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This paper proposes a model of prior ignorance about a multivariate variable based on a set of dis-
tributions M . In particular, we discuss four minimal properties that a model of prior ignorance should
satisfy: invariance, near-ignorance, learning and convergence. Near-ignorance and invariance ensure that
our prior model behaves as a vacuous model with respect to some statistical inferences (e.g., mean, cred-
ible intervals, etc.) and some transformation of the parameter space. Learning and convergence ensure
that our prior model can learn from data and, in particular, that the influence of M on the posterior
inferences vanishes with increasing numbers of observations. We show that these four properties can all
be satisfied by a set of conjugate priors in the multivariate exponential families if the set M includes
finitely additive probabilities obtained as limits of truncated exponential functions. The obtained set M
is a model of prior ignorance with respect to the functions (queries) that are commonly used for statisti-
cal inferences and, because of conjugacy, it is tractable and easy to elicit. Applications of the model to
some practical statistical problems show the effectiveness of the approach.
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1. Introduction

In performing a Bayesian analysis concerning the unknown value w of a variable W ∈ W , one
is required to express prior beliefs about w in the form of a prior distribution. However, we are
often in a condition of prior ignorance about w and, thus, the problem is how to choose a prior
distribution representing “ignorance”. There are two main avenues to represent ignorance. The
first assumes that ignorance can be modelled satisfactorily by a so-called noninformative prior,
by which it is meant a prior that contains no information about w. The problem is how to define
the meaning of “containing no prior information”. It is common to call noninformative a prior
that is invariant under certain re-parametrizations of the parameter space. For instance, when w is
a location parameter, i.e., W =Rk, the prior should be invariant to translations. The justification
is that, since the choice of an origin for a unit of measurement is often arbitrary, the noninfor-
mative prior should be independent of this choice. The uniform density on Rk, i.e., p(w) = 1,
is the improper prior that is invariant to translations. Other invariance properties that are often
imposed to derive noninformative priors are: scale invariance when W = R+, permutation in-
variance, symmetry, etc. A discussion about different ways to derive noninformative priors can
be found in [1], [2, Ch. 6] and [3, Sec. 5.6.2]. Much criticism has been raised concerning the
use of noninformative priors [2, Sec. 3.4.5]; for instance that they are often improper. A way to
solve this problem is to use an approximation of these improper priors. For instance, in case of
the uniform on R we can restrict the support of the prior to be a large closed interval, so that the
resulting uniform truncated on this interval is proper. An issue of this approach is how to choose
this interval; to do that we need some prior information that is not always available. Another
possible way to justify the use of improper priors has been proposed in [4] and [5]. Noninfor-
mative priors can be regarded as limits of proper informative priors (a limit of proper truncated
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priors when the truncation vanishes). The advantage of this interpretation is that it allows us
to compute prior inferences (expectations) w.r.t. noninformative priors by computing this limit.
This is not possible when we directly use improper priors, since the integrals diverge.

It can be shown that the probability measures that we obtain by this limit are finitely addi-
tive; this provides a justification of improper priors from a Bayesian perspective. The advantage
of this interpretation of improper priors is that (i) we do not need to define a finite truncation;
(ii) we can compute the prior expectation by calculating limits. A-posteriori, if the distribution
that we obtain by combining the limit improper prior and the likelihood is proper, we can com-
pute posterior expectations by moving the limit under the integral sign. In other words, we can
compute first the limit which gives us the improper prior and then use this prior to compute the
posterior. The presence of finitely additive measures is hidden in this case.

Other two criticisms to noninformative priors are that they are not unique, see for instance
[2, Sec. 3.3.3], and that they do not really model lack of prior information, but only invariance
[6]. To solve these issues, many authors [6–11] suggest that lack of prior information should be
expressed in terms of a family M consisting of all prior distributions that are compatible with
the available prior information. Inferences should then be carried out by considering the whole
family M . This approach is known as Bayesian robustness or Bayesian sensitivity analysis—
examples are ε-contamination models [2, 12], restricted ε-contamination models [9], intervals
of measures [10, 12], the density ratio class [6, 10], etc.

In case almost no prior information is available on W , M should be as large as possible in
order to describe this state of prior ignorance. The natural candidate for M to represent com-
plete ignorance is the set of all distributions. However, it turns out that the posterior inferences
obtained from this set are vacuous [6, Sec. 7.3.7], i.e., the posterior set of distributions coin-
cides with the prior set of distributions. This means that our prior beliefs do not change with
experience, or, in other words, that there is no learning from data. Therefore, the vacuous prior
model is not a statistically useful way to model our prior ignorance. There is then a compro-
mise to be made. Walley suggests, as an alternative, the use of an almost vacuous model which
he calls a“near-ignorance prior” [6, 11]. This is a model that behaves a priori as a vacuous
model for some basic inferences (e.g., prior mean, prior credible regions) but it always provides
non-vacuous posterior inferences. Near-ignorance models allow us to start a statistical analysis
with very weak assumptions about the problem of interest and, thus, to implement a genuine
objective-minded approach to inference. Near-ignorance models have been presented in [6, 11]
to address inference problems in which: (i) the observations are discrete and the unknown W
is a vector of variables with bounded components (the so-called imprecise Dirichlet model, or
IDM); (ii) the observations are continuous and the unknown W is an unbounded but scalar vari-
able (Gaussian or double exponential family models [11]). Near-ignorance often naturally leads
to invariance. For instance, the IDM is known to satisfy permutation invariance and invariance
to coarsening/refinement of the categories [6]. When this is not the case, invariance properties
can be imposed to near-ignorance priors as suggested in [11].

In a recent paper [13] we have made a first proposal to generalize near-ignorance to the one-
parameter exponential families of distributions. Considering the case that the likelihood model is
a density belonging to the one-parameter exponential families, i.e., w∈W ⊆R, and M includes
the corresponding proper conjugate exponential priors; we have shown that there exists a choice
of the parametrization of M which satisfies near-ignorance without leading to vacuous posterior
inferences, and which is unique up to the choice of its size which determines the degree of
robustness (or caution) of the inferences. Stated differently, we have proven that the set of priors
M satisfying near-ignorance without leading to vacuous posterior inferences can be uniquely
obtained by letting the parameters of the conjugate exponential prior vary jointly in suitable
sets. This work allowed us to derive again the imprecise Beta model, which is the univariate
version of the IDM, and the set of Gaussian priors discussed in [11] from a more general model
of near-ignorance. Furthermore, we were able to derive new models of near-ignorance that were
not available before such as, for instance, a model based on a set of Gamma priors.
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In this paper, we extend the work in [13] in two main directions. First, we propose a way to
reconcile the two approaches to design a prior model in case of lack of prior information, i.e.,
invariance and Walley’s prior near-ignorance. We define four minimal properties that a prior
ignorance model M should satisfy: prior-ignorance, invariance, learning from data and asymp-
totic convergence. To apply these properties to define a prior model, the analysts must choose:
(i) w.r.t. which functions (e.g., mean, variance, credible intervals, etc.) she/he wants to be prior
ignorant; (ii) w.r.t. which group transformations she/he wants to be invariant; (iii) w.r.t. which
functions she/he wants to satisfy learning and convergence. These are general principles that
allow the analyst to elicit a prior model in a condition of ignorance. Then we specialize these
properties to the k-dimensional exponential families W = Rk, which is the main contribution
of this work. For the multivariate exponential family in W = Rk, it is natural to impose: (i)
prior-ignorance w.r.t. the function b(w) (the mean of the observation variable); (ii) invariance to
translations (w is a location parameter) and, depending on the exponential family we are con-
sidering, invariance to permutations, symmetry, invariance to coarsening/refinement, etc.; (iii)
learning and convergence w.r.t. any (measurable) function.

Moreover, we show that translation invariance, near-ignorance and learning can all be satisfied
by a set of conjugate priors M if it includes finitely additive probabilities obtained as limits of
truncated increasing/decreasing exponential functions. As discussed previously, when the set of
posteriors we obtain by combining the likelihood and the improper increasing/decreasing expo-
nential functions includes only proper distributions, we can move the limit under the integral
sign and compute inferences as we normally do with improper priors. When this is not the case,
we must deal with this limit to obtain the lower and upper expectations. We will show that for
the most important inferences in statistical analysis (mean, credible interval, etc.) computing
this limit is easy. We discuss how the obtained near-ignorance models compare with other mod-
els that have been proposed for near-ignorance: the imprecise Dirichlet model [6], the bounded
derivative model [14] and the nonparametric predictive inference model [15].

Finally, we show the application of our near-ignorance model to some practical statistical
problems. In particular, to state the practical effectiveness of our prior ignorance model, we em-
ploy it to implement a prior near-ignorance version of the one-sample Bayesian t-test. Our new
test has the peculiarity that it can suspend the judgement, which means that it stays indetermi-
nate with respect to the choice of the null or the alternative hypothesis, in case it deems that
there is not enough information in the data to take a reliable decision. By means of numerical
simulations, we compare our test with the frequentist t-test, a Bayesian t-test based on an im-
proper prior, a hierarchical Bayesian t-test based on an improper hyper-prior and show that our
test is more robust. This means that if we take a random decision, with 50/50 chance, on the in-
stances where our test is indeterminate (and take the recommended decision on the others), then
we obtain a test that has the same performance (power) of the frequentist t-test and the Bayesian
t-tests. This is an important result from a practical point of view, because it shows that using
near-ignorance leads to isolating instances on which traditional tests have no clue. Finally, as
another example, we apply our prior near-ignorance model to real data: the USA 2004 election
poll.

Notation x,w,x0,w0,y,y0 denote vectors in Rk. Their components, for i = 1, . . . ,k, are denoted
by x·i,w·i for variables that do not have a subscript and by x0i,w0i for variables that have a sub-
script. g denotes a bounded real-valued function on a subset of Rk. E[·] denotes the expectation
operator, while E[·] and E[·] denote the lower and, respectively, upper expectation operators.

2. Prior Near-Ignorance and Invariance

The aim of this section is to define which minimal properties the set of priors M should satisfy in
case there is (almost) no prior information about a random variable W taking values in W ⊆Rk.
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We start by defining prior ignorance.
Definition 2.1. A state of ignorance about a real-valued bounded function (RVBF) g of W can
be modelled as follows: E[g] = infg and E[g] = supg, where E,E denote the lower and upper
bounds of the expectation of g computed w.r.t. the set of priors M .

It can be observed that the range of E[g] under the set of priors M is the same as the original
range of g. In other words, by specifying the set of priors M , we are not giving any information
on the value of the expectation of g. It corresponds to stating that we are in a state of ignorance.

In case of lack of prior information, another property that is desirable for M is that of satis-
fying some invariance principle. Consider for instance the case in which W = R. Then, in case
of lack of prior information, it seems to be reasonable that, for all subsets of reals A and for all
real numbers a, the prior probabilities of the set A and the shifted set A+a should coincide. This
property is called translation invariance. The principle of invariance to transformations can be
formalized as follows [6, Sec. 3.5] (hereafter, we use F to denote a group of transformations of
W ).1

Definition 2.2. A lower expectation E on L (W ), where L (W ) is the linear space of all RVBFs
on W , is called F -invariant in G ⊆ L (W ) if E[g( f )] = E[g] whenever g ∈ G , f ∈ F and
g( f ) ∈ G .

For example, let W = R and define the translations fa by fa(w) = w+a. The group of trans-
formations F = { fa : a ∈ R} is called the translation group on R. Since g( fa(w)) = g(w+a),
F -invariance is translation invariance in this case.2 If g = I{A},3 with A ⊆ W measurable, the
above equality E[g( f )] = E[g] means that the set A and the shifted set A+ a should have the
same lower probability for any value of a.

The only set of priors which satisfies prior ignorance, i.e., E[g] = infg and E[g] = supg,
for all g ∈ L (W ) and which is F -invariant to all possible F is the set of all probabilities
(vacuous prior model). However, it turns out that the posterior inferences obtained from this set
are vacuous [6, Sec. 7.3.7], i.e., the posterior set of probabilities coincides with the prior set
of probabilities. This means that our prior beliefs do not change with experience (i.e., there is
no learning from data). Therefore, the vacuous prior model is not a useful way to model our
prior ignorance in statistics. There is then a compromise to be made: imposing prior ignorance
and invariance only on a subset of the possible RVBFs and group of transformations. The set
of minimal properties that M or, equivalently, the lower and upper expectations it generates,
should satisfy to be an invariant model of prior ignorance and produce consistent and meaningful
posterior inferences are formalized hereafter.

(A1) {Fi}-prior invariance. For a chosen set of RVBFs G1 and a class of groups of transfor-
mations {Fi}, the prior upper and lower expectations are {Fi}-invariant, i.e., E[g( f )] =
E[g]4 for any Fi ∈ {Fi}, g ∈ G1, f ∈Fi and g( f ) ∈ G1.

(A2) G0-prior ignorance. The prior upper and lower expectations of some suitable set of
RVBFs G0 under M are vacuous, i.e., E[g] = infg and E[g] = supg for all g ∈ G0.

(A3) G -learning. For a chosen set of RVBFs G ⊇ G0 and for each g ∈ G satisfying E[g]−
E[g]> 0, there exists a finite δ > 0 (possibly dependent on g) such that for each n≥ δ

and sequence of observations yn = (y1, . . . ,yn), at least one of these two conditions is

1More precisely, F denotes a semigroup of transformations of W . That is, each f ∈F maps W into itself, and the composition
f1 f2 defined by f1( f2(w)) is in W whenever f1, f2 ∈F . The semigroup F is Abelian if f1 f2 = f2 f1 whenever f1, f2 ∈F .
2In this paper we mainly focus on translation invariance. However, for multivariate models, we will impose other invariance proper-
ties: invariance to permutations and invariance to representation.
3Note that I{A} is the indicator function of set A, i.e., I{A}(x) = 1 if x ∈ A and zero otherwise.
4Equivalently, if −g and −g( f ) belong to G1 then E[−g( f )] = E[−g], which implies that E[g( f )] = E[g] being E[g] =−E[−g] for
any g.
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satisfied:

E[g|yn] 6= E[g], E[g|yn] 6= E[g], (1)

where E[·|yn] and E[·|yn] denote the posterior lower and upper expectations of g.
(A4) Convergence. For each RVBF g ∈ G and sequence of observations yn, the following con-

ditions are satisfied for n→ ∞:

|E∗[g|yn]−E[g|yn]| → 0, |E∗[g|yn]−E[g|yn]| → 0, (2)

where E∗[g|yn] is the posterior expectation w.r.t. the posterior density derived, via Bayes’
rule, from the likelihood model and some prior on W that is dominated by the likeli-
hood.1

Property (A1) states that M should be prior invariant w.r.t. some class of groups of transfor-
mations {Fi} and RVBFs G1. In general we expect G1 to be very large and coincide with G
defined in (A3). Again in case M includes all possible distributions then (A1) holds for any Fi
[6, Sec. 3.5.6]. Here, conversely, we require that (A1) is satisfied for some specific choice of
{Fi}. This choice depends on the aims and on the application of the set of priors M .

Property (A2) states that M should be vacuous a priori w.r.t. some set of RVBFs G0, i.e.,
the lower and upper expectations of g ∈ G0 respectively coincide with the infimum and the
supremum of g. In case M includes all possible distributions then (A1) holds for any function
g. Here, conversely, we require that (A1) is satisfied for some subset of RVBFs G0. The subset
of RVBFs G0 used in (A1) should include the RVBFs g w.r.t. which we state our condition of
prior near-ignorance.

The sets G0 in (A2) and {Fi} in (A1) should be also as large as possible to guarantee that
also M is as large as possible, but no too large to be incompatible with the requirement (A3)
of learning. In fact, property (A3) states that M should be non-vacuous a-posteriori for any
RVBF g ∈ G ⊇ G0, which is a condition for learning from the observations. The set of RVBFs
G used in (A3) should consist of the RVBFs g w.r.t. which we are interested in computing
expectations (i.e., making inferences). The fact that G must include G0 is the only constraint
on G , meaning that (A3) requires that M is not vacuous w.r.t. all these RVBFs for which the
prior near-ignorance has been imposed. Since M is a model of prior near-ignorance, it is also
desirable that the influence of M on the posterior inferences vanishes with increasing number
of observations n. This is a sort of ultimate agreement by the accumulation of evidence.

Property (A4) states that, for n→ ∞, M should give the same lower and upper expectations
of g ∈ G as those obtained from some sufficiently regular prior on W .

In order to better understand properties (A1)–(A4), in Section 4 we show their instantiation
in the case of the exponential families. Before discussing these results, in the next section we
introduce the exponential families of densities and review their main properties [3, 17–19].

3. Exponential Families

Consider a sampling model where i.i.d. samples of a k-dimensional random vector Y are taken
from a sample space Y . For w ∈ Rk define b(w) = ln

∫
Y u(y)exp(yT w)dy, (a sum in case Y is

discrete), where u(·) : Y → R+ and T denotes transpose. Let W be {w : b(w) < ∞} [20]; it
can be shown that W is a convex set and it is called the natural parameter space. It is further

1We point the reader to [16, Ch. 20] for a general discussion about dominated priors. When the likelihood belongs to the exponential
families (the focus of this paper), as dominated prior we may consider any proper conjugate prior, the improper uniform or other
sufficiently regular priors. The posterior becomes asymptotically Normal in these cases.
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assumed that W is a non-empty open set in Rk, i.e., we restrict attention to regular exponential
families [20]. The probability density

p(y|w) = u(y)exp(yT w−b(w)), y ∈ Y , (3)

is called the canonical form of representation of the exponential family; y ∈ Y is a so-called
sufficient statistic; w ∈ W is a so-called natural parameter. The functions u(·) : Y → R+ and
b(·) : W → R characterize each particular family of the exponential families of distributions.
The canonical form has some useful properties. First, the mean and variance of Y are given by

E[Y |w] = ∇b(w), Var[Y |w] = ∇
2b(w), (4)

where ∇b = [ ∂b
∂w·1

, ∂b
∂w·2

, . . . , ∂b
∂w·k

]T is the gradient (a column vector), w·i denotes the i-th compo-
nent of the vector and ∇2b(w)> 0 for each w ∈W is the Hessian matrix. Second, in the case of
n i.i.d. observations yi, it follows that

n

∏
i=1

p(yi|w) = exp
(
n
(
ŷT

n w−b(w)
)) n

∏
i=1

u(yi), w ∈W , (5)

where ŷn =
1
n ∑

n
i=1 yi is the sample mean of yi which, together with n, is a sufficient statistic of

y1, . . . ,yn for inference about W under the i.i.d. assumption.
Furthermore, by interpreting the density function in (5) as a likelihood function, we can define

the corresponding conjugate prior. A probability density p(w|n0,y0), parametrized by n0 ∈R and
y0 ∈ Rk, is said to be the canonical conjugate prior of (3) if

p(w|n0,y0) ∝ exp
(
n0
(
yT

0 w−b(w)
))

, w ∈W , (6)

where n0 is the so-called number of pseudo-observations and y0 is the so-called pseudo-
observation. Consider the convex hull of the support set of the measure u(dy), and then let
Y0 be the interior of this convex set. From (4), it follows that Y0 is the set of possible values of
∇b [20].

Lemma 3.1. Consider the prior p(w|n0,y0)∝ exp
(
n0
(
yT

0 w−b(w)
))

. If y0 ∈Y0 and 0< n0 <∞,
then the density is proper, i.e., there exists a normalization constant k(n0,y0)> 0 such that∫

k(n0,y0)exp
(
n0
(
yT

0 w−b(w)
))

dw = 1.

The lemma is proven in [20, Th. 1]. Lemma 3.1 states that if n0 ∈ R+ and y0 ∈ Y0 then the
kernel exp

(
n0
(
yT

0 w−b(w)
))

is integrable and, thus, proper.
The likelihood and conjugate prior pair in the canonical exponential families satisfy a set of

interesting properties, most of them are particularly useful to represent the nature of the Bayesian
learning process. A list of such properties is given in the following lemmas.

Lemma 3.2. For a pair of likelihood and conjugate prior in the canonical exponential family, it
holds that the posterior density for w is:

p(w|np,yp) = k(np,yp)exp
(
np
(
yp

T w−b(w)
))

, w ∈W , (7)

where np = n+n0 and yp =
n0y0+nŷn

n+n0
, which is always proper if n0 > 0 and y0 ∈ Y0.

This follows by conjugacy, see [3, Ch. 5]. In (4), it has been shown that ∇b is the mean of Y
conditional on w. Hence, ∇b is the quantity about which we will have prior beliefs before seeing
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the data y and posterior beliefs after observing the data. Hence, it is interesting to compute the
prior and posterior mean of ∇b. For sampling models such that ∇b(w) = x, these expectations
give also a closed formula for the prior and posterior expectations of x.

Lemma 3.3. The prior mean of the function ∇b is E[∇b|n0,y0] = y0 if y0 ∈ Y0 and n0 > 0 and
the posterior mean: E[∇b|np,yp] = yp =

n0y0+nŷn
n+n0

.

These results follow from the properties of exponential families [3, Ch. 5], [20]. Examples of
conjugate exponential families can be found for instance in [3, Ch. 5].

4. Near-Ignorance For k-Parameter Exponential Families

Consider the problem of statistical inference about the real-valued parameter w ∈W =Rk from
noisy measurements y1, . . . ,yn and assume that the likelihood is completely described by an
exponential family probability density function (PDF) (or probability mass function (PMF) in
the discrete case):

n

∏
i=1

p(yi|w) = exp
(
n
(
ŷT

n w−b(w)
)) n

∏
i=1

u(yi), (8)

where the parameters of the likelihood, i.e., sample mean ŷn =
1
n ∑

n
i=1 yi and n ∈ N, are known

(the likelihood is precisely known, a single PDF/PMF specified by the parameters ŷn and n).
By conjugacy and following a Bayesian approach, as prior for w we may consider the proper
PDF p(w|n0,y0) defined in (6) for a given value of the parameter y0 ∈ Y0 and n0 ∈ R+. In the
case there is not enough information about the value w of W to uniquely determine the values
of the parameters y0 and n0, we can consider the family M of prior densities which represent
prior-ignorance and satisfy some invariance principles, but without leading to vacuous posterior
inferences. In other words, the question is how to construct a family M of prior densities which
satisfies properties (A1)–(A4) discussed in Section 2. For tractability of inferences, we restrict
this set of priors only to include densities such that the resulting set of posteriors is conjugate
with the likelihood model. Before answering this question for the general multivariate case,
W = Rk, we focus on the univariate case, W = R. We start proving the following lemma.

Lemma 4.1. The lower expectation model1

E[g] = liminfr→∞

∫
g(w)p(w)dw, (9)

with p(w) = `
exp(`r) exp(`w)IWr(w) for ` 6= 0,

Wr =

{
(−∞,r] if ` > 0,
[−r,∞) if ` < 0, (10)

r ∈ R and p(w) = 1
2r IWr(w) with W = [−r,r] for the case ` = 0, satisfies E[g( fa)] = E[g] with

fa(w) = w+a (translation invariance) for any g in the set of Borel-measurable RVBFs K and
a ∈ R.

1Let the least term φ of a sequence be a term which is smaller than all but a finite number of the terms which are equal to φ . Then φ

is called the lower limit of the sequence.
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Proof. For `= 0, p(w) = 1
2r IWr(w) coincides with the uniform distribution on W = [−r,r], then

E[g( fa)] = liminfr→∞
1
2r
∫ r
−r g(w+a)dw = liminfr→∞

1
2r
∫ r+a
−r+a g(w)dw

= liminfr→∞
1
2r

(∫ r
−r g(w)dw+

∫ r+a
r g(w)dw−

∫ −r+a
−r g(w)dw

)
= E[g]+ liminfr→∞

1
2r

(∫ r+a
r g(w)dw−

∫ −r+a
−r g(w)dw

)
.

Hence, being g bounded (it is a RVBF), it follows that both
∫ r+a

r g(w)dw and
∫ −r+a
−r g(w)dw

are bounded for any r and, thus, the limit in the last equation above goes to zero for r→ ∞.
Therefore, it results that E[g( fa)] = E[g]. We have thus proven that the limit for r→ ∞ of the
uniform distribution on W = [−r,r] satisfies translation invariance.

For ` 6= 0 and Wr = (−∞,r] (the case Wr = [−r,∞) is similar),

E[g( fa)] = infp
∫

g(w+a)p(w)dw = infp
∫

g(w)p(w−a)dw,

where infp means liminfr→∞ with respect to p(w) = `
exp(`r) exp(`w)I(−∞,r](w) or, equiva-

lently, to p(w− a) = `
exp(`r) exp(`(w− a))I(−∞,r](w− a). Define r1 = r + a, then p(w− a) =

`
exp(`r1)

exp(`w)I(−∞,r1](w) and, thus,

E[g( fa)] = liminfr1→∞

`

exp(`r1)

∫
g(w)exp(`w)I(−∞,r1](w)dw,

which is equal to E[g] and, thus, satisfies translation invariance.

Consider the kernel exp(`w); transformed back to the original parameter space, it becomes
exp(`x) in the Normal case, θ `−1(1− θ)−`−1 in the Beta case and λ `−1 in the Gamma case.1

We can see these priors are generalizations of the translation invariant improper priors that are
normally used in Bayesian analysis. These priors can be obtained by setting ` = 0: they are
respectively 1 (improper uniform), θ−1(1−θ)−1 (Haldane prior) and λ−1 (Jeffreys prior). All
these priors are improper. Improper priors can be defined as a limit of truncations of proper priors
as in (9). It can be shown that the probability measures that we obtain by this limit are finitely
additive; this provides a justification of improper priors from a Bayesian perspective. We discuss
this connection with more details in Appendix A. A-posteriori, if the distribution that we obtain
by combining the limit improper prior and the likelihood is proper, we can compute posterior
expectations by moving the limit under the integral sign. Hereafter, for notational convenience,
we will often interchange the limiting procedure in E[g] with its limit kernel exp(`w), since
they are in most of the cases equivalent in terms of posterior inferences. However, the reader
should be aware that, for instance, in referring to the prior expected value of g w.r.t. exp(`w) we
actually mean (9). Furthermore, again for notational convenience, we will denote the prior with
p(w) = `

exp(`r) exp(`w)IWr(w) even in the case `= 0 where it should be p(w) = 1
2r I[−r,r](w) (this

because the lower and upper expectations of RVBFs hereafter considered are obtained by priors
of this form p(w) = `

exp(`r) exp(`w)IWr(w)).

Theorem 4.2. Assume that W = R and consider properties (A1)–(A4), with G = G1 including
sufficiently smooth RVBFs,2 G0 = {b′}, where b′ is the first derivative of b, and Fi = F , where

1The differences are due to the Jacobians of the transformations.
2With sufficiently smooth RVBFs, we mean integrable w.r.t. the kernel exp

(
n
(
ŷT

n w−b(w)
))

exp(`w) for any ` ∈ [−c,c], n ∈ N and
ŷn ∈Cl(Y0), with support in W and continuous on a neighbourhood of the point where the posterior relative to the improper uniform
prior concentrates for n→ ∞.
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F = { fa : a ∈ R} and fa(w) = w + a, i.e., a translation of the parameter space. Given the
parameter c ∈ R+, the following set of priors:

M ∝ {exp(`w), ` ∈ [−c,c]} , (11)

satisfies (A1)–(A4) and conjugacy between likelihood and posterior.

Proof. Consider first property (A1). Define E[g] = inf{E`[g] : ` ∈ [−c,c]}, where E`[g] =
liminfr→∞

`
exp(`r)

∫
g(w)exp(`w)IWr(w)dw. From Lemma 4.1, it follows that E`[g( fa)] = E`[g]

for any ` and, thus, translation invariance holds for any kernel exp(`w). Thus, it holds also
for the kernel ` which attains the infimum in E[g]. Therefore, E[g( fa)] = E[g] for any g ∈ G1
and, thus, the set of priors M is invariant under translations. Furthermore, it can be seen that
the elements of M satisfy conjugacy between posteriors and the likelihood model, in fact:
exp(n(ŷnw−b(w))exp(`w) = exp(n(nŷn+`

n w−b(w)).
Consider now (A2). From Section 3 it follows that ∇b = b′ ∈ Y0 (we are in the scalar case,

W = R) and the first derivative of b is always increasing in W since the second derivative b′′ is
positive. Therefore, since for ` > 0, exp(`w) is always increasing in W , it follows that:

E
[
b′
]
= sup

`∈[−c,c]
limsupr→∞

`

exp(`r)

∫
b′(w) exp(`w)IWr(w) = supY0,

where Wr = (−∞,r]. The last equality can be easily derived by the fact that exp(`w) has a max-
imum in w = r and thus the mass of exp(`w)/exp(`r) is concentrated on a small neighborhood
of w = r. In fact, given r for any r1 < r it holds that

`

exp(`r)

r∫
−∞

b′(w) exp(`w)

=
`

exp(`(r− r1))exp(`r1)

r1∫
−∞

b′(w) exp(`w)+
`

exp(`r)

∫ r

r1

b′(w) exp(`w)

>
`

exp(`(r− r1))exp(`r1)

r1∫
−∞

b′(w) exp(`w)+
exp(`r)− exp(`r1)

exp(`r)
b′(r1)

r→∞
= b′(r1).

Similarly, it can be shown that limr→∞
`

exp(`r)
∫ r
−∞

b′(w)< limr→∞ b′(r). Hence, for any finite r1,

b′(r1)< lim
r→∞

`

exp(`r)

r∫
−∞

b′(w) exp(`w)< lim
r→∞

b′(r),

which by definition of supremum implies that E [b′] = supb′(r) = supY0.1 For r→ ∞, the mass
goes to infinity and, thus, concentrates on the value of w which gives the maximum of b′. In a
similar way, since for ` < 0, exp(`w) is always decreasing in W , one has:

E
[
b′
]
= inf

`∈[−c,c]
liminfr→∞

`

exp(`r)

∫
b′(w) exp(`w)I[−r,∞)(w) = infY0.

1This holds for any ` ∈ (0,c]. All ` ∈ (0,c] are equivalent w.r.t. this property, since all exp(`w) are increasing in W for ` > 0.
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Thus, (A2) is also satisfied. Consider property (A3). The set of posteriors resulting from (11) is:

Mp ∝

{
exp
(

n
(
`+nŷn

n
w−b(w)

))
, ` ∈ [−c,c]

}
. (12)

Since Y0 is an open convex subset of R [20] (and thus dense in R) and since ŷn ∈Cl(Y0), there
exists a δ > 0 such that for n > δ either `+nŷn

n ∈ Y0 or −`+nŷn
n ∈ Y0 for ` ∈ (0,c]. Thus, for

any ŷn and for a sufficiently large n, there are always probabilities in Mp that are countably
additive (they have proper PDFs) for either ` ∈ (0,c] or ` ∈ [−c,0). By applying Proposition
3.3 with n0y0 = ` and n0→ 0 to the proper PDFs in Mp, this implies that E[b′|n, ŷn] =

−c+nŷn
n

and/or E[b′|n, ŷn] =
c+nŷn

n for n ≥ δ (in case ŷn ∈ Y0 but ŷn /∈ Cl(Y0)\Y0 all probabilities in
Mp are countably additive for all ` ∈ [−c,c] for a suitably large n). This means that (A3) holds
w.r.t. the lower and/or the upper for the RVBF g = b′ for which we have stated our condition
of prior ignorance (A2). Furthermore, since for n → ∞, `+nŷn

n → ŷn and Mp reduces to the
single posterior obtained from the improper prior p(w) = 1, it follows that the lower and upper
posterior expectations of any RVBF g ∈ G converge to the posterior expectation obtained from
the improper uniform prior p(w) = 1. This proves (A4) but also (A3); in fact since, for n→ ∞,
E[g|n, ŷn] = E[g|n, ŷn], this implies that either E[g|n, ŷn] 6= E[g] or E[g|n, ŷn] 6= E[g] for all g such
that E[g]−E[g]> 0.

Summarizing, Theorem 4.2 states that:

• Translation invariance and prior ignorance are satisfied by the set of finitely additive proba-
bilities obtained from the kernels in (11): that is, as lower limit for r→ ∞ of the truncated
densities exp(`w)IWr(w), see Appendix A.

• A-posteriori, for any n > 0, there are always probabilities in Mp that are countably additive
and, at the increase of n these probabilities give either the lower or upper expectation of g
or both (since either c+nŷn

n ∈ Y0 or c+nŷn
n ∈ Y0, while if they are both in Y0 then all the

probabilities in Mp are countably additive). This explains why also (A3)–(A4) are satisfied.
• The result in Theorem 4.2 is different from the one we have obtained in [13], because of the

additional requisite of translation invariance that is not satisfied by the set of conjugate priors
in [13]. The advantage of imposing translation invariance is twofold. First, it implies that the
lower and upper posterior inferences are invariant to translations of the sample mean—this
aspect will be clarified in Section 5. Second, it allows us to reduce to one (the constant c) the
number of parameters that specify the set of priors, while in [13] there are two parameters.
We compare the two models with more details in Section 7.1.

A consequence of Theorem 4.2 is given in the following corollary.

Corollary 4.3. The lower and upper posterior expectation of b′ obtained from the set of poste-
riors (12) is:

E[b′|n, ŷn] = max
(

infY0,
nŷn−c

n

)
, E[b′|n, ŷn] = min

(
supY0,

nŷn+c
n

)
, (13)

and there exists δ > 0 such that, for any n > δ either the lower or the upper is different from
infY0 or, respectively, supY0.1

Proof. In case nŷn+`
n ∈Y0 for any ` ∈ [−c,c] and any n, any posterior in (12) is proper and, thus,

the result follows by Proposition 3.3 with n0y0 = ` and n0→ 0. Conversely, when this is not the

1Notice that this behavior in general is not monotone and depends on how ŷn converges with the number of observations.

10



case, observe that:

d exp(n(ypw−b(w)))
dw

= n
(
yp−b′(w)

)
exp(n(ypw−b(w))) ,

where yp =
nŷn+`

n . Since b′′(w)> 0 for each w∈W , the function b′ is always increasing in W and
obtains its infimum infY0 and supremum supY0 for w→ infW and, respectively, w→ supW .
Since yp ∈Cl(Y0) and b′ ∈Y0, then if yp ≤ infY0, it follows that yp−b′(w)≤ 0 for any w ∈W
and, thus, the kernel exp(n(ypw−b(w))) is always decreasing in w. Similarly it holds that if
yp ≥ supY0 then exp(n(ypw−b(w))) is always increasing in w. Therefore, at the limit r→ ∞,
the posterior mean computed w.r.t. the prior exp(`w)I(−∞,r](w) if ` > 0 or, exp(`w)I[−r,∞)(w)
if ` < 0, will be equal to supY0 in the case yp > supY0 or, respectively, infY0 in the case
yp < infY0. For the second part of the corollary, as in the proof of Theorem 4.2, observe that,
in case ŷn ∈Cl(Y0)\Y0, for sufficiently large n either `+nŷn

n ∈ Y0 or −`+nŷn
n ∈ Y0 for ` ∈ (0,c].

This means that, for a sufficiently large n, if E[b′|n, ŷn] = infY0 then E[b′|n, ŷn] =
nŷn+c

n while if
E[b′|n, ŷn] = supY0 then E[b′|n, ŷn] =

nŷn−c
n .

We illustrate the results in Theorem 4.2 and Corollary 4.3 with the following example.
Example 4.4. In the Poisson case, the likelihood is ∏

n
i=1 p(yi|θ) = ∏

n
i=1 P(yi;λ ) =

λ ∑
n
i=1 yi exp(−nλ ). Assume we do not have prior information about the unknown parameter λ .

To model this condition of prior ignorance, we can employ the set of priors (11), that trans-
formed to the original parameter space reduces to M ∝ {λ `−1, ` ∈ [−c,c]}, where λ−1 is the

determinant of the Jacobian. If c > 1, it includes Jeffreys’ prior λ
−1

2 and the improper prior
λ−1 and it satisfies the prior-ignorance property E[λ ] = 0 and E[λ ] = ∞. The resulting set of
posteriors obtained by combining priors and likelihood is:

Mp ∝

{
λ ∑

n
i=1 yi+`−1 exp(−nλ ), ` ∈ [−c,c]

}
. (14)

It can be noticed that if ∑
n
i=1 yi + ` > 0 for any `, Mp includes proper Gamma densities (it can

thus be normalized), otherwise Mp includes densities that again concentrate on λ = 0 for ` < 0.
Thus, from Corollary 4.3 it follows that a-posteriori:

E[λ |n, ŷn] = max
(

0,
−c+∑

n
i=1 yi

n

)
, E[λ |n, ŷn] =

c+∑
n
i=1 yi

n
.

We are now ready to extend the results of Theorem 4.2 to the multivariate case. Before doing
that, we state the following lemma that will be exploited in the theorem.

Lemma 4.5. Let L be a bounded closed convex subset of Rk strictly including the origin (i.e.,
the origin is in the interior of L), and let `= [`·1, . . . , `·k]

T belong to L; then it holds that

min
`∈L

`·i < 0, max
`∈L

`·i > 0. (15)

Proof. This results follows straightforwardly by considering any ball B(L) ⊂ L centred at the
origin and observing that (15) holds for ` ∈B(L).

Theorem 4.6. Assume that W = Rk and consider properties (A1)–(A4), with G0 =
{ ∂b

∂w·1
, . . . , ∂b

∂w·k
}, G =G1 including sufficiently smooth RVBFs and Fi =F , where F = { fa : a∈
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Rk} and fa(w) = w+a. The following set of priors:

M ∝
{

exp(`T w), `= [`·1, . . . , `·k]
T ∈ L

}
, (16)

where L is a bounded closed convex subset of Rk strictly including the origin, satisfies (A1)–(A4)
and conjugacy.

Proof. Consider first property (A1). Define E[g] = inf{E`[g] : ` ∈ L}, where

E`[g] = liminfr·1→∞ . . . liminfr·k→∞

∫
· · ·
∫

g(w)exp(`T w)
k

∏
i=1

IWr·i
(w·i)

`·i
exp(`·ir·i)

dw·i,

and Wr·i defined in (10). Observe that Proposition 4.1 also holds for exp(`T w) in the multivariate
case (it is enough to proceed component-wise). In fact, since g( fa) = g(w+ a) then after the
change of variables w′ = w−a,

E`[g( fa)] =liminfr·1→∞ . . . liminfr·k→∞

∫
· · ·
∫

g(w′)exp(`T w′)
k

∏
i=1

I{Wr·i+a·i}(w
′
·i)

`·i
exp(`·i(r·i +a·i))

dw′·i.

Thus, by redefining r·i = r·i +a·i and Wr·i +a·i = Wr·i , it follows that E`[g( fa)] = E`[g] for any `
and, thus, translation invariance holds for any kernel exp(`T w). Then it holds also for the kernel
` which attains the infimum in E[g]. Therefore, E[g( fa)] = E[g] for any g ∈ G1 and, thus, the set
of priors M is invariant under translations.

Property (A2) follows from Theorem 4.2 by proceeding component-by-component for each
∂b

∂w·i
for i = 1, . . . ,k. In fact,

E`

[
∂b

∂w·i

]
= liminfr·1→∞ . . . liminfr·k→∞

∫
· · ·
∫

∂b
∂w·i

exp(`T w)
k

∏
i=1

IWr·i
(w·i)

`·i
exp(`·ir·i)

dw·i

= liminfr·i→∞

∫
∂b

∂w·i
exp(`·iw·i)IWr·i

(w·i)
`·i

exp(`·ir·i)
dw·i.

Since L includes the origin, then from Proposition 4.5 it follows that `·i can assume both positive
and negative values. Thus, we are back to Theorem 4.2 (univariate case) in which `·i is free to
vary in a closed interval including the origin. Thus, the infimum and supremum of ∂b

∂w·i
are

obtained for w·i→−∞ and, respectively, w·i→+∞. By combining likelihood and the priors in
(16), one obtains the posterior kernels:

Mp =

{
exp

(
n

((
`+nŷn

n

)T

w−b(w)

))
, ` ∈ L

}
. (17)

Observe that `+nŷn
n = ŷn +

`
n . Since L is bounded, the effect of `

n vanishes for n→ ∞, which
proves (A4) and thus (A3).

Theorem 4.6 requires L to be bounded and to include the origin in order to satisfy (A1)–(A4).
For symmetry reasons, we restrict L to be symmetric w.r.t. the origin so to reduce to the set
[−c,c] in the k = 1 case. It is clear that while in the one-dimensional case, convexity, boundness
and symmetry are satisfied only by the interval [−c,c] in the (k > 1)-dimensional case there are
many subsets of Rk that satisfy these three characteristics. In other words, Theorem 4.6 does not
specify uniquely L and, thus, the modeller can add further characteristics to L in order to satisfy
additional properties, for instance to determine the shape of the set of posterior means.
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Corollary 4.7. The expectation of ∇b calculated from the set of posteriors (17) satisfies:

E [∇b|n, ŷn] ∈
{

`+nŷn
n , ` ∈ L

}
, (18)

provided that all the posteriors in (17) are proper.

Proof. The result follows directly from Lemma 3.3 assuming that the set Mp contains all proper
distributions. This always holds for a large enough n because (17) satisfies (A4).

Corollary 4.7 is weaker than Corollary 4.3, because it provides the shape of the posterior set of
means only in the case all the posteriors in (17) are proper. In the multivariate case it is difficult
to characterize in general the shape of the set of posterior means when (17) can include some
improper distribution. This difficulty is due to the interaction among the components of w, which
is determinate by the function b(w), and changes depending on the exponential family we are
considering. Although we cannot provide a general characterization, we can extend Corollary 4.7
case-by-case, as it is shown in the next examples about the multivariate Normal and categorical
distributions.

4.1 Multivariate Normal with Known Variance

In the multivariate Normal case with known variance, ∏
n
i=1 p(yi|x) =∏

n
i=1 N(yi;x,V ) with x,yi ∈

Rd , 0 < V ∈ Rd×d and k = d. Let us assume that L = {` ∈ Rd : `·i ∈ [−c·i,c·i], c·i > 0, i =
1, . . . ,k}, this models a sort of “uncorrelated” prior uncertainty (i.e., `·i is free to vary in [−c·i,c·i]
independently of the values that `· j with j 6= i assumes). Notice in fact that L corresponds to a
box in Rd . In this case, the set of posteriors

Mp =

{
N
(

x; V `+nŷn
n ,

1
n

V
)
, ` ∈ L

}
includes Normal PDFs with variance V/n and means free to vary in a hyper-rectangle whose
vertices are the extremes of `+nŷn

n for `·i ∈ [−c·i,c·i], which implies:

E[X·i|n, ŷn] ∈
[
−c·i +nŷni

n
,
c·i +nŷni

n

]
. (19)

Observe that, provided that all the components of x are observed, Mp includes only proper pri-
ors. Thus (19) follows by Corollary 4.7. Conversely, if some component of x was not observed,
because of marginalization invariance of the Normal distribution, (19) would hold for all ob-
served components, while for the unobserved ones E[X·i|n, ŷn] ∈ (−∞,∞). We are prior ignorant
until we observe xi.

Notice that the set of constraints `·i ∈ [−c·i,c·i] for i = 1, . . . ,k are equivalent to 1
c·i
|`·i| ≤ 1

for i = 1, . . . ,k and can be replaced by the unique constraint maxi
1
c·i
|`·i| ≤ 1 or, equivalently,

||C−1`||∞ ≤ 1, where ` = [`·1, . . . , `·k]
T and C = diag(c·1, . . . ,c·k). From Theorem 4.6, it fol-

lows that prior ignorance and translation invariance are also satisfied in the case ||C−1`||∞ ≤ 1
is replaced by ||C−1`||1 ≤ 1 or ||C−1`||2 ≤ 1. It can also be noticed that, in the case the com-
ponents of x have the same “physical” meaning, there is no reason to use different values of
the parameters c·i, which can be thus set all equal, c·i = c. Furthermore, when c·i = c and
||C−1`||p ≤ 1 for some p-norm, the resulting set of priors is also invariant to permutations of
the components of x. This means that all the components have the same posterior imprecision,
i.e., E[x·i|n, ŷn]−E[x·i|n, ŷn] = 2c/n.
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4.2 Categorical Distribution

In the multinomial case, ∏
n
i=1 p(yi|x) =∏

n
i=1Ca(yi;x) with x∈ (0,1)d , ∑i x·i = 1 and yi j ∈ {0,1},

the set of posteriors obtained based on the parametrization [17, Ch.1] assuming L = {` ∈ Rd :
`·i ∈ [−c·i,c·i], c·i > 0, i = 1, . . . ,k} is:

Mp =

{
θ

nŷn1+`·1−1
·1 θ

nŷn2+`·2−1
·2 · · ·θ n(1−∑

d−1
i=1 ŷni)−∑

d−1
i=1 `·i−1

·d , `·i ∈ [−c·i,c·i]
}
. (20)

Observe that in this case Theorem 4.6 can be applied since W = Rd−1 and thus W = Rk with
k = d− 1. It can be noticed that in (20) the exponents of the components θ·i with i 6= d can
vary between nŷni − c·i − 1 and nŷni + c·i − 1, while the exponent of the component θ·d can
vary between n(1−∑

d−1
i=1 ŷni)−∑

d−1
i=1 c·i−1 and n(1−∑

d−1
i=1 ŷni)+∑

d−1
i=1 c·i−1. This means that

the imprecision on θ·d is larger than the imprecision on the other components even if c·i = c
for i = 1, . . . ,d− 1. This asymmetry is due to the choice of the parameter transformation [17,
Ch. 1], a different parameter transformation would result in asymmetry for a different component
of θ . This is not desirable for a model of prior ignorance in which, because of lack of prior
information, we expect the ignorance to be symmetric.

A way to overcome this problem is that of imposing to the set of priors not only to satisfy
translation invariance but also permutation invariance: that is, that the set of priors M is invariant
to permutations of the components of θ .

Corollary 4.8. Consider Theorem 4.6 in the multinomial case, the set of posteriors satisfy (A1)–
(A4) and permutation invariance of the components of θ provided that L is chosen as follows:

L=

{
` ∈ Rd : `·i ∈ [−c,c],

d−1

∑
i=1

`·i ∈ [−c,c], i = 1, . . . ,k

}
.

This follows by Theorem 4.6 imposing the additional constraint of permutation invariance.
The above choice of L implies that the set of priors is:

MSY M =

{
θ
`·1−1
·1 θ

`·2−1
·2 · · ·θ−∑

d−1
i=1 `·i−1

·d , `·i ∈ [−c,c],
d−1

∑
i=1

`·i ∈ [−c,c]

}
, (21)

which satisfies permutation invariance of the components of θ . For instance in the case d = 3,
the PDFs with extreme exponents that belong to (21) are of the following type: θ

c−1
·1 θ

−c−1
·2 θ

−1
·3 ,

θ
c−1
·1 θ

−1
·2 θ

c−1
·3 , θ

−c−1
·1 θ

c−1
·2 θ

−1
·3 , θ

−c−1
·1 θ

−1
·2 θ

−c−1
·3 , θ

−1
·1 θ

−c−1
·2 θ

c−1
·3 and θ

−1
·1 θ

c−1
·2 θ

−c−1
·3 . For the

case d = 4, one has θ
c−1
·1 θ

−c−1
·2 θ

c−1
·3 θ

−c−1
·4 , θ

c−1
·1 θ

c−1
·2 θ

−c−1
·3 θ

−c−1
·4 , etc. This means that

∑
d
i=1 s·ic = 0, where s·i is the sign of c as it appears in the exponent of θ·i.

Corollary 4.9. The lower and upper posterior means resulting from (21) are:

E[θ·i|n, ŷn] = max
(

0,
−c+nŷni

n

)
, E[θ·i|n, ŷn] = min

(
1,

c+nŷni

n

)
∀ i.

In general, the lower and upper mean of ∑i∈J θ·i, where J is a subset of {1, . . . ,d}, is equal to:

E[∑i∈J θ·i|n, ŷn] = max
(

0, 1
n

[
∑i∈J nŷni +max(−c|J|,−c(d−|J|))

])
,

E[∑i∈J θ·i|n, ŷn] = min
(

1, 1
n

[
∑i∈J nŷni +min(c|J|,c(d−|J|))

])
,

(22)

with |J| denoting the cardinality of J.
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Proof. Consider the general form (22), the posterior kernel is:

p(θ |n, ŷn) ∝ θ
nŷn1+`·1−1
·1 θ

nŷn2+`·2−1
·2 · · ·θ n(1−∑ ŷni)−∑

d−1
i=1 `·i−1

·d .

We prove it for J = {1,2} and d = 4 but the steps can be repeated in general. We need to compute

1
K

∫ 1

0

∫ 1−θ·1

0
(θ·1 +θ·2)θ

nŷn1+`·1−1
·1 θ

nŷn2+`·2−1
·2∫ 1−θ·1−θ·2

0
θ

nŷn3+`·3−1
·3 (1−θ·1−θ·2−θ·3)

n(1−∑
3
i=1 ŷni)−∑

3
i=1 `·i−1dθ·1dθ·2θ·3,

where K is the normalization constant. Now consider the transformation of coordinate θ ′·3 =
θ·3/(1−θ·1−θ·2) (in general θ ′·k = θ·k/(1−∑i∈J θ·i) for k /∈ J):

1
K

∫ 1

0

∫ 1−θ·1

0
(θ·1 +θ·2)θ

nŷn1+`·1−1
·1 θ

nŷn2+`·2−1
·2

(1−θ·1−θ·2)
n(1−ŷn1−ŷn2)−∑

2
i=1 `·i−1

∫ 1

0
θ ′·3

nŷn3+`·3−1(1−θ·3)
n(1−∑ ŷni)−∑

3
i=1 `·i−1dθ·1dθ·2θ·3

= 1
K

∫ 1

0

∫ 1−θ·1

0
(θ·1 +θ·2)θ

nŷn1+`·1−1
·1 θ

nŷn2+`·2−1
·2 (1−θ·1−θ·2)

n(1−ŷn1−ŷn2)−∑
2
i=1 `·i−1dθ·1dθ·2.

Now consider the transformation of coordinates θ·1 = uv, θ·2 = u(1− v) with 0 < u,v < 1 (in
general θ·i = uvi ∀i ∈ J and 1−∑i∈J θ·i = u(1−∑i∈J vi)):

1
K

∫ 1

0

∫ 1−θ·1

0
(θ·1 +θ·2)θ

nŷn1+`·1−1
·1 θ

nŷn2+`·2−1
·2 (1−θ·1−θ·2)

n(1−ŷn1−ŷn2)−∑
2
i=1 `·i−1dθ·1dθ·2

= 1
K

∫ 1

0

∫ 1

0
unŷn1+`·1+nŷn2+`·2−1(1−u)n(1−ŷn1−ŷn2)−∑

2
i=1 `·i−1vnŷn1+`·1−1(1− v)nŷn2+`·2−1dudv

= 1
K

∫ 1

0
unŷn1+`·1+nŷn2+`·2−1(1−u)n(1−ŷn1−ŷn2)−∑

2
i=1 `·i−1du.

Note that we are reduced to a univariate expectation w.r.t. a Beta distribution. We can therefore
apply Corollary 4.3, with the constraints `·i ∈ [−c,c], ∑

d−1
i=1 `·i ∈ [−c,c], to obtain (22).

It can be noticed that, fixed J, the posterior imprecision of ∑i∈J θ·i increases with d, i.e., the
components of θ . For some problem this can be undesirable, especially because the choice of the
number of components of θ is often arbitrary. We would like to make the posterior imprecision
invariant to the number of components of θ .

Corollary 4.10. Consider Theorem 4.6. The set of posteriors satisfy (A1)–(A4), permutation
invariance of the components of θ and invariance of the posterior imprecision w.r.t. the number
of components of θ provided that L is chosen as follows:

L=

{
` ∈ Rd : ||`||1 ≤ 2c,

d−1

∑
i=1

`·i ∈ [−c,c]

}
,

where `= [`·1, . . . , `d−1]
T .

This follows by Theorem 4.6 imposing the additional constraint of permutation invariance and
invariance w.r.t. the number of components of θ . This implies that the set of priors in this case
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is:

MRIP =

{
θ
`·1−1
·1 θ

`·2−1
·2 · · ·θ−∑

d−1
i=1 `·i−1

·d , ||`||1 ≤ 2c,
d−1

∑
i=1

`·i ∈ [−c,c]

}
. (23)

For the case d = 2 and d = 3, (23) coincides with (21), but in the case d = 4, the
PDFs with extreme exponents are θ

c−1
·1 θ

−c−1
·2 θ

−1
·3 θ

−1
·4 , θ

c−1
·1 θ

−1
·2 θ

−c−1
·3 θ

−1
·4 , θ

c−1
·1 θ

−1
·2 θ

−1
·3 θ

−c−1
·4 ,

θ
−1
·1 θ

c−1
·2 θ

−c−1
·3 θ

−1
·4 etc. In this case, there are at most two components whose exponents assume

value ±c− 1. With this constraint, the set of posteriors satisfies the one-step ahead representa-
tion invariance principle (RIP) [6], i.e., the posterior upper and lower probabilities assigned to
the event “the next observation belongs to the categories in J” should not depend on the sample
space in which the event and the previous observations are represented. In fact, one has that:

E[∑i∈J θ·i|n, ŷn] = max
(

0, 1
n

[
∑i∈J nŷni− c

])
, E[∑i∈J θ·i|n, ŷn] = min

(
1, 1

n

[
∑i∈J nŷni + c

])
,

(24)
and, thus, it can be noticed that the difference between the upper and lower expectation does not
depend on the number of categories in J.

4.3 How to Choose Parameters c·i

The aim of this section is to give guidelines for the choice of the parameters c·i. The parameters
c·i determine the precision of posterior inferences and, thus, their robustness. To understand the
meaning of c·i, we can compare the expression of the posterior expectation of ∂b/∂w·i obtained
by considering a standard Bayesian analysis using the conjugate prior exp(n0(yT

0 w−b(w))) and
the lower and upper posterior expectations obtained using our model, i.e.,

nŷni +n0y0i

n+n0
←→ nŷni± c·i

n
. (25)

Looking at the expression on the left, it is evident that the prior parameter n0 attached to the
prior mean y0i plays the same role to the sample size n attached to the data mean ŷni. Since
nŷni = ∑ j y ji, we can also interpret n0y0 as the sum of n0 pseudo-observations that are added
to ∑ j y ji. Matching the two expectations in (25), it implies that |n0y0i| = c·i and n0 = 0. In the
case on the right we are not adding additional (pseudo) observations, but we are considering a
scenario in which an amount c·i is summed/subtracted to the sum ∑ j y ji but without changing the
sample size. For instance, when yi j are frequency data from an election poll (this example will
be discussed in Section 8.2), we can interpret the lower and upper expectations as the result of a
swing scenario in which we test what happens if c·i votes are subtracted (lower) to a candidate
and assigned to another one (upper). The interpretation of c·i as a pseudo-observation is the main
avenue to be followed for the choice of a value for c·i.

The choice of c·i can also be based on measures of posterior robustness such as [6]: (a) the
convergence rate of the lower and/or upper expectations to suitable limits; (b) the convergence
rate of the posterior imprecision, i.e., the difference between upper and lower expectations. Here
the expectations are computed w.r.t. some function of interest g and the convergence is defined
w.r.t. the number of samples n. We will give an example of this approach in Section 8.1. Another
possible requirement for the choice of c·i is that the family of priors M should be large enough
to encompass frequentist or objective Bayesian inferences, but not too large to avoid obtaining
too weak inferences. These are the approaches that we have followed in [13] for the univariate
one-parameter exponential family. In the multivariate case the only difference is that the value
of k parameters have to be fixed. However, as discussed previously, for symmetry reasons in
many cases it can be assumed c·i = c for (all) a subset of parameters i = 1, . . . ,k. Finally, we
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can choose c to have some desirable frequentist properties (e.g., robust credible intervals to be
calibrated frequentist intervals, hypothesis tests to be calibrated for the Type I error, etc.). We
may also place an upper bound on the value of c based on considerations regarding the power of
the hypothesis test.

5. Prior Near-Ignorance: Some Further Useful Properties

Notice that in all the above examples the set of priors (16) guarantees prior ignorance w.r.t. ∇b.
This choice has also been motivated by the meaning of ∇b for exponential families. Remember
in fact from Section 3 that ∇b (equal to b′ in the univariate case) is the mean of Y and, thus, is
the quantity about which we will have prior beliefs before seeing the data and posterior beliefs
after observing the data. Furthermore, to state prior ignorance, invariance, learning and converge
in the natural space W allows us to treat jointly all the members of the exponential families and,
thus, to derive general properties. The natural parametrization is in fact a preferred parametriza-
tion for exponential families. In this section, it will be shown that the set of priors (16) satisfies
(A2) also for other functions of interest in statistical analysis (i.e., one- and two-sided hypothe-
ses testing and credible intervals). Therefore, the choice of imposing prior ignorance only on
G0 = {∇b}, is not very restrictive for exponential families.

Corollary 5.1. The family of priors M in Theorem 4.6 satisfies the following properties:

(B1) For each ball Bζ (W ) = {w : ||w−w0|| ≤ ζ} ⊂ W , w0 ∈ W and ζ > 0, it holds that
E[IBζ (W )] = 0 and E[IBζ (W )] = 0 but E[Rd ] = 1.

(B2) For each subset W ′ ⊂W such that W ′ =×iΠi(W ′), where Πi(W ′) = [ai,supΠi(W )) or
Πi(W ′) = (infΠi(W ),ai] and ai ∈ R, with Πi(W ′) denoting the orthogonal projection
of W ′ w.r.t. the i-th component, then E[I{W ′}] = 0 and E[I{W ′}] = 1.

Proof. The first part of (B1) follows straightforwardly from the fact the set of priors in Theo-
rem 4.6 concentrate their mass on the border of W . In fact, the set of priors is composed by the
following truncated densities

exp(`T w)
k

∏
i=1

IWr·i
(w·i)

`·i
exp(`·ir·i)

.

Then, for any ball in W , it follows that

E[IBζ (W )] =limsupr·1→∞ . . . limsupr·k→∞

∫
· · ·
∫

IBζ (W ) exp(`T w)
k

∏
i=1

IWr·i
(w·i)

`·i
exp(`·ir·i)

dw·i = 0,

since the integral of IBζ (W ) is bounded and 1/exp(`·ir·i) goes to zero for |r·i| → ∞. Concern-
ing (B2), W ′ is the Cartesian product of Πi(W ′). Thus, if we take `·i > 0 for Πi(W ′) =
[ai,supΠi(W )) or `·i < 0 for Πi(W ′) = (infΠi(W ),ai] for all i = 1, . . . ,k, then E[I{W ′}] = 1.
While if we take `·i > 0 for Πi(W ′)= (infΠi(W ),ai] or and `·i < 0 for Πi(W ′)= [ai,supΠi(W ))
for some i, then E[I{W ′}] = 0 . The second part of (B1) follows from the fact that any truncated
prior integrates on its support to 1 and so it is the limit when its support tends to W .

Corollary 5.1 has several important implications in statistical inference. Since it is common
to represent credible regions with balls Bζ (W ) ⊂W , from (B1) it follows that a priori for any
ζ < ∞, E[IBζ (W )] = 0. That is, the lower probability of the true w0 to be in Bζ (W ) is zero, and
is only greater than zero for ζ → ∞. The only convex set that has prior lower probability greater
than zero is W , which means that a priori we only known that w0 ∈ W . Concerning (B2), it
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implies that the lower and upper distribution of w are vacuous and also that the marginal lower
and upper distribution of any component w·i are vacuous.

6. The Case W 6= Rk

In Theorems 4.2–4.6 we have defined a model of prior ignorance which satisfies (A1)–(A4) in
case W = Rk. For instance in case k = 1, we have seen that translation invariance and prior
ignorance can be satisfied because the set of priors M includes limits of truncated increas-
ing/decreasing exponentials which, at the limit, accumulate to±∞. However, for many exponen-
tial families of interest it holds that W 6= Rk, e.g., the centred-normal, multivariate-normal with
unknown variance and the exponential distribution, etc. Since W is semi-bounded in these three
cases, translation invariance is not well defined. For example, in case W = R− then w+a /∈W
for a > 0 and |w|< a. Also prior ignorance does not hold in these cases for the set of priors (16).
In fact, for W =R− the prior exp(`w) accumulates to minus infinity for ` < 0, but it is integrable
for ` > 0, since

∫ 0
−∞

exp(`w) = 1/` for ` > 0. Thus, in these cases, properties (A1)–(A2) cannot
be satisfied by the set of priors (16). Observe in fact that for the centred normal b′ = λ−1 and∫ 0
−∞

λ−1 exp(−`λ )dλ = ∞ for both ` > 0 and ` < 0. Thus, prior ignorance is not satisfied in this
case, being infb′ = 0 and supb′ = ∞. Translation invariance is also not satisfied for ` > 0, since
0 6=

∫
A exp(−`λ )dλ 6=

∫
A+a exp(−`λ )dλ 6= 0 for any bounded set A⊂ R+ and a > 0. How can

we impose prior near-ignorance in case W 6= Rk?
In Proposition 3.2, it is stated that the prior kernel exp(n0y0w− n0b(w)) is integrable if y0 ∈

Y0 and n0 > 0. Diaconis and Ylvisaker in [20] give more conditions on the integrability of
exp(n0y0w− n0b(w)). In particular, they prove the following result: (i) if n0 > 0 and y0 ∈ Y0
then exp(n0y0w− n0b(w)) is integrable; (ii) if exp(n0y0w− n0b(w)) is integrable and W = Rd

then n0 > 0 and (iii) if exp(n0y0w−n0b(w)) is integrable and n0 > 0, then y0 ∈ Y0.
Thus, even in the case y0 ∈Y0, exp(n0y0w−n0b(w)) may not be integrable if n0 < 0 (for W =

Rd the kernel is certainly not integrable if n0 < 0, see condition (ii) of Diaconis and Ylvisaker,
while for W 6= Rd there is not a general result, i.e., the integrability of the kernel in case n0 < 0
depends on the value of n0 and on the particular exponential family). This means that for some
value of n0 < 0, it can happen that

∫
W exp(n0y0w− n0b(w))dw = ∞. Therefore, in this case, if

we can find a sequence of subsets W1,W2, . . . ,Wr of W converging to W from below and such
that the truncated prior satisfies∫

W
IWi exp(n0y0w−n0b(w))dw < ∞,

for any Wi, then we can define a sequence of countably additive truncated densities on Wr whose
lower limit for r→∞ defines a lower expectation model as in (9). Since E[A] = 0 for any bounded
set A (as it is shown in Appendix A), the set of priors M associated to this lower expectation
model includes only finitely additive probabilities.

Therefore, for W 6=Rd we may be able to satisfy (A1)–(A4) with a family of finitely additive
probabilities obtained as limit of truncated conjugate exponential priors exp(n0y0w− n0b(w))
obtained by choosing ` = n0y0 ∈ L and n0 < 0. In the following sections, we show that this
is possible for the centred-normal and multivariate-normal with unknown variance.1 Our con-
jecture is that this result may be extended to other distributions in the exponential families by
following the same approach. However, we cannot develop a general theory because the non-
integrability of exp(n0y0w−n0b(w)) for W 6=Rd and n0 < 0 depends on the value of n0 and on
the particular exponential family. Thus, a general treatment does not seem to be possible.

1This also holds for the exponential distribution for n0 <−1.
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6.1 Centred-Normal Distribution

Assume that the likelihood is a centred-normal distribution and consider the following set of
priors

M ∝

{
λ
− ν

2 exp(−`λ

2 ), ` ∈ [−c,c]
}
, (26)

defined by the parameters c > 0, ν ∈R+ and n0 =−ν < 0. It can be verified that for any value of
` and ν ≥ 2 all the kernels in (26) are not integrable. The kernels are integrable in Wr = [1/r,r]
which, for r→ ∞, defines an infinite sequence of subsets of R+ converging from below to R+.
By truncating these kernels in [1/r,r] and taking the limit of the expectations for r→∞, one can
verify that for ν > 2 and ` > 0

E[λ−1] = limsupr→∞

r∫
1/r

λ−
ν+2

2 exp(−`λ

2 )dλ

r∫
1/r

λ−
ν
2 exp(−`λ

2 )dλ

= ∞,

while for ` < 0

E[λ−1] = liminfr→∞

r∫
1/r

λ−
ν+2

2 exp(−`λ

2 )dλ

r∫
1/r

λ−
ν
2 exp(−`λ

2 )dλ

= 0.

Notice that we are interested in the expectation of λ−1 because 1/λ = σ2. For any bounded
subset A of R+, it holds that E[I{A+a}] = E[I{A}] = 0 for any a > 0 (which is a weaker version
of translation invariance). Finally, a-posteriori by combining the centred-normal likelihood with
the priors in (26), one obtains

M ∝

{
λ

n−ν+2
2 −1 exp

(
−n

`+nŷn

n
λ

2

)
, ` ∈ [−c,c]

}
. (27)

It can be noticed that for n > ν and `+nŷn
n > 0 for all ` ∈ [−c,c], all the kernels in (27) are

integrable and the expected value of 1/λ = σ2 is equal to (`+nŷn)/(n−ν) in this case. Thus,
it follows that for n > ν :

E[λ−1|n, ŷn] = max
(

0, −c+nŷn
n−ν

)
, E[λ−1|n, ŷn] =

c+nŷn
n−ν

, (28)

while if n < ν , the posterior expectation of λ−1 is vacuous. Thus, there exists a δ > 0 such that
for any n > δ it holds that n > ν , which implies that properties (A3)–(A4) hold for inferences
derived from (26).

6.2 Normal with Unknown Mean and Variance

In the case the variance is unknown, ∏
n
i=1 p(yi|x) = ∏

n
i=1 N(yi;x,σ2), with σ2 > 0 and x,yi ∈ R

(the following results can be easily generalized to the case x,yi ∈Rd). The likelihood model can
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be expressed in the canonical form by setting w = [λx,−1
2 λ ]T ,

b(w) =
λx2− ln(λ )

2
, ∇b(w) = [x,x2 +λ

−1]T ,

where λ = 1/σ2 and W = [R,R−]T . Unfortunately in this case W 6=R2 and, thus, Theorem 4.6
cannot be applied directly. However, this issue can be solved by instead considering the kernel

M =
{

exp(xλ`·1)λ
1
2 exp(−1

2 λ`·2)λ
− ν

2 , `·i ∈ [−c·i,c·i]
}
,

with ν ≥ 2. Notice in fact that exp(−1
2 λ`·2)λ

− ν
2 is the same model discussed in (26). The

likelihood can be rewritten as:

p(data|x,λ ) ∝ exp(nŷn1λx−n 1
2 λx2)exp(−nŷn2

1
2 λ )λ

n
2 ,

where nŷn1 = ∑
n
i=1 yi and nŷn2 = ∑

n
i=1 y2

i . By multiplication of likelihood and prior, one gets:

p(data|x,λ )p(x,λ ) ∝ λ
1
2 exp((nŷn1 + `·1)λx−n 1

2 λx2)exp(−(nŷn2 + `·2)
1
2 λ )λ

n−ν+2
2 −1,

which gives the posterior

N
(
x; ŷp1,(nλ )−1

)
G(λ ; n−ν+2

2 , n
2(ŷp2− ŷ2

p1)), (29)

where ŷp1 = nŷn1+`·1
n and ŷp2 = nŷn2+`·2

n . Observe that (29) makes sense only if ŷp2− ŷ2
p1 > 0

and n−ν +2 > 0, i.e., the posterior is a proper Normal-Gamma density. For n−ν +2 > 0, by
marginalizing out λ in (29), one can compute the posterior distribution of X

p(x|data) ∝

[
1+

(x− ŷp1)
2

ŷp2− ŷ2
p1

]−(n−ν+3)/2

, (30)

which is a Student t distribution. Thus, for n−ν +2 > 0, it follows that

E[X |n, ŷn] =
nŷn1− c·1

n
, E[X |n, ŷn] =

nŷn1 + c·1
n

,

E[λ−1|n, ŷn] = max
(

0, n
n−ν

[(
∑

n
i=1 y2

i −c·2
n

)
− max
|c|<c·1

(
∑

n
i=1 yi+c

n

)2
])

,

E[λ−1|n, ŷn] =
n

n−ν

(
∑

n
i=1 y2

i +c·2
n − min

|c|<c·1

(
∑

n
i=1 yi+c

n

)2
)
.

Observe that for `·1 = `·2 = 0 and ν = 3, one obtains E[x|n, ŷn] = ŷn1 and E[λ−1|n, ŷn] =
1

n−3 ∑
n
i=1(yi− ŷn1)

2 which are the estimates of X and σ2 one would obtain from the improper
prior p(x,σ2) = (σ2)−1, while for ν = 2 one obtains the estimates from the improper prior
p(x,σ2) = (σ)−1, which gives the same inferences as the frequentist ones. The advantage of
this model over the ones based on improper priors is that it satisfies prior near-ignorance.
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7. Comparison with Other Prior Near-Ignorance Models

The aim of this section is to compare the model in Theorems 4.2–4.6 with other near-ignorance
models available in the literature.

7.1 Near-Ignorance with a Set of Proper Priors in the One-Parameter Exponential
Families

In [13], we have defined a model of prior ignorance for one-parameter exponential families
based on a set of proper conjugate priors:

M =
{

k(n0,y0)exp(n0 (y0w−b(w))) : y0 ∈ Y0, 0 < n0 ≤min(n0,c/|y0|)
}
. (31)

We have proven that this set satisfies prior ignorance (A2) w.r.t. g = b′, learning (A3) and con-
vergence (A4).1 More precisely, we have proven that prior ignorance and learning/convergence
can be both satisfied provided that y0 is free to vary in Y0 and |n0y0| ≤ c, i.e., n0 must depend
on y0. It can be observed that the set of priors in Theorem 4.2 can be obtained from (31) by
relaxing the constraint y0 ∈ Y0 to y0 ∈ R and by taking the limit of the inferences for n0→ 0.
In fact, y0 /∈ Y0 allows us to include at the limit also improper priors in (31), while the limit
n0→ 0 guarantees the fulfillment of (A1) as it is shown in Appendix A. Translation invariance
is important because it guarantees that the posterior imprecision does not depend on the sample
mean. This in general does not hold for (31).

Consider for instance the Poisson case. The lower and upper posterior means obtained from
(31) and the Poisson likelihood are [13]:

nŷn

n+n0
≤ E[λ |n, ŷn]≤

nŷn + c
n

. (32)

It can be noticed that the difference between the upper and lower means depends on ŷn for any
n0 > 0. In fact, it can be verified that the set of priors (31) does not satisfy translation invariance,
i.e., E[I{A}] 6= E[I{A+a}]. Translation invariance is only satisfied if we take the limit n0 → 0 of
the posterior inferences. However, in this case, the lower and upper posterior means reduce to:

ŷn ≤ E[λ |n, ŷn]≤
nŷn + c

n
, (33)

and, thus, the lower and upper means are not symmetric w.r.t. ŷn: the left bound is equal to
the sample mean ŷn; this is not desirable because it implies weakening the robustness of the
posterior inferences. Conversely, by relaxing y0 /∈ Y0, the lower and upper posterior means at
the limit n0→ 0 become:

max
(

0,
nŷn− c

n

)
≤ E[λ |n, ŷn]≤

nŷn + c
n

. (34)

Now the lower and upper posterior means coincide with ŷn only for n→ ∞ and the posterior
imprecision depends only on n and c for a sufficiently large n. In other words, posterior robust-
ness and independence of posterior imprecision to the sample mean can both be guaranteed with
conjugate prior models only by allowing finitely additive priors in the set M . This means that
they are incompatible with countable additivity.

1Since the priors in M are all countably additive, it also satisfies strong coherence as defined in [6, Ch. 7].
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7.2 Imprecise Dirichlet Model

The imprecise Dirichlet model (IDM) [21], [22] is a model of prior near-ignorance for multino-
mial observations. The IDM considers the following set of priors:

M =

{
Γ(s)

∏
d
i=1 Γ(sti)

d

∏
i=1

θ
sti−1
·i : ti > 0,

d

∑
i=1

ti = 1, s > 0

}
, (35)

where Γ(·) is the Gamma function. Therefore M includes Dirichlet densities parametrized by ti
and s. It follows that a priori E[θ·i] = 0 and E[θ·i] = 1, while a-posteriori:

E[θ·i|n, ŷn] =
nŷni

n+ s
, E[θ·i|n, ŷn] =

nŷni + s
n+ s

. (36)

The IDM is a model of prior ignorance that guarantees conjugacy between likelihood and pri-
ors and satisfies (A2)–(A4) but it does not satisfy translation invariance (A1) in the transformed
domain W . Observe that although the IDM does not satisfy translation invariance, the posterior
imprecision does not depend on the sample mean. Furthermore, the IDM is invariant to permu-
tations of the components of θ and satisfies RIP. Thus the IDM satisfies permutation invariance
and independence of the posterior imprecision to the sample mean without the need of finitely
additive priors.

The question is what happens if we impose translation invariance to the IDM in W . Fixed
s> 0, the only way to satisfy also (A1) is not constraining t to lie in Y0 = {t : ti > 0, ∑

d
i=1 ti = 1}.

Assuming that t·i ∈ R and imposing the constraint 0 < |sti| ≤ c·i = c for i = 1, . . . ,d−1, the set
of priors (35) reduces to

M =

d−1

∏
i=1

θ
`·i−1
·i

(
1−

d−1

∑
j=1

θ· j

)−∑
d−1
j=1 `· j−1

: `·i ∈ [−c,c]

 , (37)

which is the model in (20). If we impose one-step ahead RIP to (20), we obtain (23).

7.3 Nonparametric Predictive Inference for Multinomial Data and Known Number of
Categories

In the case of multinomial data, it is worth pointing out also the relationship between the model
in Theorem 4.6 and another model for robust inferences, the so-called nonparametric predictive
inference (NPI) model [15]. The NPI is a nonparametric model based on a post-data assumption
about the uncertainty associated to a future observation and can only yield predictive inferences
(inferences on the space of the observations). Consider k ≥ 3 possible categories denoted by
C1, . . . ,Ck. Without loss of generality, we assume that the first o of these have already been
observed and the last k− o have not yet been observed. There are n observations {y1, . . . ,yn}
such that yi j ∈ {0,1} for i = 1, . . . ,n and j = 1, . . . ,k and ∑i, j yi j = n. The event of interest can
generally be denoted by

Yn+1 ∈
⋃
j∈J

C j,

i.e., the next observation belongs to the subset of categories J ⊆ {1, . . . ,k}. Let OJ = J ∩
{C1, . . . ,Co} denote the index-set for the categories in the event of interest that have already
been observed, and UJ = J ∩{Co+1, . . . ,Ck} the corresponding index-set for the categories in
the event of interest that have not yet been observed. Let r be the number of elements of OJ and
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l the number of elements of UJ, so 0≤ r≤ o and 0≤ l ≤ k−o. The NPI-based lower and upper
probabilities for the event of interest, based on the n observations, are:

E[Yn+1 ∈ ∪ j∈JC j|n, ŷn] =
1
n

(
∑

n
i=1 ∑ j∈J yi j +max(r+ l− k,−r)

)
,

E[Yn+1 ∈ ∪ j∈JC j|n, ŷn] =
1
n

(
∑

n
i=1 ∑ j∈J yi j +min(r+ l,o− r)

)
.

(38)

It can be noticed that in case l = 0, i.e., all the categories have been observed, then r = |J| and
∑

n
i=1 ∑ j∈J yi j ≥ |J| and, thus, one has:

E[Yn+1 ∈ ∪ j∈JC j|n, ŷn] =
1
n

(
∑

n
i=1 ∑ j∈J yi j +max(|J|− k,−|J|)

)
,

E[Yn+1 ∈ ∪ j∈JC j|n, ŷn] =
1
n

(
∑

n
i=1 ∑ j∈J yi j +min(|J|,k−|J|)

)
,

(39)

which coincides exactly with (22) in the case c = 1. It is thus extremely interesting that in this
case the same inferences of the NPI can be obtained by our set of conjugate parametric priors
which includes, at the limit, improper densities. In the case l 6= 0, the two models still coincide
provided that ∑

n
i=1 ∑ j∈J yi j = r, i.e., each category in OJ has been observed at most once. In the

other cases, the NPI is in general more precise. This can be easily proven by comparing (38)
and (39) and by noticing that −r ≥ −|J|, r+ l− k = |J| − k and r+ l = |J|, o− r ≤ k− |J| =
o− r+ k−o− l. For instance, consider the case k = 4, J = {1,2}, n = 2 and only the category
1 has been observed. Then, since l = 1, the lower and upper probability of the event of interest
obtained with the NPI are:

E[Yn+1 ∈ ∪ j∈JC j|n, ŷn] =
1
2 (2+max(1+1−4,−1)) = 1

2 ,
E[Yn+1 ∈ ∪ j∈JC j|n, ŷn] =

1
2 (2+min(1+1,0)) = 1,

while the inferences obtained with the model in (22) are:

E[Yn+1 ∈ ∪ j∈JC j|n, ŷn] = max
(
0, 1

2 (2+max(2−4,−2))
)
= 0,

E[Yn+1 ∈ ∪ j∈JC j|n, ŷn] = min
(
1, 1

2 (2+min(2,2))
)
= 1,

and it remains vacuous up to 3 observations. In [15] the authors compare the NPI with the IDM
highlighting the following differences between them. First, the IDM lower probability for the
second observation to be equal to the first, is 1/(1+ s). Thus, small values of s, e.g., s = 1 or
s= 2, lead to surprisingly high values for this lower probability. In the NPI, this lower probability
is 0 and the same holds for our model (22).

Second, the IDM predictive lower and upper probabilities depend only on the observed fre-
quency of that category and the total number of observations (RIP). This is not the case for
NPI-based lower and upper probabilities and also for our model (21). However, in Section 4.2,
we have pointed out that one-step ahead RIP can be satisfied by our model by adding an addi-
tional constraint w.r.t. the NPI, see (23).

Third, the IDM upper probabilities for events that the next observation is in an as yet unseen
category do not depend on the number of categories seen so far. This is not the case for the
NPI, while this is also the case for our model. The difference is the term l in the computation
of the lower and upper probabilities, which makes NPI inferences depend on the unobserved
categories. This behavior could be included in our model only by letting the set of priors depend
on the data.

The main advantage of the NPI w.r.t. thet IDM and our models is that it is a nonparametric
model. In fact, the NPI can also be used if one does not know the total number of possible
categories, and wishes to distinguish in the event of interest between fully defined categories
that have not yet been observed, and any new category occurring at the next observation [15]. In
the IDM and in our model, the lower and upper probabilities of these two cases are the same.
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7.4 Bounded Derivative Model

Another comparison is with the so-called bounded derivative model (BDM) [14]. The BDM is
a prior near-ignorance model for a scalar variable w ∈ R in which the set of priors M includes
all continuous proper probability density functions for which the derivative of the log-density is
bounded by a positive constant: ∣∣∣∣ d

dw
ln p(w)

∣∣∣∣≤ c. (40)

Observe that the BDM satisfies (A1)–(A4) as stated in Theorem 4.2. It is clear that the set of
priors in Theorem 4.2 also satisfies (40), since∣∣∣∣ d

dw
lnexp(`w)

∣∣∣∣= |`| ≤ c.

However, the BDM set of priors is larger, since it does not restrict the set of priors to be
{exp(`w), |`| ≤ c}. We have imposed this set of priors in order to exploit conjugacy. This is
not the case of the BDM in which the extreme priors that obtain the lower and upper expec-
tation of a RVBF cannot always be expressed as simple limits of conjugate priors. Walley in
fact proves in [14] that in the BDM the extreme priors which obtain the upper and lower ex-
pectations of a generic RVBF g are piecewise exponential, i.e., the real line can be divided into
intervals on which p(w) = exp(cw) or p(w) = exp(−cw). These piecewise priors do not belong
to {exp(`w), |`| ≤ c} in general. It is however worth to observe that in the case g = b′ or g is an
indicator over a subset of W = R (in general if g is monotone), both the BDM and our model
produce the same lower and upper expectations. This holds since the lower and upper expecta-
tions are obtained in correspondence of either the kernel p(w) = exp(cw) or p(w) = exp(−cw).
For a generic RVBF g, we expect that the inferences obtained with the BDM are more conser-
vative, i.e., it has a larger posterior imprecision. The price to be paid for this gain of robustness
and generality is the increase of the computational cost for the inferences.

8. Some Practical Examples

In this section we give some insight of the possible applications of the proposed models in
statistical inference.

8.1 One-Sample Location Test

Consider i.i.d. observations y1, . . . ,yn from a real variable Y with unknown mean x and unknown
precision λ (λ = 1/σ2). Our goal is to test the hypotheses:

H0 : x≤ 0, H1 : x > 0.

A way to tackle this problem is by means of a frequentist t-test. The t-test considers the statistic:

t =
ŷp1−∆0√

ŷp2−ŷ2
p1

n−1

,

where ∆0 is the value of the mean under the null hypothesis, ŷp1 = 1
n ∑i yi, ŷp2 = 1

n ∑i y2
i and,

thus, ŷp2− ŷ2
p1 =

1
n ∑i(yi− ŷp1)

2. Then it computes the p-value of t under the null hypothesis,
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i.e., t is Student-t distributed with mean ∆0 = 0 and n−1 degrees of freedom. Hypothesis H0 is
rejected when the p-value is less than the given threshold α = 0.05. An alternative approach is to
perform a Bayesian test, using a Normal-Gamma model based on the improper prior p(x,λ ) =
λ
−ν+1

2 , with parameter ν > 0. In this case we accept hypothesis H1 if the posterior probability
P(x > 0|y1, . . . ,yn)> 1−α , with

P(x > 0|y1, . . . ,yn) = 1− tcd f

 0− ŷp1√
ŷp2−ŷ2

p1
n−ν+1

,n−ν +1

 ,

where tcdf is the cumulative distribution function of Student distribution with n−ν +1 degrees
of freedom computed in 0. Note that for ν = 3 we obtain the left Haar invariant prior, while
for ν = 2 we obtain the right Haar invariant prior [2, Sec. 3.3.3]. In the experiments we have
selected ν = 2 because the Bayesian test and the frequentist test coincide for this value. We can
also devise a Bayesian test based on a hierarchical Normal model [23, Sec. 11.7]:

likelihood: N(y;x,σ2), prior: N(x; µ,τ2), hyper-prior: p(µ, log(σ), log(τ)) ∝ τ.

Note that the hyperprior has been defined on log(σ), log(τ) to avoid that the posterior dis-
tribution is improper. However several other choices are possible. The posterior probability
P(x > 0|y1, . . . ,yn) (necessary for the hypothesis test) is computed numerically by Gibbs sam-
pling.

Finally we can perform a test based on the imprecise exponential family model (IEM) pre-
sented in Section 6.2. In this case we compute the lower and upper probability:1

P(x > 0|y1, . . . ,yn) = min
`.1∈[−c·1,c·1],`.2∈[−c·2,c·2]

1− tcd f

 0− ŷp1 +
`.1
n√

ŷp2+
`.2
n −(ŷp1+

`.1
n )2

n−ν+1

,n−ν +1

 ,

P(x > 0|y1, . . . ,yn) = max
`.1∈[−c·1,c·1],`.2∈[−c·2,c·2]

1− tcd f

 0− ŷp1 +
`.1
n√

ŷp2+
`.2
n −(ŷp1+

`.1
n )2

n−ν+1

,n−ν +1

 ,

(41)
and we perform the hypothesis test as follows:

• return H1 if P(x > 0|y1, . . . ,yn)> 1−α;
• return H0 if P(x > 0|y1, . . . ,yn)< 1−α;
• otherwise issue an indeterminate answer, i.e., {H0,H1}.

In the latter case we cannot decide: the result of the hypothesis test depends on the choice of
the prior. To compare the frequentist/Bayesian and IEM-based test we have considered a Monte
Carlo experiment in which n observations Y are generated based on Y ∼ N(∆,1), with ∆ ranging
from 0 to 1.5; for ∆ = 0, we are under the null hypothesis of the frequentist/Bayesian tests. In
particular, for each value of ∆ we have performed 20000 Monte Carlo runs by generating in each
run n = 15 and n = 30 observations for Y and computed the percentage of cases in which the
alternative hypothesis is returned, using α = 0.05 for both the tests. This means that for ∆ = 0

1In the formulation we need to impose the additional constraint that the argument of the square root is positive. This implies that
the parameters `·1 and `·2 cannot vary independently in [−c·1,c·1] and, respectively, [−c·2,c·2]. However, for suitably large n and
non-degenerate distributions, the argument of the square root is usually positive for any `·1 and `·2 in the intervals.
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we are computing the Type-I error of the test and for ∆ > 0 its power. The IEM test has been
implemented by choosing ν = 2 (equal to the frequentist/Bayesian tests). About the choice of the
c parameters, we have selected c·1 equal to 0.75 so that the posterior imprecision for the estimate
of x is reduced to 1.5 after one observation, while c·2 ≈ 0.28, so that c.2 = (c.1)2/n for n = 2.
The expression (c.1)2/2 gives the sample second non-central moment of the pseudo-observations
±c·1; remember in fact that `.2 can be interpreted as the square of a pseudo-observation and we
need two observations to estimate both x and λ . This is the meaning of c.2 = (c.1)2/2. Note that
with this choice our model has only one free parameter c·1. We will empirically show that this
choice is a good compromise between robustness and conservativeness (indeterminacy).

The average power1 is shown in Figure 1 as a function of ∆ for the two cases. In particular,
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Figure 1.: Power as a function of ∆ for the case n = 15 (left) and n = 30 (right).

Figure 1 reports (i) the power of the frequentist/Bayesian tests; (ii) the power of the hierarchical
Bayesian test; (iii) the power of the IEM test when it is determinate; (iv) the indeterminacy
of the IEM test, i.e., the number of times it returns an indeterminate response divided by the
total number of Monte Carlo runs; (v) the power of a new test (called “50/50”) which returns
the same response as IEM when IEM is determinate, and issues a random answer (with 50/50
chance) when IEM is indeterminate. We have introduced this new artificial test to facilitate the
comparison of the frequentist/Bayesian, hierarchical Bayesian and IEM tests. From Figure 1 (left
and right), it is evident that the performance of the frequentist/Bayesian, hierarchical Bayesian
and 50/50 tests practically coincide. Furthermore, since in all cases in which IEM is determinate,
the frequentist/Bayesian and hierarchical Bayesian return the same response as IEM (i.e., in the
determinate cases the accuracies of the frequentist/Bayesian and hierarchical Bayesian tests are
also equal to the (magenta) star curve in Figure 1), the difference between the three tests is only
in the runs where IEM is indeterminate. In these runs, the frequentist/Bayesian and hierarchical
Bayesian tests have essentially the same accuracy as the 50/50 test. Therefore, the IEM is able
to isolate some instances in which the frequentist/Bayesian and hierarchical Bayesian tests are
virtually guessing at random, in the sense that they have the same accuracy of the 50/50 test.
Assume for instance that we are trying to evaluate the effects of a medical treatments (“X is
greater than zero”) and that, given the available data, the IEM is indeterminate. In such a situation
the frequentist/Bayesian and hierarchical tests always issue a determinate response (I can tell if
“X is greater than zero”), but it turns out that their response is completely random (like if we were
tossing a coin). On the other side, the IEM acknowledges the impossibility of making a decision
(I do not know whether “X is greater than zero”) and thus, although the frequentist/Bayesian
and hierarchical tests and the IEM (more precisely the 50/50 test derived by IEM) have the same
accuracy, the IEM provides more information.

1For ∆ = 0 the plot actually reports the Type I error.
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Note that in Figure 1 (left) for ∆≈ 0.4, the percentage of runs in which IEM is indeterminate is
about 18% ; this means that the frequentist/Bayesian and hierarchical tests are issuing a random
answer in 18% of the cases, which is a large percentage. Looking at the curve of the IEM
indeterminacy, it can be observed that it reaches its maximum value at ∆ = 0.4 and then goes
to zero. For |∆| > 1.2 the power of the frequentist/Bayesian, hierarchical Bayesian and IEM-
determinate is practically one, which means that when the hypothesis test is easy (large ∆), there
are not indeterminate instances and both tests have power one. The conclusions for Figure 1
(right) are similar.

For the frequentist/Bayesian test, we have also evaluated the distribution of the p-values in the
instances where the IEM is indeterminate. The histogram of the p-values is shown in Figures 2
(a) and (b) for ∆ = 0 and, respectively, ∆ = 0.4. It can be observed that the IEM test is indeter-
minate when the p-value is close to the threshold 0.05, but also in instances where it is quite far
(e.g., p = 0.02 or p = 0.1). Moreover, it can be noticed that the distribution of the p-values in the
IEM indeterminate instances is roughly symmetric around 0.05 (more precisely, the area of the
distribution of the p-values to the left of 0.05 is (approximatively) equal to the area to the right of
0.05), no matter the value of ∆. This explains why the “50/50” test and the frequentist/Bayesian
test have the same power. This behavior cannot be reproduced by simply adding a “no decision
zone” to the frequentist/Bayesian test, i.e., by suspending the decision when a < p < b. For in-
stance, Figures 2 (c) and (d) show the distribution of the p-values of the frequentist/Bayesian test
in the interval with boundary a = 0.02 and b = 0.095.1 By comparing (c) and (d), it can be ob-
served that the distribution of the p-values in the “no decision zone” 0.02 < p < 0.095 changes
with ∆. It is uniform in the case ∆= 0 (it is in fact well known that the distribution of the p-values
is uniform under the null hypothesis), but is strongly skewed in the case ∆ = 0.4. This is not true
for the distribution of the p-values in the IEM indeterminate instances, which instead does not
change much with ∆, see Figures 2 (a) and (b). Therefore, since the distribution of the p-values
in the “no decision zone” is not symmetric around 0.05 (the case ∆ = 0.4 in Figure 2 (d)), a
“50/50” test designed over the “no decision zone” 0.02 < p < 0.095 would not have the same
behavior of IEM “50/50” test, e.g., it would not have the same power as the frequentist/Bayesian
test. In other words, the “no decision zone” 0.02 < p < 0.095 is not able to isolate the instances
that are critical for the frequentist/Bayesian test, i.e., it is both classifying as indeterminate the
instances that are easy and those that are difficult. This is evident comparing Figures 2 (b) and
(d) for p = 0.02: the IEM is classifying as indeterminate only few instances with p-value close
to p = 0.02, while the “no decision zone” 0.02 < p < 0.095 is classifying as indeterminate all
the instances with p-value close to p = 0.02. The only way a frequentist test with a “no decision
zone” can mimic the behavior of the IEM test is with a(data) < p < b(data). This means that
the boundary must depend on the observations. Mathematically, this is evident from (41). The
indeterminacy of the IEM test cannot be reproduced by a < P(x > 0|y1, . . . ,yn) < b, since the
values `·1 and `·2 that give the maximum and the minimum depend on the data (through the
nonlinear function tcd f ).

Finally, in case n = 15 and ∆ = 0, we have computed the error for the IEM-based test as a
function of c.1 (with c.2 = (c.1)2/2). The error of the frequentist test is in this case equal to 0.05
(we are under the null hypothesis). From Figure 3, it can be observed that the error of the IEM
test when determinate decreases with c.1, because of the increase of the indeterminacy (note
that for c.1 = 0, the error of IEM when determinate and the error of the 50/50 test coincide,
since there are not indeterminate instances in this case). Looking at the plot relative to the 50/50
test, it can be noticed that it is almost constant for c.1 < 0.75 and then it increases. This (to-
gether with the other results of this section) may be seen as an empirical confirmation that the
choice of c.1 = 0.75 is appropriate. It guarantees the maximum robustness at the minimum of
conservativeness (indeterminacy). We have also evaluated frequentist properties of this choice.

1We have chosen this interval in analogy with that of the IEM test. The distribution of the p-values for a different boundary of the
“no decision zone” can easily be deduced from Figures 2 (c) and (d).
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Figure 2.: Histogram of the p-values (n = 15).

Calibration
n = 15 0.9686
n = 30 0.9593
n = 150 0.9552

Table 1.: Calibration of the IEM robust (symmetric) 95% high posterior density interval.

In particular, we have evaluated the calibration of the robust (symmetric) high posterior density
interval (HDI) of the IEM, i.e., the minimum length interval that has lower probability equal to
0.95. The results are shown in Table 1 as a function of n. It can be observed that the robust HDI
includes the true mean with a probability always greater than 0.95, which means that it is cali-
brated. The probability does not excessively exceed the prescribed value 0.95, which is another
empirical confirmation that the choice c.1 = 0.75 is a good compromise between robustness and
conservativeness.
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Figure 3.: Power as a function of c.1 for the case n = 15.
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It should be stressed again that the test “50/50” has been introduced only for the sake of com-
parison. We are not suggesting that when IEM is indeterminate we should toss a coin to take
the decision. On the contrary we claim that the indeterminacy of IEM is an additional useful
information that our approach gives to the analyst. In these cases she/he knows that (i) her/his
posterior decisions would depend on the choice of the prior; (ii) the hypothesis test is difficult as
shown by the comparison with the frequentist test. Based on this additional information, the an-
alyst can for example decide to collect additional measurements to eliminate the indeterminacy
(in fact we have seen that when the number of observations goes to infinity the indeterminacy
goes to zero).

8.2 Election Polls

A total of n adults are polled to indicate their preference for two candidates A and B. Let ŷn1
denote the proportion of the population that supports A, ŷn2 denote the proportion of the pop-
ulation that supports B and 1− ŷn1− ŷn2 denote the proportion of the population that is either
undecided or vote for someone else. The counts nŷn1, nŷn2 and n(1− ŷn1− ŷn2) are assumed to
have a multinomial distribution with sample size n and respectively parameters θ·1, θ·2 and θ·3.
Thus, the likelihood model is:

p(n, ŷn|θ) = θ
nŷn1
·1 θ

nŷn2
·2 θ

nŷn3
·3 ,

where θ·1 +θ·2 +θ·2 = 1 are the unknown non-negative chances to be estimated. The focus is to
compare the proportions of voters for A and B by considering the difference θ·1−θ·2. A Dirichlet
conjugate prior can be assumed on θ·1, θ·2 and θ·3:

p(θ) ∝ θ
α·1−1
·1 θ

α·2−1
·2 θ

α·3−1
·3 ,

where in the case of lack of prior information the prior parameters are commonly selected as
follows: Haldane’s prior α·1 = α·2 = α·3 = 0; Jeffreys’ prior α·1 = α·2 = α·3 =

1
2 ; uniform prior

α·1 = α·2 = α·3 = 1. The expected value of E[θ·1− θ·2] is equal to 0 and the prior probability
P(θ·1 > θ·2) = 0.5 for both Jeffreys and uniform priors (for Haldane’s prior they are not defined).
These priors express indifference between candidate A and B, but not prior ignorance. To see
that, consider P[θ·1 +0.5θ·3 > θ·2 +0.4θ·3], this is the probability that the proportion of votes of
A exceeds the votes for B assuming a “swing” scenario in which 50% of the undecideds vote for
A and 40% of the undecideds for B. This probability is equal to 0.76 in the case of the uniform
prior and 0.66 in the case of Jeffreys’ prior. It depends on the choice of the prior and this shows
that the uniform and Jeffrey’s priors are not really uninformative for this kind of poll.

Combining likelihood and prior, the resulting posterior is

p(x|n, ŷn) ∝ θ
nŷn1+α·1−1
·1 θ

nŷn2+α·2−1
·2 θ

nŷn3+α·3−1
·3 ,

which is always proper in the case of Jeffreys’ and uniform prior and in the case of Haldane’s
prior provided that ŷn1, ŷn2, ŷn3 > 0. The posterior expected value of θ·1−θ·2 is:

E[θ·1−θ·2|n, ŷn)] =
nŷn1 +α·1

n+α·1 +α·2 +α·3
− nŷn2 +α·2

n+α·1 +α·2 +α·3
,
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while the posterior probability of the event θ·1−θ·2 > 0 is

P[θ·1 > θ·2|n, ŷn] =

∫
{θ·1>θ·2}

θ
nŷn1+α·1−1
·1 θ

nŷn2+α·2−1
·2 θ

nŷn3+α·3−1
·3 dθ

∫
θ

nŷn1+α·1−1
·1 θ

nŷn2+α·2−1
·2 θ

nŷn3+α·3−1
·3 dθ

,

which can be computed numerically by sampling from the Dirichlet distribution.
Consider now the model of near-ignorance M defined in Theorem 4.6. From these results

it follows that a priori E[θ·1− θ·2] = −1, E[θ·1− θ·2] = 1. From Corollary 5.1, one has that
P(θ·1 > θ·2)= 0, P(θ·1 > θ·2)= 1 and that P[θ·1+0.5θ·3 > θ·2+0.4θ·3] = 0, and P[θ·1+0.5θ·3 >
θ·2 + 0.4θ·3] = 1.1 This is a more correct expression of the lack of prior information on the
election result. The set of posteriors produced by M is:

Mp =
{

p(x|n, ŷn) ∝ θ
nŷn1+`·1−1
·1 θ

nŷn2+`·2−1
·2 θ

nŷn3+`·3−1
·3

}
,

with ` ∈ L. Assuming that L is the set defined in (23), two of the extreme densities belonging to
this set are:

θ
nŷn1−c−1
·1 θ

nŷn2+c−1
·2 θ

nŷn3−1
·3 , (42)

θ
nŷn1+c−1
·1 θ

nŷn2−c−1
·2 θ

nŷn3−1
·3 . (43)

These extreme densities give respectively the lower and upper posterior expected values of θ·1−
θ·2:

E[θ·1−θ·2|n, ŷn] = max
(
−1,

nŷn1

n
− nŷn2

n
− 2c

n

)
, (44)

E[θ·1−θ·2|n, ŷn] = min
(

1,
nŷn1

n
− nŷn2

n
+

2c
n

)
, (45)

where it has been assumed that nŷn1,nŷn2 > 0. The lower expectation considers the case in which
c votes move from candidate A to B. The upper expectation considers the case in which c votes
move from candidate B to A. Clearly this exchange of votes gives also the the lower and upper
posterior probabilities of the event θ·1−θ·2 > 0:

P[θ·1 > θ·2|n, ŷn] =

∫
{θ·1>θ·2}

θ
nŷn1−c−1
·1 θ

nŷn2+c−1
·2 θ

nŷn3−1
·3 dθ

∫
θ

nŷn1−c−1
·1 θ

nŷn2+c−1
·2 θ

nŷn3−1
·3 dθ

,

P[θ·1 > θ·2|n, ŷn] =

∫
{θ·1>θ·2}

θ
nŷn1+c−1
·1 θ

nŷn2−c−1
·2 θ

nŷn3−1
·3 dθ

∫
θ

nŷn1+c−1
·1 θ

nŷn2−c−1
·2 θ

nŷn3−1
·3 dθ

.

Above it has been assumed that the resulting posteriors are both proper. Similar calculations can
be used to determine P[θ·1 +0.5θ·3 > θ·2 +0.4θ·3|n, ŷn] and P[θ·1 +0.5θ·3 > θ·2 +0.4θ·3|n, ŷn].

1These lower and upper probabilities are obtained by densities in M approaching the extreme priors in (42)–(43).
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Compare (44)–(45) with the posterior means obtained by the IDM:

E[θ·1−θ·2|n, ŷn] =
nŷn1

n+ s
− nŷn2 + s

n+ s
, (46)

E[θ·1−θ·2|n, ŷn] =
nŷn1 + s

n+ s
− nŷn2

n+ s
. (47)

In this case the lower and upper expectations consider the case in which s more adults are
polled and assume that these adults vote either for candidate B (lower case) or for candidate A
(upper case). Although by choosing an appropriate value of s we can suitably enlarge E[θ·1−
θ·2|n, ŷn]−E[θ·1− θ·2|n, ŷn], the increase of s decreases the variance of the extreme densities
and, thus, makes the inferences sharper.

As numerical example we consider the problem of estimating the number of electoral votes
in the 2004 USA Presidential Election using the polling data from realclearpolitics.com

(last-day poll). We compute the winner prediction of a Bayesian estimator that: (i) using Hal-
dane’s prior computes the win probabilities P[θ·1 > θ·2|n, ŷn] for each state; (ii) we use these
probabilities to compute the (sampling) distribution of the total electoral votes for the two can-
didates.

Then we compute the winner prediction for the two near-ignorance prior models: IDM (s = 2)
and the set of priors M with c = 1 hereafter denoted as IEM (imprecise exponential model),
using the same procedure as in the Bayesian estimator but considering the two cases P[θ·1 >
θ·2|n, ŷn] and P[θ·1 > θ·2|n, ŷn], which give the lower and, respectively, upper probability that
Bush wins in each state.

A number of 200000 simulated elections are generated. In each simulation, for each State
we have first computed the posterior probability of θ·1 and θ·2 (using the Bayesian prior or the
lower and upper priors). For each State, we have used this posterior to sample θ·1 and θ·2 and
assigned the electoral vote of the State to Bush whenever θ·1 > θ·2 (to Kerry whenever θ·2 < θ·1).
Finally, we have computed Bush’s total electoral votes. We have repeated this process for each
of the 200000 runs. Figure 4 reports the histograms of Bush’s total electoral votes that we have
obtained on the 200000 runs for the three estimator together with the break-even equal to 269
electoral votes. It is evident from the histogram of the Bayesian estimator that Kerry is slightly
favorite (for Bush the posterior mean of electoral votes is 267.1 and the posterior median 266)
but also that there is a high uncertainty. Because of this uncertainty the contribution of the prior
on the final result is crucial. In fact, notice that if we just add two (pseudo-)samples (s = 2) in
favor of Bush in each state, then Bush becomes slightly favorite (posterior upper mean equal
to 271.2 electoral votes and posterior upper median equal to 270 electoral votes for Bush), see
IDM light red histogram. This corresponds to the case P[θ·1 > θ·2|n, ŷn] in the IDM and the
best scenario for Bush. The lower probability P[θ·1 > θ·2|n, ŷn] (IDM light blue histogram) gives
instead the worst scenario for Bush. Similar results hold for the IEM. In this case, we assume
that in each state one elector (c = 1) in the sample changes mind and instead of voting for Kerry
he/she votes for Bush. This is enough for Bush to become slightly favorite. Notice that the IDM
and IEM give the same result in this case. In fact, being the sample size large (around 600 in
each state), n+ s≈ n for s = 2 and, thus, the inferences of the IDM and IEM almost coincide.

9. Conclusions

In this paper, we have proposed a model of prior ignorance about a multivariate variable based
on a set of distributions M . In particular, we have discussed four properties that a prior model
should satisfy to model lack of prior information: invariance, near-ignorance, learning and con-
vergence. Near-ignorance and invariance ensure that our prior model behaves as a vacuous model
with respect to some statistical inferences (e.g., mean, credible intervals, etc.) and some transfor-
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Figure 4.: Histogram of Bush’s total electoral votes for the Bayesian estimator (top), IDM
(center) and IEM (bottom). The vertical line denotes the break-even 269 electoral votes.

mation of the parameter space. Learning and convergence ensure that our prior model can learn
from data and, in particular, that the influence of M on the posterior inferences vanishes with
increasing number of observations. Furthermore, for exponential families, we have shown that
translation invariance, near-ignorance, learning and convergence can all be satisfied by a set of
conjugate priors if the set of priors M includes finitely additive probabilities obtained as limits
of truncated increasing/decreasing exponential functions.

In future work it would be useful to address the following issues: (1) the extension of this
model to more cases for which W 6= Rk; (2) employing the model to represent prior ignorance
in generalized linear models.

The extension to the case W 6= Rk is important because, for many exponential families of
interest W 6= Rk. Furthermore, with this extension we may employ our approach to model prior
ignorance in generalized linear models. Generalized linear models comprise the traditional anal-
yses such as t-tests, analysis of variance, linear regression and logistic regression. Consider
for instance a normal linear regression model. In this case, the probabilistic relationship be-
tween observations and variables of interests are expressed via a multivariate normal density.
The Bayesian approach to normal linear regression assumes that the prior information on the
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variables of interest is expressed with a Gaussian-inverse Gamma distribution (or Gaussian-
inverse Wishart distribution) which belongs to k-parameters exponential families. In the case of
lack of prior information, prior ignorance is commonly modelled by selecting the parameters of
the prior to make it noninformative. As pointed out in this paper, it is not possible to express
prior ignorance with noninformative priors. In our opinion, a better approach is that of using a
set of priors satisfying the property of near-ignorance. Notice that the Gaussian-inverse Gamma
distribution belongs to k-parameters exponential families. Therefore, we can employ the multi-
variate models of near-ignorance for k-parameters exponential families to develop new robust
regressors based on near-ignorance priors.
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Appendix A. Invariance and Conjugate Improper Priors

In Bayesian statistics, in case of lack of prior information, it is often common to select the prior
in order to satisfy some invariance property, see for instance [3, 24, 25]. Consider for instance
the group of transformations F = { fa : a∈R} with fa(w) = w+a, i.e., a shift of the parameter.
From Definition 2.2 with E = E = E, it results that a prior p(w) with support W is F -invariant
if: ∫

g(w+a)p(w)dw =
∫

g(w)p(w)dw ∀ a. (A1)

If g = I{A}, with A ⊆ Rk bounded and measurable, the above inequality means that the set A
and the shifted set A+ a should have the same probability for any value of a. By a change of
variables and considering the case g = I{A}, (A1) can be rewritten as:

∫
A−a

p(w−a)dw =
∫
A

p(w)dw ∀ a. (A2)

For a bounded space W , the only prior that satisfies (A2) is the uniform distribution. Conversely,
for instance in case W = R, it is known that there is no countably additive probability measure
that is translation invariant, even on the intervals. To see that, note that R is the countable union
of the intervals [n,n+1) with n ∈ Z and these intervals must have the same probability, because
of (A1), which must be zero by countable additivity.

However, we can define translation-invariant lower and upper expectations as limits of uniform
distributions on finite intervals [6, Sec. 2.9.7], [26, Sec. 3]. Let K be the linear space of Borel-
measurable RVBFs on R, and define:

E[g] = liminfr→∞

1
2r

∫
g(w)I[−r,r](w)dw, ∀g ∈K , (A3)

where r > 0 and E denotes the lower expectation of a RVBF g belonging to K . This is a
lower limit of uniform distributions on intervals centered at zero as their length 2r → ∞. By
replacing infimum with supremum in the definition of E, we can obtain the upper expectation
E. Observe that, since E[g] = −E[−g], the upper expectation in completely determined by the
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lower expectation and vice versa. In case g = I{A} for some subset A of W , E[I{A}] represents
the lower probability of A and in this case the upper probability of A, i.e., E[I{A}], is defined as
1−E[I{Ac}], where Ac is the complementary set of A.

Lemma A.1. Define the translations fa by fa(w) = w+a for any a ∈ R and g( fa(w)) = g(w+
a) for any g ∈K . The lower expectation model in (A3) satisfies E[g( fa)] = E[g] (translation
invariance) for any g ∈K and a ∈ R.

The proof is given in the first part of the proof of Lemma 4.1. Observe that E defined in (A3)
satisfies the following properties: (i) for g = IR, E[IR] = 1; (ii) for A = [0,∞), E[IA] =

1
2 ; (iii) for

g = IA, where A is a bounded subset of R, it holds that E[I{A+a}] = E[IA] = 0 for any a ∈ R and,
furthermore, by denoting with Ac the complementary set of A it holds that E[IAc ] = E[I{Ac+a}] =

1. Hence, since E[IA] = 1−E[IAc ], it follows that E[I{A+a}] = E[IA] = 0. As discussed in the
introduction, to each functional E (satisfying some regularity properties [6, Ch. 2]), it is possible
to associate a closed and convex set M of probabilities that generates the lower expectation E[g]
for any g. This is the set of probabilities that dominate E (equivalently, that are dominated by
E), i.e., the lower (upper) envelope of the expectation of g with respect to the closed and convex
set M of probabilities is equal to E[g] (E[g]) for any g. In the case of E defined in (A3), since
E[IA] = 0 for any bounded subset A of R, none of the probabilities dominated by E can be
countably additive. In other words the set M in this case includes finitely additive probabilities.

In order to be able to interchange the operations of limit and integration even in case of
unbounded functions g from W to R, in the following we take K to be the linear space of
Borel-measurable functions on R satisfying

∫
|g(w)|exp(n(ŷnw− b(w))dw < ∞ for any n > 0

and ŷn ∈Cl(Y0) (Cl(·) denotes the closure of the set). This is again a linear space.1 Now con-
sider the likelihood p(n, ŷn|w) ∝ exp(n(ŷnw−b(w)); the lower posterior expectation of g can be
obtained from (A3):

E[g|n, ŷn] = liminfr→∞

∫
g(w)exp(n(ŷnw−b(w))I[−r,r](w)dw∫

exp(n(ŷnw−b(w))I[−r,r](w)dw
. (A4)

Assuming W = R, since
∫
|g(w)|exp(n(ŷnw− b(w))dw < ∞ for any n > 0 and ŷn ∈ Cl(Y0),

applying Lebesgue’s dominated convergence theorem, one has:

E[g|n, ŷn] =

∫
g(w)exp(n(ŷnw−b(w)))dw∫

exp(n(ŷnw−b(w)))dw
, (A5)

which is equivalent to the posterior inference obtained from the limit kernel (improper uniform
prior) p(w) = 1 = limr→∞ I[−r,r](w). Observe that E[g|n, ŷn] = E[g|n, ŷn]. It is worth to notice
that (A5) holds for any likelihood in the exponential families such that W = R. For instance, in
the one-parameter Normal, Beta and Gamma case, W = R and thus the limit kernel p(w) = 1
guarantees translation invariance. Note that p(w) = 1, transformed back to the original param-
eter space, becomes p(x) = 1 in the Normal case, p(θ) = θ−1(1− θ)−1 in the Beta case and
p(λ ) = λ−1 in the Gamma case. These are the kernels that, when multiplied with the Normal,
Binomial and Poisson likelihoods, give a Normal, Beta and, respectively, Gamma posterior
density.

Note also that p(w) = 1 is not the only limit prior that guarantees translation invariance
and preserves conjugacy, i.e., the posterior is the conjugate of the likelihood. Assume again
W = R and that g satisfies

∫
|g(w)|exp(n(ŷnw−b(w))exp(`w)dw < ∞ for some ` > 0 and any

1Notice in fact that if g belongs to K also λg does for any real λ . If g1,g2 belong to K , also g1 + g2 belongs to K , since∫
|g1(w)+g2(w)|exp(n(ŷnw−b(w))dw≤

∫
|g1(w)|exp(n(ŷnw−b(w))dw+

∫
|g2(w)|exp(n(ŷnw−b(w))dw < ∞.

34



n > 0, ŷn ∈Cl(Y0). Consider then the posterior limit:

E[g|n, ŷn] = liminfr→∞

∫
g(w)exp(n(ŷnw−b(w))exp(`w)I(−∞,r](w)dw∫

exp(n(ŷnw−b(w))exp(`w)I(−∞,r](w)dw
, (A6)

as before, since
∫
|g(w)|exp(n(ŷnw− b(w))exp(`w)dw < ∞, by Lebesgue’s dominated conver-

gence theorem, the above limit is equal to:

E[g|n, ŷn] =

∫
g(w)exp

(
n
(
`+nŷn

n w−b(w)
))

dw∫
exp
(

n
(
`+nŷn

n w−b(w)
))

dw
. (A7)

Thus, (A6) is equivalent to considering the posterior expectation obtained from the kernel
p(w) = exp(`w) = limr→∞ exp(`w)I(−∞,r](w). In analogy with (A3), we can define translation
invariant lower and upper expectations as limits of exponential priors truncated on finite inter-
vals:

E[g] = liminfr→∞

`

exp(`r)

∫
g(w)exp(`w)I(−∞,r](w)dw, (A8)

for r ∈ R, which satisfies translation invariance, E[g( fa)] = E[g], for any g in the set of Borel-
measurable RVBFs K .

Lemma A.2. The lower expectation model in (A8) satisfies E[g( fa)] = E[g] (translation invari-
ance) for any g ∈K and a ∈ R.

The proof is given in the second part of the proof of Lemma 4.1. Observe that E defined in
(A8) satisfies the following properties: (i) for g= IR, E[IR] = 1; (ii) for A= [0,∞), E[IA] = 1; (iii)
for g = IA, where A is a bounded subset of R, it holds that E[I{A+a}] = E[IA] = 0 for any a ∈ R.
Thus, because of (iii), none of the probabilities dominated by E can be countably additive and the
set M includes finitely additive probabilities. However comparing the lower probabilities in (ii)
for (A3) and (A8), it can be noticed that the set of finitely additive probabilities induced by the
two improper priors p(w) = 1 and, respectively, p(w) = exp(`w) are different. Observe that (A7)
holds for any likelihood belonging to the exponential families provided that W = R. Note that
p(w) = exp(`w), transformed back to the original parameter space, becomes p(x) = exp(`x) in
the Normal case, p(θ) = θ `−1(1−θ)−`−1 in the Beta case and p(λ ) = λ `−1 in the Gamma case.
It can be noticed that for `= 0, exp(`w) = 1, thus the improper uniform distribution can be seen
as a particular case of exp(`w). We are interested in these exponential kernels exp(`w) since
they preserve conjugacy with exponential families as shown in (A6). In summary, invariance
properties can in general be satisfied by considering the lower expectation obtained as the limit
of proper truncated priors.
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