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Summary: Many industrial tasks, such as welding and sealing, require not only a precise path reference, but also an advanced 
velocity planning in order to achieve the target quality for the final products. In this paper, a novel approach is proposed to 
perform robotic trajectory planning. The developed algorithm exploits Fuzzy Logic (FL) to relate the path features (such as 
curves or sharp edges) to the proper execution velocity. Such a computed velocity reference is then used as an input for 
Dynamical Movement Primitives (DMP), providing the reference signals to the robot controller. The main improved 
methodology features are: path-based velocity planning, extension of DMP to variable velocity reference and smoothing of 
the velocity reference including robot velocity/acceleration limits. The algorithm can be implemented in a collaborative 
framework, defining a compliant controller embedded into the DMP for online trajectory planning. 
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1.  Introduction 

 
Within Industry 4.0 paradigm, industrial tasks are 

re-designed enhancing the automatization of the 
production lines. In such a context, robotics playes a 
fundamental role, in particular considering the human-
centered solutions that can be implemented [1]. 

 To relieve the operators from tedious and hard 
coding of each specific application, robots must be able 
to learn and perform a reference task, exploiting 
autonomous planners for motion generation. Such 
topic is critical in many applications, like sealing and 
welding [2,3], where trajectory planning and 
optimization is the main objective [4,5]. The aim is, 
therefore, to automatically assess high-accuracy 
performance in trajectory tracking to achieve the target 
task quality.  

 
1.1 Related Works 

 
Trajectory planning is a hot-research topic. In [6], 

a widely used algorithm for welding applications is 
described. The planner finds the optimized motion for 
both the robot end-effector and joints of a welding 
robots, but it doesn't set the velocity along the path. In 
[7], a sealing task is performed using global planning 
interpolation and trapezoidal speed profile, but 
without considering any coupling between the 
involved degrees of freedom and without a variable 
velocity. In [8], Dynamical Movement Primitives (DMP) 
are assessed for movement sequencing trajectory 
planning employing velocity continuity between 
blocks, but there is not a punctual characterization of 
the velocity in the single block.  

Commonly, the traditional approaches for motion 
planning [9] do not address the problem of the 

punctual characterization along the path’s natural 
coordinate. Indeed, such approaches optimize the 
motion reducing the execution time, but these 
procedures do not take into account the execution path 
geometry. Those algorithms work really well in open 
space movements, while failing in material deposition 
tasks in which it is fundamental to precisely define the 
optimal time with a direct correlation to the optimal 
quality of the final result [10].  The aim of the 
proposed work is to reduce the total task time by 
automatically imposing a proper execution velocity 
along the path natural coordinate (i.e., considering the 
path geometry).  

 
1.2 Paper Contribution 

 
Taking as a reference an automatic sealing task 

(within H2020 CS2 ASSASSINN project), the here 
presented contribution aims to design a trajectory 
planner able to generate the robot’s reference motion 
to properly manage the sealant deposition. 

The task execution velocity, which strongly affects 
the material deposition, is the main design and control 
parameter. The velocity reference has to be managed 
considering the deposition path, taking into account its 
geometrical features (such as sharp edges, curves, etc.) 
to avoid a surplus/shortage of sealing material during 
the deposition, while smoothing out vibrations [10]. 
To do that, the trajectory planning problem must 
consider both geometrical path features and hardware 
limitations (robot velocity/acceleration limits).  

The here presented paper proposes an adaptive 
path-based task execution velocity, with a 
combination of Fuzzy Logic (FL) and DMP methods 
for the path velocity definition and for the generation 
of the approximating smoothed trajectory. 
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Fig. 1: experimental setup: Franka Emika Panda robot with 
a Makita caulking gun connected through a custom flange. 

 
The FL relates the path features to the proper 

execution velocity, ensuring a proper sealant extrusion 
quality. The computed velocity is then used as input 
for the DMP, so that it is possible to generate the 
reference velocity for the robot controller [11].  

While the FL methodology has been selected due 
to its capabilities in experimental I/O mapping [12], 
DMP were selected for their capabilities in trajectories 
representation and time/space scaling [13].  

Simulations and experiments have been performed 
by means of a custom setup, depicted in Figure 1. 
Achieved results highlight the trajectory planning 
capabilities of the proposed framework, considering a 
complex reference path. A comparison with standard 
DMP (i.e., defining an almost constant velocity 
reference along the path) has been performed. 

  
2. Methodology 

 
The algorithm structure of the proposed approach, 

depicted in Figure 2, is composed by trajectory pre-
processing steps, where FL is exploited, and by the 
trajectory execution step in which the DMP are carried 
out using a novel modified input approach.  

 
 

 
Fig. 2: trajectory planning framework. Pre-processing block 

is highlighted in B. Execution block is highlighted in R. 
 

2.1 Pre-Processing Analysis 
 
The algorithm firstly re-samples the path, ydes, in 

order to have all the teaching points equally spaced 
along the path natural coordinate.  

 

 
Fig. 3: example of vector definition during a path 

curve. In the example: n = 7. 
 
Then, the automatic path recognition is performed, 

through the generation and analysis of a parameter 
called “steer”, which defines the local path curvature. 
It is defined as follows (Figure 3): 

- vector vi,i+n is defined, connecting the considered 
path point with another one n steps forward; 

- vector vi+1,i+1+n is defined, connecting the next 
point with the n+1 steps forward point; 

- angles β(si) and β(si+1) are computed (between the 
horizontal axis and vi,i+n / vi+1,i+1+n, respectively); 

- steer is defined as:  steeri = β(si+1) - β(si). 
The absolute value of the steer parameter is then 

used as an input to the FL: each value locally describes 
a certain path feature (i.e. straight lines have steer = 
0). The FL relates, therefore, the path geometry to the 
reference velocity through the generation of an 
experimental I/O non-linear law (Figure 4). The 
velocity imposed by the FL is the maximum one at 
which a critical path’s feature can be executed with 
proper sealant extrusion quality. 

Entering the acceleration limit block (Figure 2), the 
planned trajectory in output from the FL is corrected 
accordingly to  the end-effector linear 
acceleration/deceleration limits, by relaxing the time 
intervals at which each spatial point is reached. The 
two cases, acceleration and deceleration overshoots, 
are depicted in Figure 5: 

- if  a(si+1) > amax  then set a(si+1) = amax, such that 
vout (si+1) < vfuzzy (si+1) and the new time instant is 
longer; 

- if  a(si+1) < - amax  then fix vout,back(si+1) = vfuzzy 

(si+1), and lower the previous computed velocity 
values, vout,old(si, si-1, …), up to the convergence 
of related deceleration values (backward). 

 
 

 
Fig. 4: FL input (steer) and output (velocity) shape functions. 
The Fuzzy rules are represented by the colors (i.e., low steer, 
R, corresponds to high velocity and vice versa). In B the I/O  

non linear correlation is reported. 
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Fig. 5: time-shift for the acceleration limit: in (B&G) the 
computed v(s) that exceeds the limit, while in (R) the new 

(feasible) velocity reference. 
 

It must be noticed that in the deceleration case, 
vout,back(si+1) cannot be increased to reduce the 
deceleration (as done for the acceleration), so that the 
maximum punctual velocity does not exceed the one 
computed by the FL controller. 

 
2.2 Path Execution 

 
The computed trajectory yref is finally converted to 

be a time function, rather then a natural coordinate 
used in the pre-processing stages of the algorithm. 
Then, it is used as an input to the DMP framework, 
which approximates the path with smoothing features 
and providing continuity to the velocity.  

The novel contribution proposed by this paper is 
related to the capabilities of the modified DMP to make 
use of the input path (which has to be reproduced) to 
achieve a final task execution with a punctual velocity 
characterization along the path natural coordinate (i.e., 
adapting the execution velocity).  

The provided algorithm can be executed offline, 
just by sending the reference positions to the robot 
controller, but it also allows to define an on-line 
human-robot collaborative framework by embedding a 
compliant controller to manage external interactions 
sending real-time signals to the robot and to perform 
trajectory error recovery [14]. The trajectory yout is 
finally fed into the robot position controller 

commanding the Cartesian end-effector signals using 
the built-in C++ library, lib_franka. 

 
3. Results 

 
The proposed framework has been successfully 

tested both in numerical simulations with a Python 
code and experimentally on a Franka Emika Panda 
robot (Figure 1).  

The numerical analysis focuses on the 
approximation of a taught path, which has been 
executed with both standard and modified DMP 
approaches (Figure 6). Considering a proper tuning of 
the DMP, it is possible to achieve in both cases a 
proper trajectory reproduction. However, considering 
the standard DMP, the acceleration has unwanted 
sharp peaks which would cause vibrations in the real 
experiments. Moreover, in this case the total task time 
must be fixed a priori, without an optimization with 
respect to the path length and geometry. Conversely, 
the novel modified DMP approach permits to control 
the velocity along all the path, and consequently to 
assign an optimized total runtime as function of the 
path complexity. To compare the results, the standard 
runtime has been set to be equal to the optimized time 
of the modified input approach (resulting in a different 
velocity profile).  

In Figure 6 it is possible to see that the testing path 
(Figure 6a) is performed at constant velocity if the 
standard DMP approach is considered (Figure 6b), and 
with modulated velocity using the modified DMP 
approach (Figure 6c): the straight lines (orange) are 
executed at a higher velocity with respect to the small 
curves (light blue).  

Several testing paths have been studied in order to 
check the consistency of the algorithm. In Figure 7 and 
in Figure 8 a complete generic path which has different 
complex geometries (small radius curves, sharp edges 
and a sawtooth profile) is reported. The experimental 
executions show the sealant extrusion comparison 
between standard DMP approach (Figure 7) and the 
modified DMP approach (Figure 8). The standard 
execution shows large vibrations in correspondence of 
the sharp directional changes (i.e., in the sawtooth) and 
the overall extrusion is not uniform, reducing the final 
quality. Instead, the result of the modified DMP 
approach smooths out most of the vibrations, 
achieving a higher quality deposition along the path. 

 
 

 
Fig. 6:  two different executions of the path shown in (a): in (b) the output velocity from a classical DMP formulation is 

presented, while in (c) the newly proposed method permits a continuous modulation of the velocity reference.
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Fig. 7: sealant extrusion with standard DMP approach. 

 

 
Fig. 8: sealant extrusion with modified DMP approach. 

 
4. Conclusions 

 
The presented paper proposes a framework for 

autonomous trajectory planning, being able to take into 
account geometrical path features for velocity 
definition, while also considering velocity/acceleration 
limits. The planned trajectory shows an execution 
velocity that is dependent on the geometrical path 
characteristics, making possible to reduce the total 
execution time, while obtaining the target quality for 
the specific deposition task.  

The presented algorithm needs a manual tuning of 
the FL controller in order to characterize the velocity 
shape functions referred to some reference geometries. 
Current work is devoted to optimize such shape 
functions using a pairwise preference-based algorithm, 
which exploits operator’s judgements [15].   

While the here presented trajectory planning is 
performed offline, the proposed DMP framework is 
under implementation for real-time trajectory 
planning, embedding a compliant controller into the 
DMP framework to manage external interaction (e.g., 
for human-robot collaboration purposes and 
disturbance recovery). 
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