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1 Università della Svizzera italiana (USI), Via Buffi 13, Lugano, Switzerland
lucas.kania@usi.ch

2 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA) ,

{manuel.schuerch, dario.azzimonti}@idsia.ch
Via la Santa 1, Lugano, Switzerland

3 School of Computer Science and Statistics, Trinity College, Dublin, Ireland
alessio.benavoli@tcd.ie

Abstract. Gaussian processes (GPs) are an important tool in machine
learning and applied mathematics with applications ranging from Bayesian
optimization to calibration of computer experiments. They constitute
a powerful kernelized non-parametric method with well-calibrated un-
certainty estimates, however, off-the-shelf GP inference procedures are
limited to datasets with a few thousand data points because of their cubic
computational complexity. For this reason, many sparse GPs techniques
were developed over the past years. In this paper, we focus on GP regres-
sion tasks and propose a new algorithm to train variational sparse GP
models. An analytical posterior update expression based on the Informa-
tion Filter is derived for the variational sparse GP model. We benchmark
our method on several real datasets with millions of data points against
the state-of-the-art Stochastic Variational GP (SVGP) and sparse or-
thogonal variational inference for Gaussian Processes (SOLVEGP). Our
method achieves comparable performances to SVGP and SOLVEGP while
providing considerable speed-ups. Specifically, it is consistently four times
faster than SVGP and on average 2.5 times faster than SOLVEGP.

Keywords: Gaussian Process regression · Sparse Variational method ·
Information Filter variational bound

1 Introduction

Gaussian processes (GPs) are an important machine learning tool [14] widely
used for regression and classification tasks. The well-calibrated uncertainty quan-
tification provided by GPs is important in a wide range of applications such as
Bayesian optimization [20], visualization [10], and analysis of computer experi-
ments [16]. The main drawback of GPs is that they scale poorly with the training
size.
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Fig. 1. The main method presented in this paper, LIA → PP, compared against LSVGP

[7] and LSOLVEGP [21] on the high dimensional UCI datasets SONG (89 dimensions) and
BUZZ (77 dimensions). All methods run for the same number of iteration, plotted against
wall-clock time. This behaviour is also observed in the other experiments, see sec. 4.3.

Given N data points, GP training has a computational complexity of O(N3)
due to the inversion of a N × N covariance matrix. In the last few decades,
different families of methods were introduced to address this issue. Aggregation
or statistical consensus methods [8, 24, 5, 11] solve the issue by training smaller
GP models and then aggregating them. Other techniques exploit numerical
linear algebra approximations to efficiently solve the inversion problem [26] or
state-space representations [17, 18].

In this work, we focus on the family of sparse inducing points approximations
[13]. Such methods employ M � N inducing points to summarize the whole
training data and reduce the computational complexity to O(NM2). In such
models, the key parameters are the positions of the inducing points which need
to be optimized. Initial attempts did not guarantee a convergence to full GP [4,
22], however, ref. [23] introduced a variational lower bound which links the sparse
GP approximation to a full GP. This method (Variational Free Energy, VFE)
approximates the posterior with a variational distribution chosen by minimizing
the Kullback-Leibler divergence between the variational distribution and the
exact posterior.

The method proposed by [23] allows for large training data sizes, however, it
is still not appropriate for big data since the optimization of the lower bound,
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required to choose the positions of the inducing points, cannot be split into
mini-batches. In order to address this issue, [7] proposed a stochastic gradient
variational method (SVGP) employing an uncollapsed version of the lower bound
which splits into a sum over mini-batches and allows for stochastic gradient
descent. In a regression setting, VFE [23] provides analytical updates for the
variational distribution while SVGP [7] requires the optimization of all the
variational distribution’s parameters. This increases the size of the parameter
space and can lead to unstable results. Natural gradients [15] are often used to
speed up the convergence of this optimization problem. Nonetheless, analytical
updates for regression tasks could lead to higher speed-ups.

Ref. [19] proposed a recursive collapsed lower bound for regression that exploits
analytical updates for the posterior distribution and splits into a sum over mini-
batches. Consequently, the method can be scaled to millions of data points by
stochastic gradient descent. This recursive approach provides a performance
competitive with SVGP both in terms of accuracy and computational time,
however, it requires storing past gradients in memory. When the input space
dimension or the number of inducing points is very large, this method becomes
problematic memory-wise as the past Jacobian matrices are cumbersome to store.

In this paper, we address this issue and propose a simple and cheap training
method that efficiently achieves state-of-the-art performance in practice. Fig. 1
shows an example of the behaviour of our method, denoted LIA → PP, compared
against SVGP [7] and SOLVEGP [21] on two high dimensional large UCI [6]
datasets. The plots show root mean squared error (RMSE) and average log-
likelihood as a function of computational time. All methods are run for a fixed
number of iterations; note the computational speed-ups achieved by LIA → PP.

We develop our method with a straightforward approach: first, we stochas-
tically train the model parameters on independent mini-batches and then we
compute the full approximate posterior on the whole dataset with analytical
updates. In particular we

1. formulate the VFE model with an Information Filter (IF) approach allowing
for analytical posterior updates in natural parameters. We would like to
stress that IF is used to reformulate posterior updates and not to obtain
alternative state-space representations;

2. describe a training algorithm, LIA → PP, that employs the IF formulation
on independent mini-batches as a warm-up phase and recovers the previously
ignored data dependencies by employing analytic posterior updates in the
final phase of the optimization;

3. show on real datasets that our training method achieves comparable perfor-
mances with respect to state-of-the-art techniques (SVGP [7], SOLVEGP
[21]) in a fraction of their runtime as shown in fig. 1 and section 4.3.
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2 Gaussian Process Regression

2.1 Full Gaussian Processes

Consider a dataset D = (xi, yi)
N
i=1 of input points X = (xi)

N
i=1, xi ∈ RD and

observations yi ∈ R, where the ith observation yi is the sum of an unknown
function f : RD → R evaluated at xi and independent Gaussian noise, i.e.

yi = f(xi) + εi
iid∼ N

(
f(xi), σ

2
n

)
. (1)

We model f by using a Gaussian Process [14] with mean function m and a
covariance function k. A GP is a stochastic process such that the joint distribution
of any finite collection of evaluations of f is distributed as a multivariate Gaussianf(x1)

...
f(xn)

 ∼ N

m(x1)

...
m(xn)

 ,
k(x1, x1) · · · k(x1, xn)

...
...

k(xn, x1) · · · k(xn, xn)


 ,

where m : RD → R is an arbitrary function and k : RD ×RD → R is a positive
definite kernel. Both m and k could depend on a vector of parameters θ ∈ Θ; in
this paper we assume that m ≡ 0 and k is a kernel from a parametric family such
as the radial basis functions (RBF) or the Matérn family, see [14, Chapter 4].

Let f =
[
f(x1), . . . , f(xN )

]
, y =

[
y1, . . . , yN

]
and consider test points X∗ =

(x∗j )
A
j=1 with the respective function values f∗ = f(X∗). The joint distribution of

(y, f∗) is normally distributed due to eq. (1). Thus, the predictive distribution
can be obtained by conditioning f∗ |y ∼ N (f∗ |µy, Σy) [14, Chapter 2] where

µy = KX*X(KXX +σ2
n I)

−1 y;

Σy = KX*X*
−KX*X(KXX +σ2

n I)
−1 KXX*

.

where I is the identity matrix and KVW := [k(vi, wj)]i,j is the kernel matrix

obtained for two sets of points: V = (vi)
NV
i=1 ⊆ RD and W = (wj)

NW
j=1 ⊆ RD. Given

the prior f ∼ N (0,KXX), we can compute the log marginal likelihood log p(y |θ) =
N
(
y |0,KXX +σ2

n I
)

which is a function of θ, the parameters associated to the
kernel k, and of the Gaussian noise variance σ2

n. We can estimate those parameters
by maximizing log p(y |θ). Note that both training and marginal likelihood
computation require the inversion of a N ×N matrix which makes this method
infeasible for large datasets due to the O(N3) time complexity of the operation.

2.2 Sparse inducing points Gaussian Processes

The cubic time complexity required by GP regression motivated the development
of sparse methods for GP regression. The key idea is to find a set of M so-called
inducing points, R = (rj)

M
j=1 where rj ∈ RD, such that fR := (f(rj))

M
j=1 ∈ RM

are an approximate sufficient statistic of the whole dataset [13]. Thereby, the key
challenge is to find the location of these inducing points. Early attempts [4, 22]
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used the marginal likelihood to select the inducing points, however, they are prone
to overfitting. Ref. [23] instead proposed to perform approximate variational
inference, leading to the Variational Free Energy (VFE) method which converges
to full GP as M increases. The inducing points and the parameters are selected
by maximizing the following VFE lower bound

LVFE = logN
(
y |0,QXX +σ2

n I
)
− Tr(KXX−QXX)

2σ2
n

, (2)

where QXX = HX KRR HT
X and HX = KXR K-1

RR, see [23] for details. In this method,
only KRR needs to be inverted, therefore training with LVFE has time complexity
O(M3+NM). This allows training (sparse) GPs with tens of thousands of points;
the method, however, becomes infeasible for larger N because the lower bound
in eq. (2) cannot be split into mini-batches and optimized stochastically.

2.3 Stochastic Variational Gaussian Processes

Stochastic Variational Gaussian Processes (SVGP) [7] avoid the above-mentioned
problem by splitting the data D into K mini-batches of B points, i.e. (yk, Xk) ∈
RB × RB×D for k = 1, . . . ,K, and by stochastically optimizing the following
uncollapsed lower bound

LSVGP =

(
K∑
k=1

Efk∼q(·)[log p(yk | fk, θ)]

)
− KL[q(fR)||p(fR |θ)]. (3)

This lower bound uses a normal variational distribution q(fR) where the
variational parameters, i.e. mean and covariance, need to be optimized numerically
in addition to the inducing points and the kernel parameters. Natural gradients
[15] for the variational parameters speed up the task. Nonetheless, all entries in the
inducing point’s posterior mean vector and posterior covariance matrix have to be
estimated numerically. The lack of analytical posterior updates introduces O(M2)
additional variational parameters, whose optimization becomes cumbersome when
using a large number of inducing points.

2.4 Recursively Estimated Sparse Gaussian Processes

Ref. [19] obtained analytical updates of the inducing points’ posterior by re-
cursively applying the technique introduced by [23]. That is, the distribution
p(fR |y1:k) is approximated by a moment parameterized distribution qk(fR) =
N (fR |µk, Σk). Recursively performing variational inference leads to the bound

LREC =

K∑
k=1

logN (yk |HXk
µk−1, Sk)− Tr(KXkXk

−QXkXk
)

2σ2
n

(4)
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where Sk = HXk
Σk−1 HT

Xk
+σ2

n I and HXk
= KXkR K-1

RR. The posterior can be
analytically computed by the moment parameterized posterior propagation

µk = Σk

(
HT

Xk
yk

σ2
n

+Σ−1
k−1µk−1

)
, (5)

Σk =

(
Σ−1
k−1 +

HT
Xk

HXk

σ2
n

)−1

. (6)

By keeping the same parameters for the whole epoch, the posterior equals that
of its batch counterpart VFE. Similarly, the sum of LREC over all mini-batches
is equal to the batch lower bound LVFE. However, the authors proposed to
stochastically approximate its gradient by computing the gradient w.r.t. one mini-
batch and plugging-in the derivative of the variational distribution parameters
from the previous iteration in order to speed up the optimization. This method
has two main drawbacks. Firstly, it is constrained to use small learning rates for
the approximation to be valid and stable in practice. Second, the gradients of
the last iteration must be stored. Such storage becomes problematic when the
input space dimension or the number of inducing points is very large.
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Fig. 2. Toy experiments: 1D and 2D generated GP data. Performances of GP and
LVFE in horizontal lines as their optimization does not use mini-batches. On the left
comparison in number of mini-batches, on the right runtime comparison.
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3 Information Filter for Sparse Gaussian Processes

In order to overcome the previous issues but keep the advantage of analytical
posterior updates, we propose an Information Filter update for the posterior, a
very efficient and easy to interpret method for estimation in sparse GP methods.

Alternatively to the moment parameterized propagation in eqs. (5) and (6),
the posterior over the inducing points can be more efficiently propagated using
a natural parameterization N−1 (fR |ηk, Λk) with ηk = Σ−1

k µk and Λk = Σ−1
k .

The advantage of this Information Filter formulation are the compact updates

ηk = ηk−1 +
1

σ2
n

HT
Xk

yk and η0 = 0; (7)

Λk = Λk−1 +
1

σ2
n

HT
Xk

HXk
and Λ0 = K-1

RR, (8)

where HXk
= KXkR K-1

RR. Further computational efficiency is gained by using the
equivalent rotated parameterization: ηRk = KRR ηk and ΛR

k = KRR Λk KRR with
updates

ηRk = ηRk−1 +
1

σ2
n

KRXk
yk and ηR0 = 0; (9)

ΛR
k = ΛRk−1 +

1

σ2
n

KRXk
KXkR and ΛR0 = KRR . (10)

This parameterization constitutes a computational shortcut since several matrix
computations in each step can be avoided. The overall computational complexity
of the method remains the same as in LREC, however, it allows for smaller constant
terms, thus reducing computational time in practice. Particularly, this Information
Filter propagation is more efficient than the Kalman Filter formulation used
by [19] when the mini-batch size is greater than the number of inducing points,
which is usually the case in practice. The corresponding lower bound is

LIF =

K∑
k=1

logN−1
(
rk|0, S−1

k

)
− Tr(KXkXk

−QXkXk
)

2σ2
n

, (11)

where rk = yk −Cholesky(ΛR
k )−1 KRXk

and S−1
k = I

σ2
n
− 1

σ4
n

KXkR(ΛR
k )−1 KRXk

.

The bound consist of two parts: the first term corresponds to the log marginal
likelihood of each mini-batch, and the second term is the correction term resulting
from the variational optimization. We refer the reader to the supplementary
material for the derivation and efficient computation of the posterior propagation
and the lower bound in terms of the rotated posterior mean and covariance.

Computing LIF for an epoch using the rotated parameterization in eqs. (9)
and (10) while keeping the same parameters for all mini-batches produces a
posterior that equals its batch counterpart VFE.
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3.1 Stochastic Hyperparameter Optimization

The additive structure of the LIF, together with the efficient IF posterior propa-
gation allows for more frequent parameter updates. Analogously to the approach
in [19], LIF can be stochastically optimized w.r.t. to all the kernel parameters
and the inducing points’ locations. Let LIFk be the k-term of the LIF sum

LIFk(θk, Λ
R
k−1, η

R
k−1) = lk(θk, Λ

R
k−1, η

R
k−1)− ak(θk),

where lk = logN−1
(
rk|0, S−1

k

)
and ak =

Tr(KXkXk
−QXkXk)

2σ2
n

. The gradient of

LIFk w.r.t. the parameters at iteration t, denoted θt, can be approximated using
Jacobian matrices of the previous iteration

∂ LIFk

∂θt
≈ ∂lk
∂θt

+
∂lk

∂ΛRk−1

∂ΛRk−1

∂θt−1
+

∂lk
∂ηRk−1

∂ηRk−1

∂θt−1
− ∂ak
∂θt

. (12)

This recursive propagation of the gradients of the rotated posterior mean

and covariance indirectly takes into account all the past gradients via
∂ΛR

k−1

∂θt−1

and
∂ηRk−1

∂θt−1
. It would be exact and optimal if the derivatives with respect to the

current parameters were available. However, when changing the parameters too
fast between iterations, e.g. due to a large learning rate, this approximation is
too rough and leads to unstable optimization results in practice. Furthermore,
the performance gain provided by the recursive gradient propagation does not
compensate for the additional storage requirements on the order of O(M2U)
where U is the number of hyperparameters. For instance, if 500 inducing points
are used in a 10-dimensional problem, only storing the Jacobian matrices requires
10 GB, under double float precision, i.e. around the memory limit of the GPUs
used for this work. Additionally, using the approximated posterior mean and
covariance in the initial stages of the optimization slows down the convergence
due to the lasting effect of the parameters’ random initialization. This effect is
noticeable in the test cases presented in fig. 2: compare LIF with the more stable
method introduce below called LIA.

Independence Assumption for Optimization In order to circumvent these instabil-
ities in the optimization part, we propose a fast and efficient method that ignores
the (approximated) correlations between the mini-batches in the stochastic gra-
dient computation in the beginning. Specifically, the mini-batches are assumed
to be mutually independent, which simplifies the lower-bound of the marginal
likelihood to

LIA =

K∑
k=1

logN−1

(
yk |0,

I

σ2
n

− 1

σ4
n

QXkXk

)
− Tr(KXkXk

−QXkXk
)

2σ2
n

. (13)
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Algorithm 1: LIA → PP Algorithm

1 Choose number of epochs EIA for LIA ;
2 Split D into K mini-batches of B points ;
3 for k = 1→ K · EIA do
4 compute gradients on the kth mini-batch, eq. (13) ;
5 update the hyperparameters ;

6 end
7 for k = 1→ K do // i.e. for one epoch

8 compute posterior propagation with eqs. (9),(10) ;
9 end

Recovery of the Full Posterior In order to incorporate all the dependencies once
reasonable hyperparameters are achieved, we could switch to optimize the bound
LIF during the last few epochs. Eventually, all the ignored data dependencies are
taken into account with this method, denoted LIA → LIF.

A further computational shortcut is to propagate the inducing points posterior
according to eqs. (9), (10), and not perform any optimization in the last epoch.
This method, denoted LIA → PP, constitutes a practical alternative when the
computation and storage of the Jacobian matrices is costly, for instance in high
dimensional problems where a large number of inducing points are needed. For
clarity, a pseudo-code of the method is provided in algorithm 1. Note that the
full sparse posterior distribution including all data is achieved. The indepen-
dence assumption influences only the optimization of the hyperparameters. No
approximation is used when computing the posterior distribution.

Distributed posterior propagation An advantage of the Information Filter formu-
lation is that it allows computing the posterior in parallel. Note that eqs. (9),(10)
can be rewritten as

ηRK =

K∑
k=1

1

σ2
n

KRXk
yk and ΛRK = ΛR0 +

K∑
k=1

1

σ2
n

KRXk
KXkR .

Since the sums terms are functionally independent, the computation of the
posterior distribution can be easily distributed via a map-reduce scheme.

Prediction Given a new X∗ ∈ RA×D, the predictive distribution after seeing y1:k

of the sparse GP methods can be computed by

p (f∗ | y1:k) =

∫
p (f* | fR) p (fR | y1:k) dfR = N (f* |µ*,Σ*)

where µ* = KX*R(ΛR
k )−1 ηRk ;

Σ* = KX*X*
−QX*X*

+ KX*R(ΛR
k )−1 KRX*

.

The predictions for y* are obtained by adding σ2
n I to the covariance of f* |y1:k.

A detailed derivation is provided in the supplementary material.
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4 Experiments

We repeated every experiment presented in this section 5 times, using different
random splits for each dataset. We always use the same hardware equipped with
a GeForce RTX 2080 Ti and an Intel(R) Xeon(R) Gold 5217 (3GHz).

Furthermore, we switch from optimizing LIA to the posterior propagation,
denoted LIA → PP, in the last 5 epochs of training for all the synthetic and real
datasets. Although only one epoch is needed to incorporate all the information of
a dataset, we do 5 epochs so the effect is noticeable in the figures. Alternatively,
an adaptive switch could be used. For simplicity, we briefly discuss it in the
supplementary material. Moreover, we did not exploit the parallelization of the
posterior propagation in order to be able to compare all training algorithms on
the number of iterations.

For full GP, VFE and SVGP, we used the GPflow 2.0 library [12, 25], which
is based on Tensorflow 2.0 [1]. We further compare with the recently introduced
SOLVEGP [21], implemented in GPflow 1.5.1 and Tensorflow 1.15.4. Our algo-
rithms, namely the training of LIF,LIA → LIF and LIA → PP were implemented
in Tensorflow 2.04. All stochastic methods were optimized with the ADAM op-
timizer [9] using the default settings (β1 = 0.9, β2 = 0.999, ε = 1e−7); we used
the recommended settings (γ = 0.1) for the stochastic optimization of natural
gradients in SVGP [15].

We do not compare the methods against optimizing LREC [19] because their
code does not run on GPU, making the computational times not comparable.
Another candidate method that is not considered is Exact Gaussian Processes
(ExactGP) [26]. The aim of approximated sparse GPs (SGPs, which includes our
method, SVGP and SOLVEGP) and ExactGPs are different, the latter propose
a computationally expensive procedure to compute a full GP while the former
propose a computationally cheap approximation of a SGP. Consequently, an
ExactGP would yield higher accuracy than an approximated SGP. The accuracy
of approximated SGP is upper-bounded by VFE’s accuracy which is itself upper-
bounded by full GP’s accuracy. Moreover, for high dimensional datasets such
as BUZZ or SONG used later, ExactGP requires an infrastructure with many
GPUs in parallel, e.g. 8 in their experiments, which makes the method hard to
replicate in practice.

We compare each method in terms of average log-likelihood, root mean squared
error (RMSE) and computational time. The comparison in computational time
is fair because all methods were run on the same hardware which ran exclusively
the training procedure.

4.1 Toy Data

We start by showcasing the methods on a simple dataset generated by a SGP
with 2000 random inducing points, and a RBF kernel with variance 1, Gaussian
noise 0.01 and lengthscales 0.1 and 0.2 for 1 and 2 dimensions correspondingly.

4 The code is available at https://github.com/lkania/Sparse-IF-for-Fast-GP



Sparse Information Filter for Fast Gaussian Process Regression 11

2000 4000 6000 8000 10000

0.3

0.4

0.5

0.6

5D

RMSE

2000 4000 6000 8000 10000
1.2

1.0

0.8

0.6

0.4

Avg. Log-Likelihood

100 200 300 400 500
1.2

1.0

0.8

0.6

0.4

Avg. Log-Likelihood

2000 4000 6000 8000 10000
# mini-batches

0.2

0.3

0.4

0.5

0.6

10D

2000 4000 6000 8000 10000
# mini-batches

1.2

1.0

0.8

0.6

0.4

0.2

0.0

250 500 750 1000 1250 1500
time (seconds)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

IA PP IA SVGP

Fig. 3. Synthetic experiments: 5D and 10D data generated from GPs. RMSE vs number
of mini-batches (left), average log-likelihood vs number of mini-batches (center), and
average log-likelihood vs runtime (right).

We consider N = 5000 training points and 500 test points. In all experiments, the
initial parameters for the RBF kernel were 1 for the lengthscales and Gaussian
noise, and 2 for the variance. Moreover, 20 inducing points were randomly selected
from the training data. In this example, the switch for LIA → LIF and LIA → PP
was done in the last 200 epochs to make the difference between them visually
noticeable. All methods were run for 20K iterations with a learning rate of 0.001
and mini-batches of 500 data points.

Figure 2 shows that in 1D all sparse training methods converge to the LVFE

solution, which itself converges to the GP solution. However, this is not the
case in the 2D example. LIF comes closer to the VFE solution, followed by
LIA → LIF. Note that the convergence of LIA → LIF is expected since using LIA

at the beginning is just a way of warm-starting the parameters for LIF.

4.2 Synthetic Data

Using the same generating process used in the previous experiments, we produced
two 100K points datasets for 5 and 10 dimensions using an RBF kernel with
variance 1, Gaussian noise 0.01, and lengthscales 0.5 and 1 respectively. The
SGPs models, with a RBF kernel, were initialized with Gaussian noise 1, kernel
variance equal to 2 and the lengthscales all equal to 1 in the 5-dimensional case,
and 2 in the 10-dimensional problem. All methods run for 10K iterations in all the
datasets using 100 and 500 inducing points for 5 and 10 dimensions respectively.
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Table 1. Average log-likelihood of last epoch (higher is better), average RMSE of the
last epoch (lower is better), and average runtime in minutes (lower is better). The
algorithm with the best metric is highlighted in each case.

D Metric LIA → PP LIA LSVGP

5 avg log-lik -0.33 ± 0.03 -0.45±0.14 -0.48±0.15
10 avg log-lik 0.01 ± 0.01 -0.21±0.20 -0.24±0.20
5 RMSE 0.29 ± 0.01 0.34±0.05 0.36±0.06
10 RMSE 0.19 ± 0.003 0.26±0.04 0.27±0.05
5 runtime 1.03 ± 0.11 1.05±0.11 9.37±1.16
10 runtime 6.59 ± 0.06 6.65±0.09 27.40±0.79

In all cases, we used learning rates equal to 0.001 and mini-batches of 5000 points.
Note, that LIF and LIA → LIF were not run due to the memory constraints of
our equipment.

Figure 3 displays the log-likelihood and RMSE for all the methods. In 5
and 10 dimensions, we can clearly see the effect of a few posterior updates, for
LIA → PP, after fixing the parameters with LIA. Additionally, table 1 displays
the average runtimes for each method. Note that LIA → PP offers a speed-up of
9x and 4x over LSVGP for the 5- and 10-dimensional datasets respectively.

4.3 Real Data

Table 2. Training dataset size, test dataset size and dimension of each one of the
benchmarked datasets. The last two columns show the learning rate and the number of
iterations for all training methods run in each dataset.

Name Train Test D Learning rate Iterations

AIRLINES 1.6M 100K 8 0.0001 60000
GAS 1.4M 100K 17 0.0001 40000
BUZZ 0.46M 100K 77 0.0001 60000
SONG 0.41M 100K 89 0.0001 60000
SGEMM 0.19M 48K 14 0.001 15000

PROTEIN 0.036M 9K 9 0.001 5000
BIKE 0.013M 3.4K 12 0.0001 40000

We trained SGPs, whose RBF kernels had all their hyperparameters initialized
to 1, using LSVGP, LSOLVEGP, LIA and LIA → PP in several real-world datasets,
shown in table 2, using mini-batches of 5000 points. All datasets were downloaded
from the UCI repository [6] except for AIRLINES, where we follow the original
example in [7].

For each training algorithm, we present average log-likelihood, RMSE and
runtime for the same number of iterations. Figure 1 shows the results corre-
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sponding to the datasets SONG and BUZZ. Tables 3, 4 and 5 report the average
log-likelihood, RMSE and runtime of all the algorithms. Note that training with
LIA → PP always provides comparable results to the state-of-the-art. However,
such results are achieved, on average, approximately 4 times faster than LSVGP

and 2.5 times faster than LSOLVEGP, see the last two columns of table 5. While
LIA → PP is uniformly around 4 times faster than LSVGP, its performance with
respect to LSOLVEGP strongly depends on the dataset. In general, LSOLVEGP is
faster on smaller and simpler datasets, while it becomes computationally costly
on noisy datasets like AIRLINE or BUZZ.

The results show that in high dimensional, large problems a simple method
such as LIA → PP guarantees fast results and should be used in practice. Note
that, compared to LIA, the inducing point posterior propagation step added in
LIA → PP always increases performances (lower RMSE, higher log-likelihood)
and it is not noticeable in terms of computational time.

5 Conclusion

In this paper, we presented LIA → PP, a fast method to train sparse inducing
points GP models. Our method is based on

(A) optimizing a simple lower bound under the assumption of independence
between mini-batches, until the convergence of hyperparameters;

(B) recovering a posteriori the dependencies between mini-batches by exactly
computing the posterior distribution.

We focused on VFE-like models and provided a method that achieves a perfor-
mance comparable to state-of-the-art techniques with considerable speed-ups.

The method could be adapted to the power EP model [3]. Additionally, our
lower bound exploits an Information Filter formulation that could potentially
be distributed. We outlined how to distribute the posterior propagation, which
could be exploited by future work to distribute the computation of gradients.

Our technique is based on analytical updates of the posterior that are in
general not available for classic GP classification models. Recently, SkewGP for
classification [2] proposed a full classification model with analytical updates for
the posterior. Our work could be exploited to provide fast sparse training for
such models.
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Table 3. Average Log-Likelihood of the last epoch, higher is better. The algorithm
with the highest average mean log-likelihood is highlighted for each dataset.

Dataset LIA → PP LIA LSVGP LSOLVEGP

AIRLINES -1.31 ± 0.01 -1.33±0.01 -1.33±0.01 -1.32±0.01
GAS -0.13±0.02 -0.24±0.02 -0.25±0.01 -0.05 ± 0.05
BUZZ -0.10 ± 0.01 -0.17±0.01 -0.36±0.01 -0.55±0.04
SONG -1.20±0.001 -1.22±0.002 -1.25±0.004 -1.20 ± 0.002
SGEMM 0.47±0.002 0.33±0.02 0.28±0.05 0.63 ± 0.17

PROTEIN -1.04 ± 0.01 -1.13±0.05 -1.14±0.08 -1.06±0.02
BIKE 0.08 ± 0.02 0.03±0.02 0.04±0.02 0.01±0.04

Table 4. Average RMSE of the last epoch, lower is better. The algorithm with the
lowest average mean RMSE is highlighted for each dataset.

Dataset LIA → PP LIA LSVGP LSOLVEGP

AIRLINES 0.89 ± 0.01 0.92±0.01 0.92±0.01 0.90±0.01
GAS 0.28±0.01 0.32±0.01 0.32±0.01 0.25 ± 0.01
BUZZ 0.28 ± 0.01 0.31±0.004 0.37±0.01 0.42±0.02
SONG 0.80±0.001 0.82±0.002 0.84±0.003 0.80 ± 0.002
SGEMM 0.14±0.001 0.17±0.004 0.17±0.01 0.13 ± 0.03

PROTEIN 0.68 ± 0.005 0.74±0.01 0.74±0.04 0.69±0.01
BIKE 0.22 ± 0.004 0.24±0.005 0.23±0.004 0.23±0.01

Table 5. Average runtimes in hours, lower is better. The algorithm with the lowest
average mean runtime is highlighted for each dataset. ∆SV is the ratio between the
average runtimes of LSVGP and LIA → PP. ∆SOLVE is the ratio between the average
runtimes of LSOLVEGP and LIA → PP.

Dataset LIA → PP LIA LSVGP LSOLVEGP ∆SV ∆SOLVE

AIRLINES 0.65 ± 0.004 0.66±0.004 2.78±0.07 3.72±0.16 4.29 5.75
GAS 0.43 ± 0.001 0.44±0.004 1.84±0.04 2.20±0.11 4.28 5.12
BUZZ 0.67 ± 0.004 0.68±0.005 2.95±0.04 1.79±0.08 4.38 2.66
SONG 0.68 ± 0.01 0.69±0.01 3.00±0.11 1.65±0.02 4.41 2.43
SGEMM 0.16 ± 0.001 0.16±0.001 0.69±0.02 0.30±0.01 4.22 1.84
PROTEIN 0.05 ± 0.0002 0.05±0.0001 0.23±0.004 0.07±0.001 4.20 1.33
BIKE 0.44 ± 0.005 0.44±0.003 1.88±0.07 0.56±0.02 4.27 1.28
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18. Särkkä, S., Solin, A.: Applied Stochastic Differential Equations. Cambridge Univer-
sity Press, Cambridge, UK (2019)

19. Schürch, M., Azzimonti, D., Benavoli, A., Zaffalon, M.: Recursive estimation for
sparse Gaussian process regression. Automatica 120, 109127 (2020)

20. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the
Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the
IEEE 104(1), 148–175 (jan 2016)

21. Shi, J., Titsias, M.K., Mnih, A.: Sparse Orthogonal Variational Inference for
Gaussian Processes. In: Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS). vol. 108. Palermo, Italy (2020)

22. Snelson, E., Ghahramani, Z.: Sparse Gaussian Processes using Pseudo-inputs
Edward. In: Weiss, Y., Schölkopf, B., Platt, C., J. (eds.) Advances in Neural
Information Processing Systems 18. pp. 1257—-1264. MIT Press (2006)

23. Titsias, M.K.: Variational learning of inducing variables in sparse Gaussian processes.
In: Proceedings of the 12th International Conference on Artificial Intelligence and
Statistics (AISTATS). vol. 5, pp. 567–574 (2009)

24. Tresp, V.: A Bayesian Committee Machine. Neural Computation 12, 2719–2741
(2000)

25. van der Wilk, M., Dutordoir, V., John, S., Artemev, A., Adam, V., Hensman, J.: A
framework for interdomain and multioutput Gaussian processes. arXiv:2003.01115
(2020), https://arxiv.org/abs/2003.01115

26. Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger, K.Q., Wilson, A.G.:
Exact Gaussian Processes on a Million Data Points. In: Wallach, H., Larochelle, H.,
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