−1(F)

)
= μ

(
(s−1)−1(s−1(F)

))
= μ(s(s−1(F)))

= μ(F).

��

Proposition 3 Let π̂ be the joint density of the random vector
(Û, B̂). Then, the density of (Z, B̂), where Z := Û − AB̂, is
given by

π
(Z,B̂)

(z,b) = π̂(z + Ab,b).

Proof The joint density of (Z, B̂) can be computed using the
rule of change of variables (Billingsley 2008, Chapter 17).
Let H : R

n → R
n be defined as

H :
[
u
b

]
→

[
u − Ab

b

]
.

H is invertible, with inverse given by

H−1 :
[
z
b

]
→

[
z + Ab

b

]
,

and we have that

∣∣JH−1(b, z)
∣∣ =

∣∣∣∣I A
T

0 I

∣∣∣∣ = 1.

Then, the joint density of (Z, B̂) is given by

π
(Z,B̂)

(z,b) = π̂
(
H−1(z,b)

) · ∣∣JH−1(z,b)
∣∣

= π̂(z + Ab,b).

��

Appendix B Proof of BUIS algorithm

We show that the output
(
b(i)

)
i of the BUIS algorithm is

approximately a sample drawn from the target distribution ν̃.
From (7), and from Assumption 1, we have that

π̃(b) ∝ π̂b(b) · π̂u(Ab)

=
nb∏
t=1

πbt (bt ) ·
L∏

l=1

kl∏
j=1

πu j,l

( q j,l∑
k=1

bk,( j,l)

)
,

where we are using the notation of Sect. 4.3. The initial
distribution of the sample

(
b(i)

)
i=1,...,N is given by π̂b =∏nb

t=1 πbt (bt ). We show that each iteration of the algorithm

corresponds to multiplying by a πu j,l

(∑q j,l
k=1 bk,( j,l)

)
term.

Let πX be a density over R
d , and w : R

d → R a continu-
ous function. Let X1, . . . , XN be independent samples from
πX , and compute the unnormalized weights (ŵ(i))i=1,...,N

as ŵ(i) = w(Xi ). Then, if we draw Y1, . . . ,Ym from the
discrete distribution given by

P (Y = Xi ) = w(i), i = 1, . . . , N ,
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where w(i) = ŵ(i)∑N
j=1 ŵ( j)

, then (Yi )i=1,...,m is approximately

an IID sample from the density πY (x) ∝ πX (x) · w(x). This
technique is known as importance resampling or weighted
bootstrap (Smith and Gelfand 1992). The same holds also for
discrete distributions, using the pmf instead of the density.

Hence, if we compute the weights w(i)’s as in the algo-
rithm and sample

(
b̃(i)
j

)
i from (12), it is approximately

equivalent to sampling from π̂b(b) · πu j,l

(∑q j,l
t=1 bt

)
, where

π̂b is the original density of
(
b1,( j,l), . . . , bq j,l ,( j,l)

)
. In other

words, the weighting-resampling step corresponds to multi-

plying the density of the sample by a πu j,l

(∑q j,l
t=1 bt

)
term.

Finally, note that in this way we are conditioning with
respect tou j,l .After theweighting-resampling step,

(
b1,( j,l),

. . . , bq j,l ,( j,l)
)
are correlated. Since the hierarchy is given

by a tree, we are guaranteed that for any level l and for all
j = 1, . . . , kl , b̃ j only depends on b1,( j,l), . . . , bq j,l ,( j,l), u j,l

and each upper variable that is under u j,l . From Assump-
tion 1, we have that b̃1, . . . , b̃kl are independent. Hence, the

density of
[
b̃1, . . . , b̃kl

]
is given by the product of the den-

sities of all b̃ j ’s, and the proof is concluded.

Appendix CMCMC-IS comparison

In order to fully understand the reasons for the significant
difference in computational time between the MCMC and
the IS approach, we compare the two methods on a minimal
example. Le us consider a hierarchy given by two bottom
variables, b1 and b2, and just one upper variable u, which is
the sum of b1 and b2. We set a Gaussian distribution for each
variables.

We implement a simple Metropolis-Hastings algorithm
with a Gaussian proposal distribution with fixed variance τ I
to sample from the reconciled distribution π̃(b) = πb1(b1) ·
πb2(b2) · πu(b1 + b2). The algorithm reads as follows:

Initialize b(0)

for j = 1, . . . , N do
Sample y( j) ∼ N (b( j−1), τ I )

α ← min
(
1, π̃(y( j))

π̃(b( j−1))

)
u ← Uni f (0, 1)
if u < α then

b( j) ← y( j)

else
b( j) ← b( j−1)

end if
end for
return

(
b(i)

)
i

On a standard laptop, it takes about 4 s to get 10, 000 sam-
ples from π̃ . In particular,most of the time is employed by the
computation of the acceptance probability α, which requires

about 3.7 · 10−4 seconds per loop. Sampling from the pro-
posal distribution only requires about 3 · 10−5 seconds.

We then implement an IS algorithm on the same hierarchy,
using Python:

Sample b(1), . . . ,b(N ) IID∼ π̂b

wi ← π̂u

(
b(i)
1 + b(i)

2

)
return

(
b(i), wi

)
i

It takes about 7 · 10−3 seconds to draw 100, 000 IID sam-
ples from π̂b, and about the same time to compute all the
weights. The significant improvement in computational time
is due to the fact that both sampling and computation of the
weights are done simultaneously for all the samples, rather
than sequentially as in MCMC.

Appendix D Additional results on synthetic
data

D.1 Percentage error on themean

Besides computing the 2-Wasserstein distance between the
true reconciled distribution and the empirical reconciled dis-
tribution obtained via sampling (Sect. 5), we also compute
the error on the reconciledmean.More precisely, ifwe denote
bymi the true mean and bymi the sample mean, we compute
the average percentage error as:

1

n

n∑
i=1

|mi − mi |
mi

· 100,

where n is the number of nodes of the hierarchy. The average
percentage errors are reported in Table 4.

D.2 Large hierarchy

We test the IS, BUIS, and PyMC algorithms on a larger hier-
archy. We set a binary hierarchy, similar to that of Fig. 2, but
with 5 levels: hence, there are 32 bottom and 31 upper nodes.
We use the same procedure described in Sect. 5.1 to set the
Gaussian base forecasts. Using BUIS with 105 samples we
achieve a small average percentage error (< 0.5%) on the
reconciled means (Table 5), even with a large incoherence
(ε = 0.5). On the other hand, the error using IS is over 20%,
even with 106 samples, proving that IS is not able to scale
to large hierarchies. The results are confirmed by the plot
of the 2-Wasserstein distance (Fig. 4). In conclusion, BUIS
is able to correctly sample from the reconciled distribution,
even in case of rather big hierarchies (∼ 60 nodes) and large
incoherence level (ε = 0.5), while providing an impressive
gain in terms of computational time with respect to PyMC
(Table 6).
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Table 4 Average percentage
errors on the reconciled mean

ε

0.1 0.3 0.5

Gaussian IS 104 samples 0.39% 2.02% 11.3%

105 samples 0.13% 0.6% 8.96%

106 samples 0.04% 0.22% 5.69%

BUIS 104 samples 0.34% 0.45% 0.92%

105 samples 0.12% 0.14% 0.34%

106 samples 0.04% 0.05% 0.09%

PyMC 4 × 5000 samples 0.11% 0.09% 0.07%

Poisson IS 104 samples 0.44% 0.75% 2.24%

105 samples 0.13% 0.25% 0.65%

106 samples 0.06% 0.09% 0.23%

BUIS 104 samples 0.5% 0.58% 0.67%

105 samples 0.16% 0.16% 0.21%

106 samples 0.06% 0.07% 0.09%

sample-based BUIS 104 samples 0.52% 0.55% 0.59%

105 samples 0.17% 0.17% 0.21%

106 samples 0.07% 0.07% 0.08%

PyMC 4 × 5000 samples 0.09% 0.07% 0.07%

Appendix E Efficiency of IS

It is well-known that vanilla importance sampling is not
effective to sample from high dimensional distributions; this
prevents using it to reconcile large hierarchies.We also obtain
low performances when the proposal distribution ν̂b is not a
good approximation of the target distribution ν̃. The follow-
ing result relates the Kullback–Leibler divergence (Kullback
and Leibler 1951) between the base and reconciled distribu-
tion to the efficiency of IS.

Proposition 4 Let B̂ be a random vector distributed as ν̂b,
and let W := π̂(AB̂, B̂)/π̂b(B̂). Then, the Kullback–Leibler
divergence of the base bottom distribution from the recon-
ciled bottom distribution is given by

K L(ν̂b ‖ ν̃) = log (E[W ]) − E[log(W )]. (E1)

Proof First, we recall that, given a pair of absolutely contin-
uous probability distributions μ and ν, the Kullback–Leibler
(KL) divergence is defined as

K L(μ ‖ ν) =
∫

log

(
p(x)

q(x)

)
p(x) dx,

where p and q are the densities of, respectively,μ and ν. The
discrete case is completely analogous.

Now, let ν̂b be the base bottom forecast distribution, and
ν̃ the reconciled distribution. We recall that the density of ν̃

is given by

π̃(b) = 1

c
π̂(Ab,b),

where

c :=
∫

π̂(Ab,b) db

=
∫

π̂(Ab,b)

π̂b(b)
π̂b(b) db

= E

[
π̂(AB̂, B̂)

π̂b(B̂)

]

is the normalizing constant, and B̂ ∼ ν̂b. Then, we have

K L(ν̂b ‖ ν̃) =
∫

log

(
c

π̂b(b)

π̂(Ab,b)

)
π̂b(b) db

= log(c) −
∫

log

(
π̂(Ab,b)

π̂b(b)

)
π̂b(b) db

= log

(
E

[
π̂(AB̂, B̂)

π̂b(B̂)

])
− E

[
log

(
π̂(AB̂, B̂)

π̂b(B̂)

)]

= log (E[W ]) − E[log(W )]. (E2)

Note that the right-hand side of (E1) is a measure of the
dispersion of the random variableW . Indeed, by the Jensen’s
inequality, it is always non-negative, and it is zero whenW is
constant a.s.; it gets larger asW becomes more dispersed. In
the context of the measures of inequality, it usually referred
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Fig. 4 Wasserstein distance between true and empirical distributions (Gaussian case, large hierarchy). The axes are logarithmic

Table 5 Average percentage errors on the reconciled mean (Gaussian,
large hierarchy)

ε

0.1 0.3 0.5

IS 104 samples 6.72% 17.13% 23.96%

105 samples 2.78% 16.05% 21.61%

106 samples 1.0% 16.25% 20.11%

BUIS 104 samples 0.48% 0.65% 1.7%

105 samples 0.15% 0.21% 0.52%

106 samples 0.05% 0.07% 0.18%

PyMC 4 × 5000 samples 0.09% 0.07% 0.07%

Table 6 Average computational times (Gaussian, large hierarchy). The
average time for PyMC (4 chains with 5, 000 samples each) is 102.56
± 29.93

Number of samples
104 105 106

IS 0.02 ± 0.00 0.17 ± 0.03 1.74 ± 0.37

BUIS 0.10 ± 0.01 0.90 ± 0.15 13.1 ± 2.19

to as Mean Logarithm Deviation (Haughton and Khandker
2009). Moreover, from (10), we have that the importance
sampling weights are IID copies of W . Hence, the more dis-
tant are the base and the reconciled distribution, in terms of
Kullback-Leibler divergence, the more dispersed are the IS
weights. A large dispersion of theweights leads to a poor per-
formance of importance sampling (Martino et al. 2017). As
the incoherence level ε grows, the distance between the dis-
tributions ofAB̂ and Û grows, and therefore also the distance
between ν̂b and ν̃, as the reconciled distribution merges the
information coming from the bottom and the upper variables.
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